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Abstract

Cognitive control is assumed to be intricately linked to theta band activity. Situations that
involve high uncertainty are said to trigger a need for cognitive control, which is reflected in
greater theta activity. We examined whether theta band activity is similarly implicated in
cognitive control processes when uncertainty is likely to trigger curiosity—a motivational state
that makes people explore their environment. We investigated this in a sample of N =41 healthy
human adults by manipulating target-related uncertainty in a Posner cueing task. Time-
frequency and beamforming approaches were applied to analyze the oscillatory dynamics and
their sources. Effective connectivity analysis was done to examine how information transfer is
modulated by uncertainty. Behavioral results showed greater sensitivity to task-irrelevant cues
under high uncertainty. Importantly, there was no theta band activity in the posterior cingulate
cortex under high compared to low uncertainty. Effective connectivity analyses also showed
weaker connections between inferior parietal lobule and posterior parietal cortex under high
uncertainty. Alpha band activity in the temporo-parietal junction under high uncertainty
indicated an effect of uncertainty on early attentional filtering. These results indicate that high
uncertainty is not always associated with increased theta band activity. We discuss possible
explanations of this finding including that uncertainty may trigger different (meta)control
policies which could be associated with distinct oscillatory dynamics. These findings have
implications towards our understanding of “need for control” and the situations that trigger it.

Keywords: uncertainty, cognitive control, curiosity, theta band activity, posterior cingulate
cortex, effective connectivity
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Introduction

The neurophysiological processes supporting goal-directed actions have been intensely studied.
A canonical finding is that especially (medial frontal) cortex theta band activity (TBA) supports
processes relevant for action control (Beste et al., 2023; Cavanagh and Frank, 2014). The
medial frontal TBA is often proposed to reflect a “surprise signal”, which indicates that
something needs to be done but does not code what this should be (Cavanagh and Frank, 2014).
TBA usually increases in situations occurring rarely and (therefore) impose high demands on
cognitive processes (Cohen, 2014; Ullsperger et al., 2014). Importantly, TBA is modulated by
the “uncertainty” that specific response options occur or that specific information will be
obtained in the future (Dippel et al., 2017, 2016; Monsalve et al., 2018; van Wingerden et al.,
2010) and some evidence suggest that TBA codes predictions of upcoming events (Arnal and
Giraud, 2012; Buzsaki and Draguhn, 2004). In conceptions of TBA as a “surprise signal” for
control, uncertainty is seen as being undesired as it triggers the need to increase effortful
cognitive control. For instance, Dippel et al. (2017) observed greater theta band activity as the
frequency of no-go trials decreased suggesting that exerting cognitive control becomes more
demanding as events that require inhibition become rare or uncertain.

However, uncertainty is not a unitary concept. While some approaches outlined above
view uncertainty as a trigger to monitor and adjust behavior in line with top-down goals, others
view uncertainty as a trigger for curiosity (Gottlieb and Oudeyer, 2018; Kidd and Hayden, 2015;
Van Lieshout et al., 2021). Curiosity is the intrinsic drive to seek more information “for its own
sake” (Berlyne, 1960). It is not driven by external rewards or benefits, but the reward consists
of the information gained out of exploration (see FitzGibbon et al., 2020 for a review; Kang et
al., 2009; Kobayashi and Hsu, 2019). Self-reported curiosity activates the same reward network
in the brain that is commonly associated with extrinsic reward cues (Kang et al., 2009;
Kobayashi and Hsu, 2019). Curiosity is typically marked by a reduced impact of top-down
goals and being more open to a wide range of information. In line with this, it has been seen
that irrelevant faces presented during a curiosity-inducing trivia task are recalled better on high
curiosity trials compared to low curiosity trials (Gruber et al., 2014; Gruber and Ranganath,
2019). It is not clear whether and to what degree these different conceptualizations of
uncertainty (as a trigger for goal-directed control vs. a trigger for curiosity) rely on the same
control processes. It is possible that the type of cognitive control needed depends on the type
of uncertainty that is encountered (Hommel & Colzato, 2017). Given this and that TBA has
been shown to differentiate between distinct cognitive control strategies (Cavanagh et al., 2012;
Eisma et al., 2021), it is reasonable to ask whether TBA is similarly involved when uncertainty
is linked to curiosity.

In the current study, we used an EEG experiment to investigate how uncertainty affects
behavior in a spatial cueing task (Shiu and Pashler, 1994). In this paradigm, the location of task-
irrelevant peripheral cues is known to influence responses to a target (Chica et al., 2014; Posner,
1980). To manipulate uncertainty, we varied the number of masks presented after the target:
either a single mask or four masks. This approach, adapted from previous work (Prasad and
Hommel, 2024; Shiu and Pashler, 1994), modulates how precisely the target location can be
identified. In the low-uncertainty condition, a single mask always appeared at the target
location, making the target's position fully predictable. In contrast, the high-uncertainty
condition included four masks, one at each possible location, obscuring the target’s position.
To control for potential differences in task difficulty, we included an additional block with the
single-mask condition but increased overall task difficulty. We tested whether the influence of
peripheral cues on behavior was affected by this uncertainty manipulation. We hypothesized
that repeated exposure to a given mask condition would induce a sustained state of low or high
uncertainty across a block of trials, influencing cognitive control processes engaged during the
task.

While we focused on TBA, we also examined the modulation of alpha band activity
(ABA). The reasons are that TBA is modulated by ABA during response selection (Beste et al.,
2023; Cavanagh and Frank, 2014; Rawish et al., 2024; Wendiggensen et al., 2023) and that
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ABA is central for the filtering of incoming information and attentional processes (Klimesch et
al., 2012; Herrmann & Knight, 2001) that are captured by the experimental approach used in
this study. We used EEG-beamforming analyses to examine which functional neuroanatomical
structures are associated with modulations in TBA and ABA. Based upon previous findings, it
is most likely that besides medial frontal cortices, superior and inferior parietal regions are
involved, since these regions are related to perception and action (Gottlieb, 2007), and
particularly so when information to update internal representations of the environmental context
in order to initiate appropriate actions is unexpected (Geng and Vossel, 2013). In further
exploratory analyses, we used nonlinear causal relationship estimation by artificial neural
networks (nCREANN) (Elmers et al., 2024; Talebi et al., 2019) to examine whether and how
information transfer between the involved functional neuroanatomical structures is modulated.
We did not look into other frequency bands (eg., beta/gamma) as there was no clear hypothesis
linking uncertainty and cognitive control to these frequency bands. Thus, we only focused on
theta and alpha bands as we had theoretical reasons based on existing literature.

Materials and Methods

Sample

N=41 healthy adults (19 male, 22 female, mean age = 27 years, SD = 4) participated in this
study. The sample size was determined based on an earlier study (Shiu and Pashler, 1994) from
which the design was adapted. There were N=12 participants in Shiu and Pashler (1994,
Experiment 1). Cohen’s standardized difference scores (d,, Cohen, 1988) estimated using the
reported paired-sample F test values and sample sizes was 1.01. The calculations were based
on results reflecting differences between cue valid and invalid trials. The power analysis (using
“pwr” package in R) yielded a sample size of 10 for a desired power of 0.8 with the confidence
level set to 0.05. A larger sample was selected because we had an additional experimental
condition. This sample size is similar to the N in several other EEG studies with similar
methodology published recently (Brilliant et al., 2024; eg., Magosso and Borra, 2024; Pscherer
et al., 2023; Rawish et al., 2024). Further, we had a large number of trials (768) for each
participant, contributing to the study's power. All participants were in the age range of 18 to 35
years and reported no neurological or psychiatric disorders. Written informed consent was taken
from all participants. One participant’s data was excluded from all analyses because the
stimulus and response markers for the EEG recording were missing due to technical errors.
Behavioural and EEG data from the remaining N=40 participants were included in the data
analyses. The institutional ethics committee of TU Dresden approved the study.

Task
The task is shown in Figure 1.
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High
uncertainty

Low
uncertainty

Low uncertainty
difficult

Figure 1. Sequence of events on a sample trial in all three conditions. The cue and the target appeared in any one
of the four placeholders around the central placeholder. The figure shows an example invalid trial (cue and target
appear at different locations) in the high and low UC conditions. An example valid trial (cue and target appear at
the same location) is shown for the low UC difficult condition.

Each trial started with the presentation of a central square (2.5°) surrounded by four squares
arranged in the form of a plus sign (top/bottom/left/right) on a screen with a refresh rate of 60
Hz. We don’t report other physical properties of the screen, such as brightness, because we
consider them relevant only in paradigms involving tightly-controlled psychophysics methods.
Each of the four squares was at a distance of 1.25° from the central square. The task design was
borrowed from Prasad and Hommel (2024) who reported two experiments with the same task
administered online. The spatial arrangement of the visual objects in these studies was adopted
from previous studies (Prasad et al., 2022, 2021; Ruthruff and Gaspelin, 2018). The squares
served as placeholders and were in white on a black background. After 500 ms, the “cue” was
presented for 50 ms in the form of four filled white dots around one of the four squares. After
50 ms, the target letter (“E” or “H”, white color, 2° height) was presented inside one of the four
squares for 50 ms. Thus, the targets were presented 100 ms after cue onset. Following this, the
symbol “#” was shown for 500 ms to mask the visibility of the target. On half of the trials, the
“#” symbol was shown inside all the four squares (four-mask trials with high uncertainty). On
the other half, the symbol was shown only inside the target square (single-mask trials with low
uncertainty). Following the presentation of the masks, the participants were asked to identify
the target letter (“E” or “H”) and press the corresponding key on the keyboard. The trial ended
only after a response was made. The target could appear either at the cued location (“valid”
trials) or at a different location (“invalid” trial). Since our objective was to make the cue non-
predictive of the target location, there were 25% valid trials and 75% invalid trials in the
experiment. There was a total of 768 trials divided into three blocks. There was one block of
256 trials with low uncertainty (low UC) and another block of 256 trials with high uncertainty
(high UC). A third block of trials was identical to the low uncertainty condition except that the
target letter was presented in grey (#737380) to increase the difficulty of the task by reducing
the contrast between the target letter and the background (“low UC difficult” condition). Our
main comparison is between high and low uncertainty conditions. However, it is possible to
attribute any differences found between high and low uncertainty to a possible increase in
difficulty in the high uncertainty condition rather than the increase in uncertainty. To address
this, we kept the uncertainty low, but only increased the task difficulty in one block to rule out
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confounding explanations. The trials were blocked in each mask condition to induce a sustained
state of curiosity in a block of trials. The block order was randomized.

There were 24 practice trials at the beginning of the experiment where feedback was
given on every trial with incorrect response. In the main experimental blocks, participants were
given self-paced breaks after every 64 trials. During this break, they were also given feedback
on their mean response time and accuracy in the preceding block.

Behavioural data analyses

We first checked if all participants had accuracy greater than 55% (cut-off criterion borrowed
from Prasad & Hommel). All participants cleared this criterion. The signal detection measure
d’ was calculated for each condition and participant. The target letter “E” was considered as
signal and “H” as noise (this assignment is arbitrary and can be reversed). Correct responses to
“E” counted as Hits and incorrect responses to “H” counted as false alarms. The d’ score was
calculated as the difference in z-transform values of hit rates and false alarms rates. Response
times (RTs) were analyzed after discarding trials with incorrect responses (21 %) and RTs faster
than 100 ms and slower than 2000 ms (2.1 %). Repeated measures ANOVA was conducted on
d’ and mean RTs with UC Condition (high UC, low UC and low UC difficult) and Validity
(valid, invalid) as factors. Results from the repeated measures ANOVA on accuracy are
reported in the supplementary material (Analysis in S2).

EEG preprocessing

During the experiment, EEG data was recorded using QuickAmp and BrainAmp amplifiers
(Brain Products GmbH, Gilching, Germany) and a 60 channel Ag-AgCl equidistant electrode
setup. The reference electrode was set to Fpz. Recordings were conducted at a sampling rate of
500 Hz which were down sampled 256 Hz during later preprocessing. Electrode impedances
were kept below 5 kQ. After recording, offline preprocessing was done using automagic
(Pedroni et al., 2019) within EEGLAB (Delorme and Makeig, 2004) on Matlab 2022a (The
MathWorks Corp.) using the concatenation of steps also used in previous studies by our group
(e.g., Koyun et al., 2023; Pscherer et al., 2023; Yu et al., 2023). Automagic has been extensively
used both by our group and other researchers (the paper introducing Automagic published in
Neurolmage has been cited 240 times). Most EEG researchers would agree that there are no
golden rules when it comes to EEG pre-processing. Most often, individual PIs or groups decide
on a pipeline based on their experience and subjective criteria. The biggest advantage of
Automagic is that it offers a transparent, standardized procedure for pre-processing that also
helps with replicability. The first step in Automagic consisted of removal of flat channels. The
data were then re-referenced to an average reference primarily because we aimed to perform
source reconstruction following the time-frequency analyses. Average referencing is typically
recommended for source reconstruction techniques as it reduces the forward model error
introduced by localization inaccuracies of the electrodes’ positions (Westner et al., 2022). After
this step, the PREP preprocessing pipeline (Bigdely-Shamlo et al., 2015) was applied to remove
the line noise at 50 Hz using a multitaper algorithm. Next, clean_rawdata() was applied which
first detrends the EEG data using an FIR high pass filter of 0.5 Hz. Flat-line, noisy, and outlier
channels were detected and removed. Epochs showing abnormally strong power (>15 standard
deviations relative to calibration data) were reconstructed using Artifact Subspace
Reconstruction (ASR, Mullen et al., 2013). Calibration was done based on the default method
in the clean_asr function where a subset of clean data was identified from the given recording
using the Statistics toolbox. Time windows that could not be reconstructed were removed using
the WindowCeriterion parameter in the clean rawdata pipeline with the default setting (0.25).
This means that time windows in which more than 25% of the channels had contaminated data
(within that time window) that could not be reconstructed were then removed. A lowpass filter
of 40 Hz was applied. EOG artifacts were removed using a subtraction method (Parra et al.,
2005). Muscle, loose electrodes and remaining eye artifacts such as blinks and saccades were
automatically classified and removed by using an independent component analysis (ICA) based
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Multiple Artifact Rejection Algorithm (MARA, Winkler et al., 2011). Components containing
cardiac artifacts were identified using ICLabel (Pion-Tonachini et al., 2019) and removed
consecutively. Finally, all channels that were removed by Automagic were interpolated using a
spherical method. After the preprocessing, segments were created for time-locked with the
onset of the cue for each valid and invalid trial separately in each of the three UC conditions.
The segments were 4000 ms long and began 2000 ms before cue onset. Long segments were
chosen to allow for reliable quantification of low oscillatory activity (Beste et al., 2010; Mike
X. Cohen, 2014). Longer segments also ensure that edge effects don’t contaminate the time
window of interest. Since we were interested in the 0 — 1000 ms time window after cue onset,
we chose a sufficiently long buffer zone before and after the window of interest to avoid edge
artifacts. Next, a baseline correction was applied using the time-window starting 200 ms before
cue onset. This duration was chosen as it is generally recommended to have a short baseline
(eg., 200 — 400 ms) since having a longer baseline could result in contamination by other
cognitive processes (Handy, 2009; Luck and Kappenman, 2013).

EEG time frequency decomposition and beamforming

Activity in the Theta (4-7 Hz) and Alpha (8-12 Hz) bands were analyzed using time-frequency
decomposition methods with a Morlet parameter of 5 cycles with a spectral bandwidth of 3 Hz
and a time resolution of 53 ms using FieldTrip (Oostenveld et al., 2011). Average alpha and
theta power were calculated for each time point at each electrode in the time window 0 to 1000
ms starting from cue onset. The power values were compared between valid and invalid trials
for each of the three UC conditions (high UC, low UC and low UC difficult) using cluster-
based permutation tests. The objective was to identify the set of electrodes showing significant
differences in power between valid and invalid trials and to further examine if the differences
between valid and invalid trials were modulated by the UC conditions. In the first step of a
cluster-based permutation test, paired t-tests are conducted at each electrode. If at least two
pairs of neighboring electrodes show a significant difference (p < 0.05), they are considered a
part of a sample cluster. The sum of the t-values in each cluster are taken to form the cluster-
level statistics. In the next step, the significance probability is calculated using the Monte Carlo
method in which 1,000 random draws of trials are tested for significant differences to
approximate the reference distribution (Miickschel et al., 2016). The proportion of randomly
drawn trials that show a larger test statistic than the observed results give the p-value. If a cluster
reaches a p-value below 0.05, it is considered to indicate significant differences in activity (at
the given cluster of electrodes) between the conditions being compared. This procedure of
cluster-based permutation tests was repeated for each of the two frequency bands (theta and
alpha). We followed the recommendation of the Fieldtrip toolbox tutorial to compute statistics
as t-tests between differences rather than compute F statistics with an Anova because the t and
F distributions are expected to lead to different p values. The F statistics are also usually more
conservative, meaning that differences between conditions are less likely to be found. Finally,
given that most previous studies have used t values, it is recommended to use them to enable
comparability with previous studies. Thus, separate cluster-based permutation tests were
performed for each condition. A Bonferroni correction method was applied to correct for
multiple comparisons. A grand average was computed by averaging across all participants’ data
which was then used to plot the time-frequency decomposition of spectral power at the
significant cluster of electrodes showing differences in activity.

Next, we sought to identify the clusters of voxels associated with theta and alpha activity
using Dynamic Imaging of Coherent Sources method (DICS, Gross et al., 2001). This method
has been previously applied by our group in several studies (Adelhdfer and Beste, 2020; Dippel
et al., 2017; Ghorbani et al., 2024, 2024; Pscherer et al., 2023; Rawish et al., 2024). It is worth
noting that all source-localization methods based on sensor data come with shortcomings. As
is well known, EEG recordings have high temporal precision and lower spatial resolution. But,
given the benefits of conducting both time-frequency analyses and source reconstruction
together, some tradeoffs are unavoidable. DICS beamforming is an advanced analysis method
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that is a robust method to reconstruct sources compared to other traditional source localization
methods (Westner et al., 2022). So, we consider our spatial estimates to be as reliable as possible
with the EEG methodology. Further, our findings are not interpreted at mm resolution but only
in terms of general region. It is possible to question whether the DICS fully captures the
complexity of brain activity. No model can fully capture the complexity of brain dynamics as
models are only a reasonable approximation of what is measured. We were specifically
interested in the oscillatory dynamics and their neural basis to which purpose DICS is
commonly used by many researchers. It is possible to use alternate methods that could have
other benefits (and costs). Since the purpose of this study was not to compare the suitability of
source localization methods, we made an informed choice based on existing research and our
past experience.

DICS beamforming was conducted in the time-window between 0 and 600 ms after cue
onset for alpha and theta band separately using common spatial filters calculated from the cross-
frequency spectra of a Fast Fourier Transformation (FFT) on the averaged power. The
localization of activity was projected into a source space onto an equally spaced grid created
from the forward model template of the FieldTrip toolbox, which is based on the standard
Montreal Neurological Institute (MNI). For each UC condition, the power values of the valid
and invalid trials were extracted separately and compared. Clusters of voxels showing
significant differences between valid and invalid trials in each UC condition were identified
using cluster-based permutation tests (CBPT) as described earlier. An additional thresholding
method was applied where voxels with top 5% activity were also selected. These clusters of
voxels were considered as the regions of interest (ROI) for further connectivity analysis.

Effective connectivity analysis

We examined the effective connectivity between the anatomical regions responsible for the
effect of uncertainty in the theta frequency band. Two distinct regions of interest were created
for the connectivity analysis: “CG” which predominantly included the cingulate cortex,
precuneus and paracentral regions and “AG” which included the angular gyrus and the inferior
parietal lobule. This analysis was not performed for the alpha band activity as DICS
beamforming revealed only a single large cluster of activity. To prepare the data for the
connectivity analysis, a Hamming windowed sinc FIR filter was applied on preprocessed EEG
data to filter signals for the theta frequency band. This returned a time series with the same
structure as the preprocessed EEG data for the theta frequency band. The resulting time series
were then segmented for valid and invalid trials of all three UC conditions, and the time courses
of their underlying sources were extracted in the next step. For each ROI determined through
DICS beamforming and CBPT, we applied linearly constrained minimum variance beamformer
(LCMYV, Van Veen et al., 1997) for the theta frequency band to construct the source activity
from sensor-level data. This was done for the invalid trials of high and low UC conditions as
we expected the two UC conditions to differ primarily on invalid trials and aimed to focus the
connectivity analyses on these two conditions. A leadfield matrix was calculated using a
Fieldtrip template ‘standard bem’ as head model. Next, a common spatial filter was computed
by concatenating the averaged data of both conditions. This common spatial filter was used to
reconstruct the time course of the source activity ("source signals”) in each condition.

To analyze the effective connectivity in the present study, we utilized the machine
learning-based approach called nCREANN (Elmers et al., 2024; Talebi et al., 2019). The
nCREANN employs an artificial neural network (ANN) to implement a nonlinear Multivariate
Autoregressive (nMVAR) model of the source signals and assess the interactions between them.
The nMVAR modelling captures both linear and nonlinear dynamics of the brain system which
has been shown to be crucial for the organization of information flow across cortical regions
(Kodama and Galan, 2019; Yang et al., 2018). Within this model, the current sample of each
signal is expressed as a (non)linear function of its past values and past values of other signals,
enables an inference of temporal causality (an effect causes the future).
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For a given multivariate time series x(n) € R of length L, a nonlinear MVAR model
of order p is defined as

x(n) = f(xp) +0(n) (D

Where X, = [x;(n— 1),x,(n — 1), - xp (n — p) 1T is the vector of p past samples of (M) time
series. The noise vector, 6(n) = [04, 05, ..., oy |7, is the model residual, and the nonlinear
function f(.) quantitatively describes how the p previous samples cause the future values. In
the n"CREANN method, the function f is divided into linear and nonlinear part

f — fLin + fNonLin (2)

and based on the fL", the Linear Connectivity (IC;,;) is computed as the linear impact of ith
region on the jth region, and based on the information embedded within f¥°"Li the Nonlinear
Connectivity, (NC;;), is inferenced to establish the extent of the nonlinear causal effect of x;
on x j-

In the present study, the nCREANN was applied to the time courses of the LCMV-
derived sources in the invalid trials of the high and low UC conditions. The data points of the
trials in the time interval [0 -1000] ms of the stimulus onset were considered for the connectivity
analysis. For training the network, all of the single-trial source signals were concatenated in
order to have a sufficient data length. The optimum model order (p = 10) was estimated using
Akaike and Schwartz criteria (Schneider and Neumaier 2001) and was considered the same for
all subjects in both conditions.

A Multilayer Perceptron neural network with one hidden layer and 10 hidden neurons
was trained. The network’s input was the X, and it tries to predict X(n) as its output. The
training algorithm was gradient descent error back-propagation (EBP) with momentum (o) and
adaptive learning rate (m). The early stopping technique was applied for the sake of
generalisation. The 10-fold permuted cross validation technique was conducted and in each fold
the data was divided into 80% training, 10% validation, and 10% testing sets. The network
parameters were updated in the ‘incremental’ mode (each time an input is presented to the
network), with random initial parameters in the range of [-0.5,0.5].

The network performance and the goodness of fit of the nMVAR model was assessed
using Mean Square Error (MSE) and the coefficient of determination criteria for the training
and test data. Coefficient of determination (or R?) is a statistical metric used in regression
models that determines their validity. If a model fits the data well, its corresponding R-Squared
value will be close to 1. MSE is the most widely used measure to assess a network's
performance. A properly-trained network exhibits not only small training error, but also its test
error falls within the range of training error. Furthermore, the similar R-Squared for training
and test set emphasize the network's appropriate generalisation.

The significance of the resulting connectivity values was evaluated assuming a
randomization test with generation of 100 data based on time-shifted surrogate technique
(Papana et al., 2013). This method destroys any causal effect between the signals without
changing the dynamics of each time series. For applying nCREANN to the surrogate data, the
network parameters were set exactly the same as those used for original data. A 90% confidence
interval was considered as a threshold to determine the significance of a connection.
Connections that were below this threshold were not considered for further statistical analyses.
Paired t-tests were conducted comparing the linear connectivity values between high UC invalid
and low UC invalid trials for each connectivity direction. Similar comparisons were made for
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the non-linear connectivity values using the Wilcoxon signed rank test. A non-parametric test
was used for the non-linear connectivity values as the data violated the normality assumption.

Results

Behavioral data

The behavioral data are shown in Figure 2 and reported in Table 1. Statistical analyses and plots
are presented for d’, accuracy, and mean RT to provide a comprehensive overview of the pattern
of results. However, we base our conclusions mainly on d’, as d’ takes into account response
bias and is a more balanced measure compared to accuracy (Stanislaw and Todorov, 1999).
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Figure 2. Box plots showing behavioral results of analyses on A) dprime, B) mean RT and C) Accuracy. The d’
on valid trials was higher in the high UC condition compared to the low UC condition. Note: Grey dots represent
data points below Q1 — 1.5*IQR and above Q3+1.5*IQR where Q1 and Q3 represent the first and the third quartile,
respectively. IQR refers to the inter-quartile range.

There was a significant main effect of UC condition on d’ (F(2,78) = 38.17, p < 0.001, pes =
0.49). d’ was highest in the high UC condition compared to the low UC (p = 0.003) and low
UC difficult (p <0.001) conditions. d’ was also greater on valid trials compared to invalid trials
(F(1,39) =48.19, p < 0.001, pes = 0.55). There was an almost significant interaction between
UC condition and validity (F(2,78) =2.69, p =0.074, pes = 0.06). Pairwise comparisons showed
higher d’ on valid trials on high UC compared to low UC condition (p < 0.001) and no difference
on invalid trials (p = 0.11) indicating greater validity effects in the high UC condition compared
to the low UC condition. In contrast, both valid (» <0.001) and invalid trials (p < 0.001) differed
significantly between low UC difficult and low UC conditions.

The analyses on accuracy also revealed a significant main effect of UC condition,
F(2,78)=42.4, p <0.001, pes = 0.52. Accuracy was higher in the high UC condition compared
to the Low UC (p = 0.001) and low UC difficult (p < 0.001) conditions. Participants were more
accurate on valid trials than invalid trials, as indicated by a significant effect of validity, F(2,78)
=71.5, p < 0.001, pes = 0.65. There was no interaction between UC condition and validity,
F(2,78)=1.86, p=0.16, pes = 0.05.

RTs on valid trials were faster compared to invalid trials as indicated by a main effect
of validity (F(1,39) =40.05, p <0.001, pes = 0.51). There was also an effect of UC condition
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(F(2,78) =5.27, p = 0.007, pes = 0.12) with responses being faster in the high UC condition
compared to the low UC difficult condition (p = 0.001). There was no difference between high
and low UC conditions (p = 0.19). Importantly, there was a significant interaction between UC
condition and validity (F(2,78) = 4.29, p = 0.017, pes = 0.1). Pairwise comparisons showed
greater validity effects in the low UC difficult condition compared to the high UC condition (p
< 0.05), reflecting the influence of task difficulty on cueing.

Table 1. d’, mean RT and Accuracy values for all conditions

High uncertainty Low uncertainty Low uncertainty difficult

Valid Invalid Valid Invalid Valid Invalid

d’ 2.7 (0.8) 2.1(0.9) 2.2(0.9) 1.8 (1) 1.7 (1.1) 1.1 (0.9)
Mean RT 376 (155) 414 (167) 393 (184) 434 (201) 429 (139) 489 (174)
Accuracy 0.90 (0.08) 0.83 (0.11) 0.84 (0.1) 0.79 (0.12) 0.77 (0.14) 0.69 (0.12)

Neurophysiological data

The results of the cluster-based permutation testing and the DICS-beamforming results are
shown in Figure 3. Figures depicting the average alpha and theta power values corresponding
to the conditions shown in Figure 3 are given in the supplementary material (see Figure S1).
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Figure 3. A) Time-frequency representation showing significant theta band activity. Values represent power
differences between high UC and low UC invalid trials. The concentration of negative values indicates greater
activity in the low UC invalid condition compared to the high UC invalid condition. B) Time-frequency
representation comparing theta band activity on high UC and low UC valid trials. Topographic plot is not shown
since there were no significant differences. C) Anatomical regions underlying theta activity identified by DICS
beamforming and cluster-based permutation tests. The color represents power differences between high and low
UC invalid conditions D) Time frequency representation showing significant alpha band activity. Power
differences between valid and invalid trials of the high UC condition are shown. Positive values indicate greater
power on valid trials compared to invalid trials. E) Time-frequency representation showing no significant
differences between low UC valid and invalid trials in the alpha band. F) Anatomical regions corresponding to
alpha band activity under high uncertainty identified by DICS beamforming and cluster-based permutation tests.
Note: The time-frequency plots were aligned to the onset of the cue. The white, black and red annotated lines
denote the target onset, mask onset and average RT for that condition, respectively. The red rectangles
superimposed on panels A and D indicate the cluster frequency limits. The red crosses in the topography plots
refer to electrodes included in the cluster.
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In the first level of analyses, we compared valid and invalid trials for each UC condition.
The cluster-based permutation test on the theta-frequency band (4 — 7 Hz) at sensor level in the
time window 0 to 1000 ms after cue onset revealed a significant difference (lower theta power
on valid trials compared to invalid trials) for the low UC condition (p = 0.03) and the low UC
difficult condition (p = 0.024, see supplementary file section S3 for visualization). The
difference was most pronounced in the parietal and centro-parietal electrode positions. No
significant theta activity differences were observed for the high UC condition. Since there was
significant activity in the low UC condition but not in the high UC condition (while comparing
valid and invalid trials), we next examined whether the differences between the high and low
uncertainty conditions were driven by valid or invalid trials. The difference in the results
between high and low UC conditions was driven by differences on invalid trials, as seen by
reduced theta band activity in the high UC invalid condition compared to the low UC Invalid
condition (p = 0.008; Fig. 3A). This difference was evident in almost all the channels. There
was no difference between the high and low UC valid conditions (p = 0.1; Fig. 3B). Note that
the p values reported for the cluster-based permutation tests were corrected using the Bonferroni
method. The uncorrected p values were multiplied by the number of comparisons (3) for the
differences in validity for each of the three UC conditions. For the two comparisons indicating
differences between high and low UC for valid and invalid trials separately, the uncorrected p
values were multiplied by two. On the source level, DICS beamforming was not performed for
the high UC condition since no significant differences were found at the sensor-level statistics.
To examine the source of the different pattern of results for high and low UC conditions, DICS
beamforming was performed comparing invalid trials of high and low UC condition (Fig. 3C).
This showed activity modulations in the precuneus (BA 7), the paracentral lobule (BA 6), and
the middle and posterior cingulate cortex (BA 23 and 31). Significant activity modulations were
also seen in inferior parietal lobule including the angular gyrus (BA 39 and 40). DICS
beamforming on the negative cluster for the contrast between valid and invalid trials in the low
UC condition revealed activity in posterior parietal areas including the postcentral gyrus (BA
3), the precuneus (BA 7) and the paracentral lobule (BA 6). A cluster of voxels was also
observed in the middle, inferior and the superior occipital gyrus (BA 19). Significant activity
was also seen in the cuneus (BA 17) and mid and posterior cingulum (BA 23 and 31). In the
low UC difficult condition, DICS beamforming showed clusters of activity in similar regions.

In the alpha-frequency band (8 — 12 Hz), cluster-based permutation testing on the same
time window (0 — 1000 ms after cue onset) with Bonferroni corrections revealed a significant
positive difference (valid > invalid, p = 0.006; Fig. 3D) in the high UC condition. A cluster was
observed extending across almost all channel positions. A significant positive difference was
also seen in the low UC difficult condition (p = 0.006) with the cluster extending across all
electrodes (see supplementary file S3). In the low UC condition, however, the difference was
not significant (p = 0.24; Fig. 3E) as seen through cluster-based permutation tests. DICS
beamforming comparing valid and invalid trials in the high UC condition (Fig. 3F) revealed a
cluster of activity in the parietal regions including the precuneus (BA 7), the supramarginal (BA
40) and the angular gyrus (BA 39). Significant activity was also observed in a cluster of voxels
in the middle, inferior and superior temporal gyri (BA 21 and BA 22), and the middle and
superior occipital gyrus (BA 18 and 19) in this condition. In the low UC difficult condition, a
cluster of activity was seen in the same regions but an additional cluster was observed in the
cuneus (BA 17). DICS beamforming was not performed for the low UC condition since only
marginally significant differences were found at the sensor-level statistics.

Neurophysiological data (nCREANN)

We first report the model validation parameters in Table 2. The results of the nCREANN
analysis are shown in Figure 4.
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Table 2. Coefficient of determination (R2) and Mean Square Error (MSE) across participants for training and
testing data for each condition in the connectivity analyses. The values in bracket denote 1 standard deviation.

Training Testing
R? MSE R? MSE
High UC Invalid 0.991 (0.002) 0.03 (0.006) 0.998 (0.002) 0.03 (0.006)
Low UC Invalid 0.991 (0.001) 0.01 (0.005) 0.998 (0.002) 0.01 (0.003)

High UC (high curiosity) Low UC (low curiosity)
Invalid Invalid

. ' .
CG
- G "r ﬁ‘ AGH
y W i

y

Figure 4. The linear connectivity patterns on the invalid trials of high and low UC conditions. The arrows show
the directionality of the connectivity pattern between the two main clusters. There was information flow from AG
to CG in both conditions. The dashed arrow indicates weaker connectivity pattern seen in the high UC condition
compared to the low UC condition.

The linear connectivity value from AG to CG was higher for the low UC invalid condition
(Mean = 0.036, SD = 0.018) compared to the high UC invalid condition (Mean = 0.03, SD =
0.013), 1 (34)=2.98, p=0.005 (difference in means = 0.006, SD = 0.012). The reciprocal linear
connectivity values from CG to AG did not differ between the two conditions (high UC invalid,
Mean = 0.029, SD = 0.013; low UC invalid Mean = 0.031, SD =0.018), ¢ (34) = 0.35, p = 0.727
(difference in means = 0.001, SD = 0.02). A Wilcoxon signed-rank test showed that the non-
linear connectivity values from AG to CG did not differ between the two conditions either (high
UC invalid, median = 0.034; low UC invalid, median = 0.024), Z = 0.64, p = 0.512. Similarly,
the reciprocal non-linear connectivity values from CG to AG also did not differ between the
two UC conditions (high UC invalid, median = 0.024; low UC invalid, median = 0.019), Z =
0.28, p=0.777.

Discussion

We investigated the control processes triggered by uncertainty linked to curiosity. We
induced uncertainty in a classic spatial cueing paradigm with peripheral cues (Posner, 1980;
Prasad et al., 2021) to trigger curiosity. Behavioral results showed that the key interaction
between validity and UC condition was only marginally significant. However, planned
comparisons based on our earlier study, Prasad and Hommel (2024), showed that d’ in the high
UC valid condition was higher compared to the low UC valid condition, suggesting greater
sensitivity to valid cues in the high UC condition. As expected, the low UC difficult condition
led to more errors than the low UC condition, due to increased task difficulty. Since the validity
effects in the two conditions were the same, it can be excluded that the effects seen in the high
UC condition were merely due to increased task difficulty. Curiosity triggered by uncertainty
likely makes people susceptible to task-irrelevant peripheral cues resulting in greater sensitivity
to the cues. This compliments findings of curiosity-modulated width of an attentional focus
(Frings et al., 2019; Gottlieb et al., 2020; Gruber and Ranganath, 2019). The greater validity
effects observed in the high UC condition emerge because of an increased motivation to explore
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(Berlyne, 1960; Van Lieshout et al., 2020). In contrast to curiosity-related accounts of
uncertainty, control-related accounts predict that high uncertainty leads to increased TBA
(Cavanagh and Frank, 2014; Ullsperger et al., 2014; Wu et al., 2021, 2020). TBA has been
conceptualized to reflect the “need for cognitive control”, which fits with observations of
stronger TBA in situations that require higher cognitive control (Cavanagh and Frank, 2014).
In our study, however there was no TBA in the high UC condition (as seen in the cluster-based
permutation tests comparing valid and invalid trials in the high UC condition), which suggests
that high uncertainty is not always associated with TBA. What implications does this have for
the control-related accounts?

On the one hand, it is possible that the causal chain between uncertainty, TBA, and
control that these accounts propose (uncertainty—=> TBA->control) does not exist. However, this
chain is consistent with numerous findings that have motivated this account, which would be
hard to explain in other ways. On the other hand, it is possible that the proposed chain exists
only with some kinds of uncertainty and/or some kinds of control, but not with others. Indeed,
the kind of control that Cavanagh and Frank (2014) or Ullsperger et al. (2014) had in mind may
represent only one of two types of control that have been discussed recently. Various authors
have claimed that individuals can adopt different styles of processing (Beste et al., 2018; Cools,
2008; Durstewitz and Seamans, 2008; Goschke and Bolte, 2014), which vary between
persistence (or stability), a style in which information processing is strongly focused on stimuli
aligning with current task-goals, and flexibility, a style in which the individual is open to a wide
range of information (Hommel, 2015; Hommel et al., 2024; Hommel and Colzato, 2017). It is
interesting to note that persistence has the exact characteristics that the control concept of
control-related approaches to uncertainty have in mind. These approaches are particularly
interested in uncertainty that is associated with response selection and that can be reduced by
focusing on relevant information and the task rules coded in working memory. This is different
for curiosity approaches, which are particularly interested in uncertainty regarding the stimulus
situation and regarding novel, unexpected information. Dealing with this kind of uncertainty
would not benefit from persistence, but from flexibility. If so, control approaches and their
proposed link between uncertainty, TBA, and control may very well be on track, except that
the kind of uncertainty and the kind of control are underspecified. If it would be specified to
refer to the chain “uncertainty how to respond->TBA->persistence-type control”, the account
would still be valid. To account for our present findings, however, the chain “uncertainty about
what is going on—>flexibility-type control” would be sufficient, without any intervening TBA.
In other words, TBA may well be tightly associated with control, but this would only apply to
persistence-type control (or control under a metacontrol bias towards persistence), but not to
flexibility-type control (or control under a metacontrol bias towards flexibility) which we
believe underlies the present findings.

Our neurophysiological findings provide a rather systematic picture regarding how
curiosity-inducing uncertainty, flexibility-based control, and integrative information processing
go hand-in-hand. The modulations in TBA were localized in two distinct clusters: one involving
the angular gyrus and the inferior parietal lobule (BA 39 and 40) and the other involving the
precuneus (BA 7), para-central regions (BA 6), and the posterior cingulate cortex (PCC, BA 23
and 31). The inferior parietal lobule (IPL) is actively involved in maintaining attention on
current goals and detection of salient events so that task-goals can be updated accordingly
(Husain and Nachev, 2007; Malhotra et al., 2009; Singh-Curry and Husain, 2009). Specifically,
IPL is involved in directing top-down goal-oriented attention to locations in space (Hopfinger
et al., 2000). Given that our task involved spatial attention using the cueing task, it is likely that
IPL was responsible for deploying goal-directed attention to target locations. The directed
connectivity analyses revealed a pattern of directed communication between the inferior
parietal regions and the other large cluster involving the posterior cingulate regions, precuneus
and the paracentral regions. This implies that information, likely reflecting top-down task-
goals, is transferred from parietal regions to the PCC, precuneus and paracentral regions. This
information transfer was weaker for the high uncertainty condition than for the low uncertainty
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condition. Thus, high curiosity reduces the information transfer of task-goals from parietal
regions to posterior cingulate cortex (PCC), precuneus and the paracentral regions. These latter
areas have frequently been associated with TBA-associated perception-action- integration and
action planning (Beste et al., 2023; Domic-Siede et al., 2021; Nguyen et al., 2021). Especially
the precuneus (BA7) is well-known to mediate processes of perception-action integration
(Gottlieb, 2007; Gottlieb and Oudeyer, 2018) and curiosity (Gottlieb and Oudeyer, 2018; Van
Lieshout et al., 2018). Furthermore, the PCC has been shown to play a key role in the “tuning”
of attention (Leech et al., 2011; Leech and Sharp, 2014; Pearson et al., 2011; Wilken et al.,
2024). The activity in the PCC is increased or decreased depending on the breadth of the
attentional focus (narrow vs. broad). The pattern of findings suggests that a reduced impact of
task goals (under high curiosity in our study), as communicated from the IPL, leads to the
broadening of attentional focus. This makes people susceptible to a wide range of information
independent from the current goal. Thus, our findings suggest that the IPL provides weak input
regarding the currently active task goals to the PCC and associated areas under high uncertainty
thereby increasing the breadth of the attentional focus. This led to greater processing of task-
irrelevant information. It is worth mentioning that TBA is typically observed in the frontal
regions (Cavanagh and Frank, 2014) and it can seem surprising that no such activity was seen
in our study especially since the pre-frontal cortex has been shown to facilitate exploration in
the face of uncertainty (Goel, 2015; Marinsek et al., 2014). No such effects were found here.
The localisation of TBA depends on the precise nature of the task and the type of cognitive
processing involved. Since we used a task that manipulates spatial attention and uncertainty,
TBA was found to be localised in areas responsible for these mechanisms as mentioned above.
Importantly, as mentioned earlier, parietal theta activity is commonly found in studies that
involve manipulation of the frequency of stimulus information (Dippel et al., 2016). Thus, these
findings are in line with existing theoretical constructs related to attention and uncertainty. The
absence of frontal effects along with the absence of theta band activation for the high UC
condition can thus be used to fine-tune our understanding of how different types of uncertainty
influence cognitive control. For instance, it is possible that stimulus uncertainty of the type
manipulated in our study — not directly associated with response selection - gives rise to a
different pattern of activation than response uncertainty which is commonly manipulated in
most studies. Further studies are required to tease apart these differences both at the behavioural
and the neurophysiological level.

Modulations of TBA aside, we also expected curiosity to modulate earlier stages of
processing like attentional filtering, which is reflected by ABA (Herrmann and Knight, 2001;
Klimesch, 2011; Klimesch et al., 2011). For ABA, we observed positive clusters indicating
stronger activity on valid trials compared to invalid trials. It is possible to question if this pattern
of activation reflects low-level sensory processing. If that were the case, we should have seen
similar differences between valid and invalid trials across all uncertainty conditions since low-
level sensory effects should presumably be unaffected by higher-order mechanisms such as the
uncertainty manipulation. Interestingly, ABA differences between valid and invalid trials were
specific for the high UC condition, but not for the low UC condition. ABA is said to reflect a
general inhibitory gating mechanism by which task-irrelevant/distracting information is
suppressed through which the access to information for task-relevant behaviour is controlled
(Jensen and Mazaheri, 2010; Klimesch, 2012; Konjusha et al., 2023; Rihs et al., 2007; Yu et
al., 2024). In line with this, higher alpha band activity should have been seen on invalid trials
since the peripheral cues are task-irrelevant on these trials. But we see the opposite result
suggesting that suppression of task-irrelevant information on invalid trials was weaker under
high uncertainty. Thus, high uncertainty makes the inhibitory gating mechanism less effective
reflecting reduced ABA on invalid trials (see Prochnow et al., 2022; Pscherer et al., 2023 for
similar findings in ABA). The ABA under high uncertainty was localized in the temporo-
parietal junction (TPJ) including the supramarginal (BA 40) and angular gyrus (BA 39) which
is in line with TPJ’s role in reorienting attention to salient stimuli in a contextually relevant
manner (Behrmann et al., 2004; Geng and Vossel, 2013). Thus, it seems likely that, under high
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uncertainty, TPJ was responsible for making contextual adjustments to the attentional system
and reoriented participants’ attention to the peripheral cues more strongly on invalid trials.

It is possible to question whether the task used in our study which is typically used to
measure attention control truly engages cognitive control in the way traditional control tasks
(eg., Go No-go) do. However, on the invalid trials of the Posner cueing task, participants are
required to suppress the prepotent response of orienting to the cue and instead attend to the
target location. It is reasonable to assume that this mechanism involves cognitive control.
Further, whether there are clear differences between attention and cognitive control depends on
who we ask. Several models consider attention as part of cognitive control or even use them
interchangeably (Braver, 2012; Engle and Kane, 2003). The authors of this paper also strongly
believe that it is important to move beyond paradigmatic research where certain mechanisms
are explicitly tied only to specific tasks (Frings et al., 2024; Hommel, 2020). If cognitive control
is understood as a mechanism that regulates goal-directed behaviour, then it must be possible
to engage cognitive control in any task that involves ignoring irrelevant information and
selecting task-relevant responses, such as the Posner cueing task.

One unexpected finding from this study was that there were more accurate responses in
the high UC condition compared to the low UC condition. This contradicts earlier findings
regarding the main effect of uncertainty on accuracy in studies with a similar task design (Prasad
and Hommel, 2024; Shiu and Pashler, 1994). It is worth noting that these differences in
accuracy were driven by differences in valid trials. Specifically, accuracy in the high UC valid
condition was higher compared to the low UC valid condition, resulting in overall higher
accuracy in the high UC condition. Since valid cues reliably predict the target location and
therefore help respond to the target, this suggests that the cues were processed more when the
uncertainty was high. The neurophysiological findings were also in line with this argument that
high uncertainty is associated with a flexible-type control, as indicated by the lack of significant
theta band activity under high uncertainty.

We also did not observe faster responses in the low UC condition compared to the high
UC condition as seen in Prasad and Hommel (2024) which is a puzzling anomaly. However, in
all these studies, there was an interaction between uncertainty and validity either on d’ or mean
RTs. The key difference is that in our study, there were differences between high and low UC
in valid trials, whereas in the previous two studies, the effect was driven by differences in
invalid trials. Thus, it is not clear if uncertainty primarily influences valid trials or invalid trials
or both. It is important to note that the interaction between uncertainty and validity was only
marginally significant for d’ in the current study, which is in contrast to our earlier study. This
is unlikely due to an inadequate sample size, as we had the same number of participants in both
studies. All aspects of the design were also the same. We have already observed this effect in
three separate experiments with 40 participants each in our earlier study. In spite of the weak
interaction, planned comparisons revealed highly significant differences between high and low
uncertainty conditions on valid trials in the current study. Finally, there were clear differences
at the neurophysiological level. It is known that even with true reliable effects, depending on
the power, the p-values can vary over several studies such that they are not always below the
threshold of significance (Greenland et al., 2016; Hung et al., 1997). This could be one of the
reasons for the weak interaction effects observed in our study, which can only be confirmed
through more research using this paradigm.

Another point worth mentioning is that curiosity was only indirectly implicated in our
study through its theoretical links with uncertainty, which could be considered a limitation of
the current study. Curiosity is typically measured through self-report scales (eg., Collins et al.,
2004; Kashdan et al., 2018), but objectively validating the induction of a curious state is not
straightforward. Some studies have inferred curiosity through decisions to sample more
information (Gottlieb et al., 2020; Van Lieshout et al., 2020). Participants are more likely to
seek additional information before responding when their subjective confidence is not high
(Desender et al., 2018; Nicki, 1970). Even though we did not evaluate subjective confidence in
our study, high uncertainty is often associated with lower confidence (Cohanpour et al., 2024;
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Metcalfe et al., 2023). Thus, we have interpreted greater cueing effects under high uncertainty
(and low confidence) to reflect the decision to seek more information from the cues (Beesley et
al., 2015). But we do acknowledge that it is important for future research to verify the
conclusions of this study using more direct tests of confidence and curiosity. It is also important
to replicate the study's key neurophysiological finding (absence of theta band activity in the
high UC condition) using larger sample sizes while including more detailed demographic
measures such as Q.

In conclusion, we show that some kinds of uncertainty make people attend to seemingly
irrelevant cues, which happened in the absence of TBA. Effective connectivity analyses also
showed weaker connections between inferior parietal regions and the posterior cingulate cortex
under high uncertainty. These (from a classical control view) counter-intuitive results indicate
that uncertainty does not always trigger TBA. Activity in the alpha band and the corresponding
neuroanatomical regions provide further evidence for the role of uncertainty in attention
control. Taken altogether, we conclude that the widely assumed causal chain from uncertainty,
over TBA, to control is not as general as has been claimed. Our findings suggest that the actual
chain depends on the kind of uncertainty and the kind of control that is involved. Whereas
response-related uncertainty may indeed trigger TBA, resulting in higher persistence-type
control, stimulus-related uncertainty may not trigger TBA resulting in higher flexibility-type
control. Thus, the connection between uncertainty and cognitive control depends on the
metacontrol implications of the particular kind of uncertainty being involved.
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Abstract

Cognitive control is assumed to be intricately linked to theta band activity. Situations that
involve high uncertainty are said to trigger a need for cognitive control, which is reflected in
greater theta activity. We examined whether theta band activity is similarly implicated in
cognitive control processes when uncertainty is likely to trigger curiosity—a motivational state
that makes people explore their environment. We investigated this in a sample of N =41 healthy
human adults by manipulating target-related uncertainty in a Posner cueing task. Time-
frequency and beamforming approaches were applied to analyze the oscillatory dynamics and
their sources. Effective connectivity analysis was done to examine how information transfer is
modulated by uncertainty. Behavioral results showed greater sensitivity to task-irrelevant cues
under high uncertainty. Importantly, there was no theta band activity in the posterior cingulate
cortex under high compared to low uncertainty. Effective connectivity analyses also showed
weaker connections between inferior parietal lobule and posterior parietal cortex under high
uncertainty. Alpha band activity in the temporo-parietal junction under high uncertainty
indicated an effect of uncertainty on early attentional filtering. These results indicate that high
uncertainty is not always associated with increased theta band activity. We discuss possible
explanations of this finding including that uncertainty may trigger different (meta)control
policies which could be associated with distinct oscillatory dynamics. These findings have
implications towards our understanding of “need for control” and the situations that trigger it.

Keywords: uncertainty, cognitive control, curiosity, theta band activity, posterior cingulate
cortex, effective connectivity
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Introduction

The neurophysiological processes supporting goal-directed actions have been intensely studied.
A canonical finding is that especially (medial frontal) cortex theta band activity (TBA) supports
processes relevant for action control (Beste et al., 2023; Cavanagh and Frank, 2014). The
medial frontal TBA is often proposed to reflect a “surprise signal”, which indicates that
something needs to be done but does not code what this should be (Cavanagh and Frank, 2014).
TBA usually increases in situations occurring rarely and (therefore) impose high demands on
cognitive processes (Cohen, 2014; Ullsperger et al., 2014). Importantly, TBA is modulated by
the “uncertainty” that specific response options occur or that specific information will be
obtained in the future (Dippel et al., 2017, 2016; Monsalve et al., 2018; van Wingerden et al.,
2010) and some evidence suggest that TBA codes predictions of upcoming events (Arnal and
Giraud, 2012; Buzsaki and Draguhn, 2004). In conceptions of TBA as a “surprise signal” for
control, uncertainty is seen as being undesired as it triggers the need to increase effortful
cognitive control. For instance, Dippel et al. (2017) observed greater theta band activity as the
frequency of no-go trials decreased suggesting that exerting cognitive control becomes more
demanding as events that require inhibition become rare or uncertain.

However, uncertainty is not a unitary concept. While some approaches outlined above
view uncertainty as a trigger to monitor and adjust behavior in line with top-down goals, others
view uncertainty as a trigger for curiosity (Gottlieb and Oudeyer, 2018; Kidd and Hayden, 2015;
Van Lieshout et al., 2021). Curiosity is the intrinsic drive to seek more information “for its own
sake” (Berlyne, 1960). It is not driven by external rewards or benefits, but the reward consists
of the information gained out of exploration (see FitzGibbon et al., 2020 for a review; Kang et
al., 2009; Kobayashi and Hsu, 2019). Self-reported curiosity activates the same reward network
in the brain that is commonly associated with extrinsic reward cues (Kang et al., 2009;
Kobayashi and Hsu, 2019). Curiosity is typically marked by a reduced impact of top-down
goals and being more open to a wide range of information. In line with this, it has been seen
that irrelevant faces presented during a curiosity-inducing trivia task are recalled better on high
curiosity trials compared to low curiosity trials (Gruber et al., 2014; Gruber and Ranganath,
2019). It is not clear whether and to what degree these different conceptualizations of
uncertainty (as a trigger for goal-directed control vs. a trigger for curiosity) rely on the same
control processes. It is possible that the type of cognitive control needed depends on the type
of uncertainty that is encountered (Hommel & Colzato, 2017). Given this and that TBA has
been shown to differentiate between distinct cognitive control strategies (Cavanagh et al., 2012;
Eisma et al., 2021), it is reasonable to ask whether TBA is similarly involved when uncertainty
is linked to curiosity.

In the current study, we used an EEG experiment to investigate how uncertainty affects
behavior in a spatial cueing task (Shiu and Pashler, 1994). In this paradigm, the location of task-
irrelevant peripheral cues is known to influence responses to a target (Chica et al., 2014; Posner,
1980). To manipulate uncertainty, we varied the number of masks presented after the target:
either a single mask or four masks. This approach, adapted from previous work (Prasad and
Hommel, 2024; Shiu and Pashler, 1994), modulates how precisely the target location can be
identified. In the low-uncertainty condition, a single mask always appeared at the target
location, making the target's position fully predictable. In contrast, the high-uncertainty
condition included four masks, one at each possible location, obscuring the target’s position.
To control for potential differences in task difficulty, we included an additional block with the
single-mask condition but increased overall task difficulty. We tested whether the influence of
peripheral cues on behavior was affected by this uncertainty manipulation. We hypothesized
that repeated exposure to a given mask condition would induce a sustained state of low or high
uncertainty across a block of trials, influencing cognitive control processes engaged during the
task.

While we focused on TBA, we also examined the modulation of alpha band activity
(ABA). The reasons are that TBA is modulated by ABA during response selection (Beste et al.,
2023; Cavanagh and Frank, 2014; Rawish et al., 2024; Wendiggensen et al., 2023) and that
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ABA is central for the filtering of incoming information and attentional processes (Klimesch et
al., 2012; Herrmann & Knight, 2001) that are captured by the experimental approach used in
this study. We used EEG-beamforming analyses to examine which functional neuroanatomical
structures are associated with modulations in TBA and ABA. Based upon previous findings, it
is most likely that besides medial frontal cortices, superior and inferior parietal regions are
involved, since these regions are related to perception and action (Gottlieb, 2007), and
particularly so when information to update internal representations of the environmental context
in order to initiate appropriate actions is unexpected (Geng and Vossel, 2013). In further
exploratory analyses, we used nonlinear causal relationship estimation by artificial neural
networks (nCREANN) (Elmers et al., 2024; Talebi et al., 2019) to examine whether and how
information transfer between the involved functional neuroanatomical structures is modulated.
We did not look into other frequency bands (eg., beta/gamma) as there was no clear hypothesis
linking uncertainty and cognitive control to these frequency bands. Thus, we only focused on
theta and alpha bands as we had theoretical reasons based on existing literature.

Materials and Methods

Sample

N=41 healthy adults (19 male, 22 female, mean age = 27 years, SD = 4) participated in this
study. The sample size was determined based on an earlier study (Shiu and Pashler, 1994) from
which the design was adapted. There were N=12 participants in Shiu and Pashler (1994,
Experiment 1). Cohen’s standardized difference scores (d,, Cohen, 1988) estimated using the
reported paired-sample F test values and sample sizes was 1.01. The calculations were based
on results reflecting differences between cue valid and invalid trials. The power analysis (using
“pwr” package in R) yielded a sample size of 10 for a desired power of 0.8 with the confidence
level set to 0.05. A larger sample was selected because we had an additional experimental
condition. This sample size is similar to the N in several other EEG studies with similar
methodology published recently (Brilliant et al., 2024; eg., Magosso and Borra, 2024; Pscherer
et al., 2023; Rawish et al., 2024). Further, we had a large number of trials (768) for each
participant, contributing to the study's power. All participants were in the age range of 18 to 35
years and reported no neurological or psychiatric disorders. Written informed consent was taken
from all participants. One participant’s data was excluded from all analyses because the
stimulus and response markers for the EEG recording were missing due to technical errors.
Behavioural and EEG data from the remaining N=40 participants were included in the data
analyses. The institutional ethics committee of TU Dresden approved the study.

Task
The task is shown in Figure 1.
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High
uncertainty

Low
uncertainty

Low uncertainty
difficult

Figure 1. Sequence of events on a sample trial in all three conditions. The cue and the target appeared in any one
of the four placeholders around the central placeholder. The figure shows an example invalid trial (cue and target
appear at different locations) in the high and low UC conditions. An example valid trial (cue and target appear at
the same location) is shown for the low UC difficult condition.

Each trial started with the presentation of a central square (2.5°) surrounded by four squares
arranged in the form of a plus sign (top/bottom/left/right) on a screen with a refresh rate of 60
Hz. We don’t report other physical properties of the screen, such as brightness, because we
consider them relevant only in paradigms involving tightly-controlled psychophysics methods.
Each of the four squares was at a distance of 1.25° from the central square. The task design was
borrowed from Prasad and Hommel (2024) who reported two experiments with the same task
administered online. The spatial arrangement of the visual objects in these studies was adopted
from previous studies (Prasad et al., 2022, 2021; Ruthruff and Gaspelin, 2018). The squares
served as placeholders and were in white on a black background. After 500 ms, the “cue” was
presented for 50 ms in the form of four filled white dots around one of the four squares. After
50 ms, the target letter (“E” or “H”, white color, 2° height) was presented inside one of the four
squares for 50 ms. Thus, the targets were presented 100 ms after cue onset. Following this, the
symbol “#” was shown for 500 ms to mask the visibility of the target. On half of the trials, the
“#” symbol was shown inside all the four squares (four-mask trials with high uncertainty). On
the other half, the symbol was shown only inside the target square (single-mask trials with low
uncertainty). Following the presentation of the masks, the participants were asked to identify
the target letter (“E” or “H”) and press the corresponding key on the keyboard. The trial ended
only after a response was made. The target could appear either at the cued location (“valid”
trials) or at a different location (“invalid” trial). Since our objective was to make the cue non-
predictive of the target location, there were 25% valid trials and 75% invalid trials in the
experiment. There was a total of 768 trials divided into three blocks. There was one block of
256 trials with low uncertainty (low UC) and another block of 256 trials with high uncertainty
(high UC). A third block of trials was identical to the low uncertainty condition except that the
target letter was presented in grey (#737380) to increase the difficulty of the task by reducing
the contrast between the target letter and the background (“low UC difficult” condition). Our
main comparison is between high and low uncertainty conditions. However, it is possible to
attribute any differences found between high and low uncertainty to a possible increase in
difficulty in the high uncertainty condition rather than the increase in uncertainty. To address
this, we kept the uncertainty low, but only increased the task difficulty in one block to rule out
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confounding explanations. The trials were blocked in each mask condition to induce a sustained
state of curiosity in a block of trials. The block order was randomized.

There were 24 practice trials at the beginning of the experiment where feedback was
given on every trial with incorrect response. In the main experimental blocks, participants were
given self-paced breaks after every 64 trials. During this break, they were also given feedback
on their mean response time and accuracy in the preceding block.

Behavioural data analyses

We first checked if all participants had accuracy greater than 55% (cut-off criterion borrowed
from Prasad & Hommel). All participants cleared this criterion. The signal detection measure
d’ was calculated for each condition and participant. The target letter “E” was considered as
signal and “H” as noise (this assignment is arbitrary and can be reversed). Correct responses to
“E” counted as Hits and incorrect responses to “H” counted as false alarms. The d’ score was
calculated as the difference in z-transform values of hit rates and false alarms rates. Response
times (RTs) were analyzed after discarding trials with incorrect responses (21 %) and RTs faster
than 100 ms and slower than 2000 ms (2.1 %). Repeated measures ANOVA was conducted on
d’ and mean RTs with UC Condition (high UC, low UC and low UC difficult) and Validity
(valid, invalid) as factors. Results from the repeated measures ANOVA on accuracy are
reported in the supplementary material (Analysis in S2).

EEG preprocessing

During the experiment, EEG data was recorded using QuickAmp and BrainAmp amplifiers
(Brain Products GmbH, Gilching, Germany) and a 60 channel Ag-AgCl equidistant electrode
setup. The reference electrode was set to Fpz. Recordings were conducted at a sampling rate of
500 Hz which were down sampled 256 Hz during later preprocessing. Electrode impedances
were kept below 5 kQ. After recording, offline preprocessing was done using automagic
(Pedroni et al., 2019) within EEGLAB (Delorme and Makeig, 2004) on Matlab 2022a (The
MathWorks Corp.) using the concatenation of steps also used in previous studies by our group
(e.g., Koyun et al., 2023; Pscherer et al., 2023; Yu et al., 2023). Automagic has been extensively
used both by our group and other researchers (the paper introducing Automagic published in
Neurolmage has been cited 240 times). Most EEG researchers would agree that there are no
golden rules when it comes to EEG pre-processing. Most often, individual PIs or groups decide
on a pipeline based on their experience and subjective criteria. The biggest advantage of
Automagic is that it offers a transparent, standardized procedure for pre-processing that also
helps with replicability. The first step in Automagic consisted of removal of flat channels. The
data were then re-referenced to an average reference primarily because we aimed to perform
source reconstruction following the time-frequency analyses. Average referencing is typically
recommended for source reconstruction techniques as it reduces the forward model error
introduced by localization inaccuracies of the electrodes’ positions (Westner et al., 2022). After
this step, the PREP preprocessing pipeline (Bigdely-Shamlo et al., 2015) was applied to remove
the line noise at 50 Hz using a multitaper algorithm. Next, clean_rawdata() was applied which
first detrends the EEG data using an FIR high pass filter of 0.5 Hz. Flat-line, noisy, and outlier
channels were detected and removed. Epochs showing abnormally strong power (>15 standard
deviations relative to calibration data) were reconstructed using Artifact Subspace
Reconstruction (ASR, Mullen et al., 2013). Calibration was done based on the default method
in the clean_asr function where a subset of clean data was identified from the given recording
using the Statistics toolbox. Time windows that could not be reconstructed were removed using
the WindowCeriterion parameter in the clean rawdata pipeline with the default setting (0.25).
This means that time windows in which more than 25% of the channels had contaminated data
(within that time window) that could not be reconstructed were then removed. A lowpass filter
of 40 Hz was applied. EOG artifacts were removed using a subtraction method (Parra et al.,
2005). Muscle, loose electrodes and remaining eye artifacts such as blinks and saccades were
automatically classified and removed by using an independent component analysis (ICA) based
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Multiple Artifact Rejection Algorithm (MARA, Winkler et al., 2011). Components containing
cardiac artifacts were identified using ICLabel (Pion-Tonachini et al., 2019) and removed
consecutively. Finally, all channels that were removed by Automagic were interpolated using a
spherical method. After the preprocessing, segments were created for time-locked with the
onset of the cue for each valid and invalid trial separately in each of the three UC conditions.
The segments were 4000 ms long and began 2000 ms before cue onset. Long segments were
chosen to allow for reliable quantification of low oscillatory activity (Beste et al., 2010; Mike
X. Cohen, 2014). Longer segments also ensure that edge effects don’t contaminate the time
window of interest. Since we were interested in the 0 — 1000 ms time window after cue onset,
we chose a sufficiently long buffer zone before and after the window of interest to avoid edge
artifacts. Next, a baseline correction was applied using the time-window starting 200 ms before
cue onset. This duration was chosen as it is generally recommended to have a short baseline
(eg., 200 — 400 ms) since having a longer baseline could result in contamination by other
cognitive processes (Handy, 2009; Luck and Kappenman, 2013).

EEG time frequency decomposition and beamforming

Activity in the Theta (4-7 Hz) and Alpha (8-12 Hz) bands were analyzed using time-frequency
decomposition methods with a Morlet parameter of 5 cycles with a spectral bandwidth of 3 Hz
and a time resolution of 53 ms using FieldTrip (Oostenveld et al., 2011). Average alpha and
theta power were calculated for each time point at each electrode in the time window 0 to 1000
ms starting from cue onset. The power values were compared between valid and invalid trials
for each of the three UC conditions (high UC, low UC and low UC difficult) using cluster-
based permutation tests. The objective was to identify the set of electrodes showing significant
differences in power between valid and invalid trials and to further examine if the differences
between valid and invalid trials were modulated by the UC conditions. In the first step of a
cluster-based permutation test, paired t-tests are conducted at each electrode. If at least two
pairs of neighboring electrodes show a significant difference (p < 0.05), they are considered a
part of a sample cluster. The sum of the t-values in each cluster are taken to form the cluster-
level statistics. In the next step, the significance probability is calculated using the Monte Carlo
method in which 1,000 random draws of trials are tested for significant differences to
approximate the reference distribution (Miickschel et al., 2016). The proportion of randomly
drawn trials that show a larger test statistic than the observed results give the p-value. If a cluster
reaches a p-value below 0.05, it is considered to indicate significant differences in activity (at
the given cluster of electrodes) between the conditions being compared. This procedure of
cluster-based permutation tests was repeated for each of the two frequency bands (theta and
alpha). We followed the recommendation of the Fieldtrip toolbox tutorial to compute statistics
as t-tests between differences rather than compute F statistics with an Anova because the t and
F distributions are expected to lead to different p values. The F statistics are also usually more
conservative, meaning that differences between conditions are less likely to be found. Finally,
given that most previous studies have used t values, it is recommended to use them to enable
comparability with previous studies. Thus, separate cluster-based permutation tests were
performed for each condition. A Bonferroni correction method was applied to correct for
multiple comparisons. A grand average was computed by averaging across all participants’ data
which was then used to plot the time-frequency decomposition of spectral power at the
significant cluster of electrodes showing differences in activity.

Next, we sought to identify the clusters of voxels associated with theta and alpha activity
using Dynamic Imaging of Coherent Sources method (DICS, Gross et al., 2001). This method
has been previously applied by our group in several studies (Adelhdfer and Beste, 2020; Dippel
et al., 2017; Ghorbani et al., 2024, 2024; Pscherer et al., 2023; Rawish et al., 2024). It is worth
noting that all source-localization methods based on sensor data come with shortcomings. As
is well known, EEG recordings have high temporal precision and lower spatial resolution. But,
given the benefits of conducting both time-frequency analyses and source reconstruction
together, some tradeoffs are unavoidable. DICS beamforming is an advanced analysis method
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that is a robust method to reconstruct sources compared to other traditional source localization
methods (Westner et al., 2022). So, we consider our spatial estimates to be as reliable as possible
with the EEG methodology. Further, our findings are not interpreted at mm resolution but only
in terms of general region. It is possible to question whether the DICS fully captures the
complexity of brain activity. No model can fully capture the complexity of brain dynamics as
models are only a reasonable approximation of what is measured. We were specifically
interested in the oscillatory dynamics and their neural basis to which purpose DICS is
commonly used by many researchers. It is possible to use alternate methods that could have
other benefits (and costs). Since the purpose of this study was not to compare the suitability of
source localization methods, we made an informed choice based on existing research and our
past experience.

DICS beamforming was conducted in the time-window between 0 and 600 ms after cue
onset for alpha and theta band separately using common spatial filters calculated from the cross-
frequency spectra of a Fast Fourier Transformation (FFT) on the averaged power. The
localization of activity was projected into a source space onto an equally spaced grid created
from the forward model template of the FieldTrip toolbox, which is based on the standard
Montreal Neurological Institute (MNI). For each UC condition, the power values of the valid
and invalid trials were extracted separately and compared. Clusters of voxels showing
significant differences between valid and invalid trials in each UC condition were identified
using cluster-based permutation tests (CBPT) as described earlier. An additional thresholding
method was applied where voxels with top 5% activity were also selected. These clusters of
voxels were considered as the regions of interest (ROI) for further connectivity analysis.

Effective connectivity analysis

We examined the effective connectivity between the anatomical regions responsible for the
effect of uncertainty in the theta frequency band. Two distinct regions of interest were created
for the connectivity analysis: “CG” which predominantly included the cingulate cortex,
precuneus and paracentral regions and “AG” which included the angular gyrus and the inferior
parietal lobule. This analysis was not performed for the alpha band activity as DICS
beamforming revealed only a single large cluster of activity. To prepare the data for the
connectivity analysis, a Hamming windowed sinc FIR filter was applied on preprocessed EEG
data to filter signals for the theta frequency band. This returned a time series with the same
structure as the preprocessed EEG data for the theta frequency band. The resulting time series
were then segmented for valid and invalid trials of all three UC conditions, and the time courses
of their underlying sources were extracted in the next step. For each ROI determined through
DICS beamforming and CBPT, we applied linearly constrained minimum variance beamformer
(LCMYV, Van Veen et al., 1997) for the theta frequency band to construct the source activity
from sensor-level data. This was done for the invalid trials of high and low UC conditions as
we expected the two UC conditions to differ primarily on invalid trials and aimed to focus the
connectivity analyses on these two conditions. A leadfield matrix was calculated using a
Fieldtrip template ‘standard bem’ as head model. Next, a common spatial filter was computed
by concatenating the averaged data of both conditions. This common spatial filter was used to
reconstruct the time course of the source activity ("source signals”) in each condition.

To analyze the effective connectivity in the present study, we utilized the machine
learning-based approach called nCREANN (Elmers et al., 2024; Talebi et al., 2019). The
nCREANN employs an artificial neural network (ANN) to implement a nonlinear Multivariate
Autoregressive (nMVAR) model of the source signals and assess the interactions between them.
The nMVAR modelling captures both linear and nonlinear dynamics of the brain system which
has been shown to be crucial for the organization of information flow across cortical regions
(Kodama and Galan, 2019; Yang et al., 2018). Within this model, the current sample of each
signal is expressed as a (non)linear function of its past values and past values of other signals,
enables an inference of temporal causality (an effect causes the future).
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For a given multivariate time series x(n) € R of length L, a nonlinear MVAR model
of order p is defined as

x(n) = f(xp) +0(n) (D

Where X, = [x;(n— 1),x,(n — 1), - xp (n — p) 1T is the vector of p past samples of (M) time
series. The noise vector, 6(n) = [04, 05, ..., oy |7, is the model residual, and the nonlinear
function f(.) quantitatively describes how the p previous samples cause the future values. In
the n"CREANN method, the function f is divided into linear and nonlinear part

f — fLin + fNonLin (2)

and based on the fL", the Linear Connectivity (IC;,;) is computed as the linear impact of ith
region on the jth region, and based on the information embedded within f¥°"Li the Nonlinear
Connectivity, (NC;;), is inferenced to establish the extent of the nonlinear causal effect of x;
on x j-

In the present study, the nCREANN was applied to the time courses of the LCMV-
derived sources in the invalid trials of the high and low UC conditions. The data points of the
trials in the time interval [0 -1000] ms of the stimulus onset were considered for the connectivity
analysis. For training the network, all of the single-trial source signals were concatenated in
order to have a sufficient data length. The optimum model order (p = 10) was estimated using
Akaike and Schwartz criteria (Schneider and Neumaier 2001) and was considered the same for
all subjects in both conditions.

A Multilayer Perceptron neural network with one hidden layer and 10 hidden neurons
was trained. The network’s input was the X, and it tries to predict X(n) as its output. The
training algorithm was gradient descent error back-propagation (EBP) with momentum (o) and
adaptive learning rate (m). The early stopping technique was applied for the sake of
generalisation. The 10-fold permuted cross validation technique was conducted and in each fold
the data was divided into 80% training, 10% validation, and 10% testing sets. The network
parameters were updated in the ‘incremental’ mode (each time an input is presented to the
network), with random initial parameters in the range of [-0.5,0.5].

The network performance and the goodness of fit of the nMVAR model was assessed
using Mean Square Error (MSE) and the coefficient of determination criteria for the training
and test data. Coefficient of determination (or R?) is a statistical metric used in regression
models that determines their validity. If a model fits the data well, its corresponding R-Squared
value will be close to 1. MSE is the most widely used measure to assess a network's
performance. A properly-trained network exhibits not only small training error, but also its test
error falls within the range of training error. Furthermore, the similar R-Squared for training
and test set emphasize the network's appropriate generalisation.

The significance of the resulting connectivity values was evaluated assuming a
randomization test with generation of 100 data based on time-shifted surrogate technique
(Papana et al., 2013). This method destroys any causal effect between the signals without
changing the dynamics of each time series. For applying nCREANN to the surrogate data, the
network parameters were set exactly the same as those used for original data. A 90% confidence
interval was considered as a threshold to determine the significance of a connection.
Connections that were below this threshold were not considered for further statistical analyses.
Paired t-tests were conducted comparing the linear connectivity values between high UC invalid
and low UC invalid trials for each connectivity direction. Similar comparisons were made for
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the non-linear connectivity values using the Wilcoxon signed rank test. A non-parametric test
was used for the non-linear connectivity values as the data violated the normality assumption.

Results

Behavioral data

The behavioral data are shown in Figure 2 and reported in Table 1. Statistical analyses and plots
are presented for d’, accuracy, and mean RT to provide a comprehensive overview of the pattern
of results. However, we base our conclusions mainly on d’, as d’ takes into account response
bias and is a more balanced measure compared to accuracy (Stanislaw and Todorov, 1999).
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Figure 2. Box plots showing behavioral results of analyses on A) dprime, B) mean RT and C) Accuracy. The d’
on valid trials was higher in the high UC condition compared to the low UC condition. Note: Grey dots represent
data points below Q1 — 1.5*IQR and above Q3+1.5*IQR where Q1 and Q3 represent the first and the third quartile,
respectively. IQR refers to the inter-quartile range.

There was a significant main effect of UC condition on d’ (F(2,78) = 38.17, p < 0.001, pes =
0.49). d’ was highest in the high UC condition compared to the low UC (p = 0.003) and low
UC difficult (p <0.001) conditions. d’ was also greater on valid trials compared to invalid trials
(F(1,39) =48.19, p < 0.001, pes = 0.55). There was an almost significant interaction between
UC condition and validity (F(2,78) =2.69, p =0.074, pes = 0.06). Pairwise comparisons showed
higher d’ on valid trials on high UC compared to low UC condition (p < 0.001) and no difference
on invalid trials (p = 0.11) indicating greater validity effects in the high UC condition compared
to the low UC condition. In contrast, both valid (» <0.001) and invalid trials (p < 0.001) differed
significantly between low UC difficult and low UC conditions.

The analyses on accuracy also revealed a significant main effect of UC condition,
F(2,78)=42.4, p <0.001, pes = 0.52. Accuracy was higher in the high UC condition compared
to the Low UC (p = 0.001) and low UC difficult (p < 0.001) conditions. Participants were more
accurate on valid trials than invalid trials, as indicated by a significant effect of validity, F(2,78)
=71.5, p < 0.001, pes = 0.65. There was no interaction between UC condition and validity,
F(2,78)=1.86, p=0.16, pes = 0.05.

RTs on valid trials were faster compared to invalid trials as indicated by a main effect
of validity (F(1,39) =40.05, p <0.001, pes = 0.51). There was also an effect of UC condition
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(F(2,78) =5.27, p = 0.007, pes = 0.12) with responses being faster in the high UC condition
compared to the low UC difficult condition (p = 0.001). There was no difference between high
and low UC conditions (p = 0.19). Importantly, there was a significant interaction between UC
condition and validity (F(2,78) = 4.29, p = 0.017, pes = 0.1). Pairwise comparisons showed
greater validity effects in the low UC difficult condition compared to the high UC condition (p
< 0.05), reflecting the influence of task difficulty on cueing.

Table 1. d’, mean RT and Accuracy values for all conditions

High uncertainty Low uncertainty Low uncertainty difficult

Valid Invalid Valid Invalid Valid Invalid

d’ 2.7 (0.8) 2.1(0.9) 2.2(0.9) 1.8 (1) 1.7 (1.1) 1.1 (0.9)
Mean RT 376 (155) 414 (167) 393 (184) 434 (201) 429 (139) 489 (174)
Accuracy 0.90 (0.08) 0.83 (0.11) 0.84 (0.1) 0.79 (0.12) 0.77 (0.14) 0.69 (0.12)

Neurophysiological data

The results of the cluster-based permutation testing and the DICS-beamforming results are
shown in Figure 3. Figures depicting the average alpha and theta power values corresponding
to the conditions shown in Figure 3 are given in the supplementary material (see Figure S1).
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Figure 3. A) Time-frequency representation showing significant theta band activity. Values represent power
differences between high UC and low UC invalid trials. The concentration of negative values indicates greater
activity in the low UC invalid condition compared to the high UC invalid condition. B) Time-frequency
representation comparing theta band activity on high UC and low UC valid trials. Topographic plot is not shown
since there were no significant differences. C) Anatomical regions underlying theta activity identified by DICS
beamforming and cluster-based permutation tests. The color represents power differences between high and low
UC invalid conditions D) Time frequency representation showing significant alpha band activity. Power
differences between valid and invalid trials of the high UC condition are shown. Positive values indicate greater
power on valid trials compared to invalid trials. E) Time-frequency representation showing no significant
differences between low UC valid and invalid trials in the alpha band. F) Anatomical regions corresponding to
alpha band activity under high uncertainty identified by DICS beamforming and cluster-based permutation tests.
Note: The time-frequency plots were aligned to the onset of the cue. The white, black and red annotated lines
denote the target onset, mask onset and average RT for that condition, respectively. The red rectangles
superimposed on panels A and D indicate the cluster frequency limits. The red crosses in the topography plots
refer to electrodes included in the cluster.
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In the first level of analyses, we compared valid and invalid trials for each UC condition.
The cluster-based permutation test on the theta-frequency band (4 — 7 Hz) at sensor level in the
time window 0 to 1000 ms after cue onset revealed a significant difference (lower theta power
on valid trials compared to invalid trials) for the low UC condition (p = 0.03) and the low UC
difficult condition (p = 0.024, see supplementary file section S3 for visualization). The
difference was most pronounced in the parietal and centro-parietal electrode positions. No
significant theta activity differences were observed for the high UC condition. Since there was
significant activity in the low UC condition but not in the high UC condition (while comparing
valid and invalid trials), we next examined whether the differences between the high and low
uncertainty conditions were driven by valid or invalid trials. The difference in the results
between high and low UC conditions was driven by differences on invalid trials, as seen by
reduced theta band activity in the high UC invalid condition compared to the low UC Invalid
condition (p = 0.008; Fig. 3A). This difference was evident in almost all the channels. There
was no difference between the high and low UC valid conditions (p = 0.1; Fig. 3B). Note that
the p values reported for the cluster-based permutation tests were corrected using the Bonferroni
method. The uncorrected p values were multiplied by the number of comparisons (3) for the
differences in validity for each of the three UC conditions. For the two comparisons indicating
differences between high and low UC for valid and invalid trials separately, the uncorrected p
values were multiplied by two. On the source level, DICS beamforming was not performed for
the high UC condition since no significant differences were found at the sensor-level statistics.
To examine the source of the different pattern of results for high and low UC conditions, DICS
beamforming was performed comparing invalid trials of high and low UC condition (Fig. 3C).
This showed activity modulations in the precuneus (BA 7), the paracentral lobule (BA 6), and
the middle and posterior cingulate cortex (BA 23 and 31). Significant activity modulations were
also seen in inferior parietal lobule including the angular gyrus (BA 39 and 40). DICS
beamforming on the negative cluster for the contrast between valid and invalid trials in the low
UC condition revealed activity in posterior parietal areas including the postcentral gyrus (BA
3), the precuneus (BA 7) and the paracentral lobule (BA 6). A cluster of voxels was also
observed in the middle, inferior and the superior occipital gyrus (BA 19). Significant activity
was also seen in the cuneus (BA 17) and mid and posterior cingulum (BA 23 and 31). In the
low UC difficult condition, DICS beamforming showed clusters of activity in similar regions.

In the alpha-frequency band (8 — 12 Hz), cluster-based permutation testing on the same
time window (0 — 1000 ms after cue onset) with Bonferroni corrections revealed a significant
positive difference (valid > invalid, p = 0.006; Fig. 3D) in the high UC condition. A cluster was
observed extending across almost all channel positions. A significant positive difference was
also seen in the low UC difficult condition (p = 0.006) with the cluster extending across all
electrodes (see supplementary file S3). In the low UC condition, however, the difference was
not significant (p = 0.24; Fig. 3E) as seen through cluster-based permutation tests. DICS
beamforming comparing valid and invalid trials in the high UC condition (Fig. 3F) revealed a
cluster of activity in the parietal regions including the precuneus (BA 7), the supramarginal (BA
40) and the angular gyrus (BA 39). Significant activity was also observed in a cluster of voxels
in the middle, inferior and superior temporal gyri (BA 21 and BA 22), and the middle and
superior occipital gyrus (BA 18 and 19) in this condition. In the low UC difficult condition, a
cluster of activity was seen in the same regions but an additional cluster was observed in the
cuneus (BA 17). DICS beamforming was not performed for the low UC condition since only
marginally significant differences were found at the sensor-level statistics.

Neurophysiological data (nCREANN)

We first report the model validation parameters in Table 2. The results of the nCREANN
analysis are shown in Figure 4.
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Table 2. Coefficient of determination (R2) and Mean Square Error (MSE) across participants for training and
testing data for each condition in the connectivity analyses. The values in bracket denote 1 standard deviation.

Training Testing
R? MSE R? MSE
High UC Invalid 0.991 (0.002) 0.03 (0.006) 0.998 (0.002) 0.03 (0.006)
Low UC Invalid 0.991 (0.001) 0.01 (0.005) 0.998 (0.002) 0.01 (0.003)

High UC (high curiosity) Low UC (low curiosity)
Invalid Invalid

. ' .
CG
- G "r ﬁ‘ AGH
y W i

y

Figure 4. The linear connectivity patterns on the invalid trials of high and low UC conditions. The arrows show
the directionality of the connectivity pattern between the two main clusters. There was information flow from AG
to CG in both conditions. The dashed arrow indicates weaker connectivity pattern seen in the high UC condition
compared to the low UC condition.

The linear connectivity value from AG to CG was higher for the low UC invalid condition
(Mean = 0.036, SD = 0.018) compared to the high UC invalid condition (Mean = 0.03, SD =
0.013), 1 (34)=2.98, p=0.005 (difference in means = 0.006, SD = 0.012). The reciprocal linear
connectivity values from CG to AG did not differ between the two conditions (high UC invalid,
Mean = 0.029, SD = 0.013; low UC invalid Mean = 0.031, SD =0.018), ¢ (34) = 0.35, p = 0.727
(difference in means = 0.001, SD = 0.02). A Wilcoxon signed-rank test showed that the non-
linear connectivity values from AG to CG did not differ between the two conditions either (high
UC invalid, median = 0.034; low UC invalid, median = 0.024), Z = 0.64, p = 0.512. Similarly,
the reciprocal non-linear connectivity values from CG to AG also did not differ between the
two UC conditions (high UC invalid, median = 0.024; low UC invalid, median = 0.019), Z =
0.28, p=0.777.

Discussion

We investigated the control processes triggered by uncertainty linked to curiosity. We
induced uncertainty in a classic spatial cueing paradigm with peripheral cues (Posner, 1980;
Prasad et al., 2021) to trigger curiosity. Behavioral results showed that the key interaction
between validity and UC condition was only marginally significant. However, planned
comparisons based on our earlier study, Prasad and Hommel (2024), showed that d’ in the high
UC valid condition was higher compared to the low UC valid condition, suggesting greater
sensitivity to valid cues in the high UC condition. As expected, the low UC difficult condition
led to more errors than the low UC condition, due to increased task difficulty. Since the validity
effects in the two conditions were the same, it can be excluded that the effects seen in the high
UC condition were merely due to increased task difficulty. Curiosity triggered by uncertainty
likely makes people susceptible to task-irrelevant peripheral cues resulting in greater sensitivity
to the cues. This compliments findings of curiosity-modulated width of an attentional focus
(Frings et al., 2019; Gottlieb et al., 2020; Gruber and Ranganath, 2019). The greater validity
effects observed in the high UC condition emerge because of an increased motivation to explore
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(Berlyne, 1960; Van Lieshout et al., 2020). In contrast to curiosity-related accounts of
uncertainty, control-related accounts predict that high uncertainty leads to increased TBA
(Cavanagh and Frank, 2014; Ullsperger et al., 2014; Wu et al., 2021, 2020). TBA has been
conceptualized to reflect the “need for cognitive control”, which fits with observations of
stronger TBA in situations that require higher cognitive control (Cavanagh and Frank, 2014).
In our study, however there was no TBA in the high UC condition (as seen in the cluster-based
permutation tests comparing valid and invalid trials in the high UC condition), which suggests
that high uncertainty is not always associated with TBA. What implications does this have for
the control-related accounts?

On the one hand, it is possible that the causal chain between uncertainty, TBA, and
control that these accounts propose (uncertainty—=> TBA->control) does not exist. However, this
chain is consistent with numerous findings that have motivated this account, which would be
hard to explain in other ways. On the other hand, it is possible that the proposed chain exists
only with some kinds of uncertainty and/or some kinds of control, but not with others. Indeed,
the kind of control that Cavanagh and Frank (2014) or Ullsperger et al. (2014) had in mind may
represent only one of two types of control that have been discussed recently. Various authors
have claimed that individuals can adopt different styles of processing (Beste et al., 2018; Cools,
2008; Durstewitz and Seamans, 2008; Goschke and Bolte, 2014), which vary between
persistence (or stability), a style in which information processing is strongly focused on stimuli
aligning with current task-goals, and flexibility, a style in which the individual is open to a wide
range of information (Hommel, 2015; Hommel et al., 2024; Hommel and Colzato, 2017). It is
interesting to note that persistence has the exact characteristics that the control concept of
control-related approaches to uncertainty have in mind. These approaches are particularly
interested in uncertainty that is associated with response selection and that can be reduced by
focusing on relevant information and the task rules coded in working memory. This is different
for curiosity approaches, which are particularly interested in uncertainty regarding the stimulus
situation and regarding novel, unexpected information. Dealing with this kind of uncertainty
would not benefit from persistence, but from flexibility. If so, control approaches and their
proposed link between uncertainty, TBA, and control may very well be on track, except that
the kind of uncertainty and the kind of control are underspecified. If it would be specified to
refer to the chain “uncertainty how to respond->TBA->persistence-type control”, the account
would still be valid. To account for our present findings, however, the chain “uncertainty about
what is going on—>flexibility-type control” would be sufficient, without any intervening TBA.
In other words, TBA may well be tightly associated with control, but this would only apply to
persistence-type control (or control under a metacontrol bias towards persistence), but not to
flexibility-type control (or control under a metacontrol bias towards flexibility) which we
believe underlies the present findings.

Our neurophysiological findings provide a rather systematic picture regarding how
curiosity-inducing uncertainty, flexibility-based control, and integrative information processing
go hand-in-hand. The modulations in TBA were localized in two distinct clusters: one involving
the angular gyrus and the inferior parietal lobule (BA 39 and 40) and the other involving the
precuneus (BA 7), para-central regions (BA 6), and the posterior cingulate cortex (PCC, BA 23
and 31). The inferior parietal lobule (IPL) is actively involved in maintaining attention on
current goals and detection of salient events so that task-goals can be updated accordingly
(Husain and Nachev, 2007; Malhotra et al., 2009; Singh-Curry and Husain, 2009). Specifically,
IPL is involved in directing top-down goal-oriented attention to locations in space (Hopfinger
et al., 2000). Given that our task involved spatial attention using the cueing task, it is likely that
IPL was responsible for deploying goal-directed attention to target locations. The directed
connectivity analyses revealed a pattern of directed communication between the inferior
parietal regions and the other large cluster involving the posterior cingulate regions, precuneus
and the paracentral regions. This implies that information, likely reflecting top-down task-
goals, is transferred from parietal regions to the PCC, precuneus and paracentral regions. This
information transfer was weaker for the high uncertainty condition than for the low uncertainty
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condition. Thus, high curiosity reduces the information transfer of task-goals from parietal
regions to posterior cingulate cortex (PCC), precuneus and the paracentral regions. These latter
areas have frequently been associated with TBA-associated perception-action- integration and
action planning (Beste et al., 2023; Domic-Siede et al., 2021; Nguyen et al., 2021). Especially
the precuneus (BA7) is well-known to mediate processes of perception-action integration
(Gottlieb, 2007; Gottlieb and Oudeyer, 2018) and curiosity (Gottlieb and Oudeyer, 2018; Van
Lieshout et al., 2018). Furthermore, the PCC has been shown to play a key role in the “tuning”
of attention (Leech et al., 2011; Leech and Sharp, 2014; Pearson et al., 2011; Wilken et al.,
2024). The activity in the PCC is increased or decreased depending on the breadth of the
attentional focus (narrow vs. broad). The pattern of findings suggests that a reduced impact of
task goals (under high curiosity in our study), as communicated from the IPL, leads to the
broadening of attentional focus. This makes people susceptible to a wide range of information
independent from the current goal. Thus, our findings suggest that the IPL provides weak input
regarding the currently active task goals to the PCC and associated areas under high uncertainty
thereby increasing the breadth of the attentional focus. This led to greater processing of task-
irrelevant information. It is worth mentioning that TBA is typically observed in the frontal
regions (Cavanagh and Frank, 2014) and it can seem surprising that no such activity was seen
in our study especially since the pre-frontal cortex has been shown to facilitate exploration in
the face of uncertainty (Goel, 2015; Marinsek et al., 2014). No such effects were found here.
The localisation of TBA depends on the precise nature of the task and the type of cognitive
processing involved. Since we used a task that manipulates spatial attention and uncertainty,
TBA was found to be localised in areas responsible for these mechanisms as mentioned above.
Importantly, as mentioned earlier, parietal theta activity is commonly found in studies that
involve manipulation of the frequency of stimulus information (Dippel et al., 2016). Thus, these
findings are in line with existing theoretical constructs related to attention and uncertainty. The
absence of frontal effects along with the absence of theta band activation for the high UC
condition can thus be used to fine-tune our understanding of how different types of uncertainty
influence cognitive control. For instance, it is possible that stimulus uncertainty of the type
manipulated in our study — not directly associated with response selection - gives rise to a
different pattern of activation than response uncertainty which is commonly manipulated in
most studies. Further studies are required to tease apart these differences both at the behavioural
and the neurophysiological level.

Modulations of TBA aside, we also expected curiosity to modulate earlier stages of
processing like attentional filtering, which is reflected by ABA (Herrmann and Knight, 2001;
Klimesch, 2011; Klimesch et al., 2011). For ABA, we observed positive clusters indicating
stronger activity on valid trials compared to invalid trials. It is possible to question if this pattern
of activation reflects low-level sensory processing. If that were the case, we should have seen
similar differences between valid and invalid trials across all uncertainty conditions since low-
level sensory effects should presumably be unaffected by higher-order mechanisms such as the
uncertainty manipulation. Interestingly, ABA differences between valid and invalid trials were
specific for the high UC condition, but not for the low UC condition. ABA is said to reflect a
general inhibitory gating mechanism by which task-irrelevant/distracting information is
suppressed through which the access to information for task-relevant behaviour is controlled
(Jensen and Mazaheri, 2010; Klimesch, 2012; Konjusha et al., 2023; Rihs et al., 2007; Yu et
al., 2024). In line with this, higher alpha band activity should have been seen on invalid trials
since the peripheral cues are task-irrelevant on these trials. But we see the opposite result
suggesting that suppression of task-irrelevant information on invalid trials was weaker under
high uncertainty. Thus, high uncertainty makes the inhibitory gating mechanism less effective
reflecting reduced ABA on invalid trials (see Prochnow et al., 2022; Pscherer et al., 2023 for
similar findings in ABA). The ABA under high uncertainty was localized in the temporo-
parietal junction (TPJ) including the supramarginal (BA 40) and angular gyrus (BA 39) which
is in line with TPJ’s role in reorienting attention to salient stimuli in a contextually relevant
manner (Behrmann et al., 2004; Geng and Vossel, 2013). Thus, it seems likely that, under high
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uncertainty, TPJ was responsible for making contextual adjustments to the attentional system
and reoriented participants’ attention to the peripheral cues more strongly on invalid trials.

It is possible to question whether the task used in our study which is typically used to
measure attention control truly engages cognitive control in the way traditional control tasks
(eg., Go No-go) do. However, on the invalid trials of the Posner cueing task, participants are
required to suppress the prepotent response of orienting to the cue and instead attend to the
target location. It is reasonable to assume that this mechanism involves cognitive control.
Further, whether there are clear differences between attention and cognitive control depends on
who we ask. Several models consider attention as part of cognitive control or even use them
interchangeably (Braver, 2012; Engle and Kane, 2003). The authors of this paper also strongly
believe that it is important to move beyond paradigmatic research where certain mechanisms
are explicitly tied only to specific tasks (Frings et al., 2024; Hommel, 2020). If cognitive control
is understood as a mechanism that regulates goal-directed behaviour, then it must be possible
to engage cognitive control in any task that involves ignoring irrelevant information and
selecting task-relevant responses, such as the Posner cueing task.

One unexpected finding from this study was that there were more accurate responses in
the high UC condition compared to the low UC condition. This contradicts earlier findings
regarding the main effect of uncertainty on accuracy in studies with a similar task design (Prasad
and Hommel, 2024; Shiu and Pashler, 1994). It is worth noting that these differences in
accuracy were driven by differences in valid trials. Specifically, accuracy in the high UC valid
condition was higher compared to the low UC valid condition, resulting in overall higher
accuracy in the high UC condition. Since valid cues reliably predict the target location and
therefore help respond to the target, this suggests that the cues were processed more when the
uncertainty was high. The neurophysiological findings were also in line with this argument that
high uncertainty is associated with a flexible-type control, as indicated by the lack of significant
theta band activity under high uncertainty.

We also did not observe faster responses in the low UC condition compared to the high
UC condition as seen in Prasad and Hommel (2024) which is a puzzling anomaly. However, in
all these studies, there was an interaction between uncertainty and validity either on d’ or mean
RTs. The key difference is that in our study, there were differences between high and low UC
in valid trials, whereas in the previous two studies, the effect was driven by differences in
invalid trials. Thus, it is not clear if uncertainty primarily influences valid trials or invalid trials
or both. It is important to note that the interaction between uncertainty and validity was only
marginally significant for d’ in the current study, which is in contrast to our earlier study. This
is unlikely due to an inadequate sample size, as we had the same number of participants in both
studies. All aspects of the design were also the same. We have already observed this effect in
three separate experiments with 40 participants each in our earlier study. In spite of the weak
interaction, planned comparisons revealed highly significant differences between high and low
uncertainty conditions on valid trials in the current study. Finally, there were clear differences
at the neurophysiological level. It is known that even with true reliable effects, depending on
the power, the p-values can vary over several studies such that they are not always below the
threshold of significance (Greenland et al., 2016; Hung et al., 1997). This could be one of the
reasons for the weak interaction effects observed in our study, which can only be confirmed
through more research using this paradigm.

Another point worth mentioning is that curiosity was only indirectly implicated in our
study through its theoretical links with uncertainty, which could be considered a limitation of
the current study. Curiosity is typically measured through self-report scales (eg., Collins et al.,
2004; Kashdan et al., 2018), but objectively validating the induction of a curious state is not
straightforward. Some studies have inferred curiosity through decisions to sample more
information (Gottlieb et al., 2020; Van Lieshout et al., 2020). Participants are more likely to
seek additional information before responding when their subjective confidence is not high
(Desender et al., 2018; Nicki, 1970). Even though we did not evaluate subjective confidence in
our study, high uncertainty is often associated with lower confidence (Cohanpour et al., 2024;
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Metcalfe et al., 2023). Thus, we have interpreted greater cueing effects under high uncertainty
(and low confidence) to reflect the decision to seek more information from the cues (Beesley et
al., 2015). But we do acknowledge that it is important for future research to verify the
conclusions of this study using more direct tests of confidence and curiosity. It is also important
to replicate the study's key neurophysiological finding (absence of theta band activity in the
high UC condition) using larger sample sizes while including more detailed demographic
measures such as Q.

In conclusion, we show that some kinds of uncertainty make people attend to seemingly
irrelevant cues, which happened in the absence of TBA. Effective connectivity analyses also
showed weaker connections between inferior parietal regions and the posterior cingulate cortex
under high uncertainty. These (from a classical control view) counter-intuitive results indicate
that uncertainty does not always trigger TBA. Activity in the alpha band and the corresponding
neuroanatomical regions provide further evidence for the role of uncertainty in attention
control. Taken altogether, we conclude that the widely assumed causal chain from uncertainty,
over TBA, to control is not as general as has been claimed. Our findings suggest that the actual
chain depends on the kind of uncertainty and the kind of control that is involved. Whereas
response-related uncertainty may indeed trigger TBA, resulting in higher persistence-type
control, stimulus-related uncertainty may not trigger TBA resulting in higher flexibility-type
control. Thus, the connection between uncertainty and cognitive control depends on the
metacontrol implications of the particular kind of uncertainty being involved.
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Table 1. d’, mean RT and Accuracy values for all conditions

High uncertainty Low uncertainty Low uncertainty difficult

Valid Invalid Valid Invalid Valid Invalid

d 2.7(0.8) 2.1(0.9) 2.2(0.9) 1.8 (1) 1.7(1.1) 1.1(0.9)
Mean RT 376 (155) 414 (167) 393 (184) 434 (201) 429 (139) 489 (174)
Accuracy 0.90 (0.08) 0.83 (0.11) 0.84 (0.1) 0.79 (0.12) 0.77 (0.14) 0.69 (0.12)

Table 2. Coefficient of determination (R2) and Mean Square Error (MSE) across participants for training and
testing data for each condition in the connectivity analyses. The values in bracket denote 1 standard deviation.

Training Testing
R? MSE R? MSE
High UC Invalid 0.991 (0.002) 0.03 (0.006) 0.998 (0.002) 0.03 (0.006)
Low UC Invalid 0.991 (0.001) 0.01 (0.005) 0.998 (0.002) 0.01 (0.003)




Page 57 of 61

Supplementary material

Uncertainty, cognitive control, and theta-band activity: a relationship that depends on
metacontrol requirements

Seema Prasad, Nasibeh Talebi, Paul Wendiggensen, Moritz Miickschel, Bernhard Hommel,
Christian Beste

S1. Average Theta and Alpha power for each of the four main conditions

The average values were calculated by averaging the power over all channels and over time.
The average power for the time window 0 — 1000 ms and 0 — 500 ms are given below for theta
and alpha band activity. It is important to note that the pattern of results in these graphs may
not necessarily match the results from the cluster-based permutation tests (CBPT) performed
on time-frequency data reported in the manuscript (and in Figure 3). This is because CBPT
conducts multiple tests at each time point and spatial location from which clusters of activity
are found at specific channel locations and time periods. In contrast, the power values presented
below in the figures are simple grand averages across all electrodes which do not adequately
capture the complexity of the data.
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High UC Invalid
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S2. Statistical analyses on Accuracy data
Repeated measures ANOVA on Accuracy with Condition (high UC, low UC, low UC difficult)
and Validity (Valid, Invalid) revealed a significant main effect of Condition, F' (2, 78) = 42.4,
p < 0.001, pes = 0.52 and Validity, F' (1, 39) = 71.5, p < 0.001, pes = 0.65. The interaction
between the two did not reach significance, F' (2, 78) = 1.86, p = 0.16, pes = 0.05.

Figure 1. Average theta and alpha power for 0 to 500 ms and 0 to 1000 ms durations
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S3. Time-frequency plots for theta and alpha band activity in the low UC difficult
condition
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Figure 2. Time-frequency representation showing significant TBA (A) and ABA (B) for the low uncertainty difficult condition
comparing valid and invalid trials. The time-frequency plots were aligned to the onset of the cue. The white, black and red
annotated lines denote the target onset, mask onset and average RT for that condition, respectively.
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Experiment design
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