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ABSTRACT
The ability to balance between being persistent versus flexible during cognitive control is referred to as “metacontrol” and 
reflected in the exponent of aperiodic neural activity. Theoretical considerations suggest that metacontrol is affected by the 
interplay of the GABAergic, glutamatergic, and catecholaminergic systems. Moreover, evidence suggests that fronto-striatal 
structures play an important role. Yet, the nexus between neurobiochemistry and structural neuroanatomy when it comes 
to the foundations of metacontrol is not understood. To examine this, we investigated how an experimental manipulation of 
catecholaminergic signaling via methylphenidate (MHP) and baseline levels of GABA and glutamate in the anterior cingulate 
cortex (ACC), supplementary motor area (SMA), and striatum as assessed via MR spectroscopy altered task performance and as-
sociated aperiodic activity (assessed via EEG) during a conflict monitoring task. We investigated N = 101 healthy young adults. 
We show that the EEG-aperiodic exponent was elevated during task performance, as well as during cognitively challenging 
task conditions requiring more persistent processing and was further enhanced by MPH administration. Correlation analyses 
also provided evidence for an important role of individual characteristics and dispositions as reflected by the observed role of 
GABA+ and Glx baseline levels in the ACC, the SMA, and the striatum. Our observations point to an important role of catecho-
lamines in the amino acid neurotransmitter-driven regulation of metacontrol and task-specific (changes in) metacontrol biases. 
The results suggest an interplay of the GABA/Glx and the catecholaminergic system in prefrontal-basal ganglia structures 
crucial for metacontrol.

1   |   Introduction

Adaptive behavior often faces a control dilemma (Beste, Moll, 
et  al.  2018; Goschke  2000; Goschke and Bolte  2014; Hommel 

and Colzato 2017; Hommel et al. 2024): some situations demand 
focused cognitive control to handle distractions, while others 
require flexibility in uncertain contexts. This balance, termed 
“metacontrol” (Hommel  2015; Hommel et  al.  2024; Hommel 
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and Colzato  2017), is central to the Metacontrol State Model 
(Hommel  2015). A persistence bias emphasizes goal focus, 
strong competition, and engagement with relevant information, 
whereas a flexibility bias relaxes focus and reduces competition 
to allow processing of irrelevant information. Evidence shows 
these biases adapt to task demands (Hommel and Colzato 2017; 
Mekern et  al.  2019; Zhang et  al.  2022; Pi et  al.  2024; Van 
Schependom et al. 2024).

Recent advances in electrophysiology emphasize the critical 
role of aperiodic neural activity (non-oscillatory EEG) in cog-
nitive control, challenging its prior dismissal as mere noise 
(Gao et  al.  2024; Groppe et  al.  2013; Gyurkovics et  al.  2021; 
Jia et  al.  2024; Monchy et  al.  2024; Pertermann, Bluschke, 
et  al.  2019; Pertermann, Mückschel, et  al.  2019; Wainio-
Theberge et al. 2022; Yan et al. 2024; Zhang et al. 2023). The 
power spectrum reveals a frequency-dependent decline in 
spectral power, quantified by the aperiodic exponent—repre-
sented as the negative 1/f slope in the log-transformed power 
spectrum (Donoghue et  al.  2020; He  2014; Pritchard  1992). 
This exponent captures neural variability, reflecting the 
brain's capacity to adapt its responses to situational demands 
(Waschke, Kloosterman, et  al.  2021; Waschke, Donoghue, 
et  al.  2021). Additionally, the aperiodic exponent reflects 
the  excitation/inhibition (E/I) ratio, where higher excitatory 
activity increases neural variability and reduces synchroni-
zation, while inhibitory dominance reduces variability and 
enhances focused processing (Gao et  al.  2017; Lombardi 
et al. 2017; Voytek and Knight 2015). This aligns with meta-
control: a persistence bias (higher aperiodic exponent) in-
dicates inhibitory dominance and stable processing, while 
a flexibility bias (lower exponent) reflects excitatory domi-
nance and exploratory behavior (Hommel and Colzato 2017). 
Thus, the aperiodic exponent signals metacontrol biases, with 
higher values indicating persistence and lower values indicat-
ing flexibility.

In line with these considerations, the aperiodic exponent has 
been found to vary systematically with task conditions, increas-
ing during persistence demands and decreasing during flexibil-
ity demands, suggesting that it reflects metacontrol biases (Gao 
et al. 2024; Pi et al. 2024; Yan et al. 2024; Zhang et al. 2023). 
Recently, we demonstrated that methylphenidate (MPH), which 
boosts catecholamines, increases the aperiodic exponent (Gao 
et al. 2024) likely by enhancing the signal-to-noise ratio (SNR) 
and reducing neural variability, thereby improving the distinc-
tion between relevant and irrelevant information (Aston-Jones 
and Cohen  2005; Cohen et  al.  2002; Kroener et  al.  2009; Li 
et al. 2001; Li and Rieckmann 2014; Nieuwenhuis et al. 2005; 

Rolls et al.  2008; Servan-Schreiber et al.  1990; Vander Weele 
et al. 2018; Winterer and Weinberger 2004; Yousif et al. 2016; 
Ziegler et al. 2016). Interestingly, the catecholaminergic system 
is closely interacting with and modulating both excitatory and 
inhibitory neuronal signaling (Tritsch and Sabatini  2012), as 
catecholamines play a role in modulating the responsiveness of 
GABAergic and glutamatergic synapses within the prefrontal 
cortex and other brain regions critical for response selection 
and cognitive control (Manz et al. 2021; Plenz 2003). Given the 
relationship between MPH-driven catecholamine alterations 
and their impact on GABAergic and glutamatergic transmis-
sion, it seems likely that individual variations in the baseline 
levels of GABA and glutamate might predict (changes in) meta-
control as reflected by aperiodic EEG activity and its modula-
tion by MPH.

To investigate this aspect, we reanalyzed a sample that was orig-
inally assessed and studied for other scientific purposes (Koyun 
et al. 2024). Following prior EEG studies (Adelhöfer et al. 2021; 
Zhang et al. 2023; Gao et al. 2024; Jia et al. 2024; Pi et al. 2024; 
Yan et  al.  2024), we applied the spectral parameterization 
approach (Fitting Oscillations and One Over f [FOOOF]) 
(Donoghue et al. 2020) to analyze aperiodic exponents during 
MPH or placebo intake in a cognitive task combining the 
Simon and Go/NoGo tasks. This design involved conditions 
requiring varying levels of metacontrol persistence and flex-
ibility. Since pre-stimulus neural activity can influence task 
performance (Adelhöfer et al. 2021; Adelhöfer and Beste 2020; 
Huang et al. 2017; Northoff et al. 2024; Prochnow et al. 2022; 
Wainio-Theberge et al. 2021; Wendiggensen et al. 2022; Wolff, 
Yao, et al. 2019; Wolff et al. 2021), we compared aperiodic ex-
ponents from the critical within-trial period to the noncritical 
pretrial period. This approach separates task-specific aperi-
odic activity from random fluctuations and evaluates changes 
in the exponent across conditions, using pretrial values as 
a neutral reference. We expected to replicate the findings by 
Gao et  al.  (2024) that MPH increases the aperiodic exponent 
in two distinct ways. First, we proposed that MPH should in-
duce a state-like effect, with a significant impact during both 
pretrial and within-trial periods. Second, we anticipated that 
electrode-specific analyses would demonstrate that MPH influ-
ences selective processes in the within-trial period by reduc-
ing the downregulation of aperiodic activity in situations that 
require more metacontrol persistence. Furthermore, we hy-
pothesized that individual differences in baseline GABAergic 
and glutamatergic transmission could predict changes in 
metacontrol in response to MPH. To test this hypothesis, we 
measured the baseline levels/total concentrations of GABA+ 
(GABA plus macromolecules) as well as Glx (glutamate plus 
glutamine) and their ratio as a proxy for the E/I ratio in the 
striatum, anterior cingulate cortex (ACC), and supplementary 
motor area (SMA) of healthy adults using magnetic resonance 
spectroscopy (MRS). Those brain areas had been selected as 
they are essential for metacontrol given their role in automatic 
motor activation, suppressing dominant action plans (ACC and 
SMA; [Bari and Robbins 2013] and efficient response selection 
ACC and striatum [Adams et al. 2017; Redgrave et al. 2011]). 
Accordingly, we hypothesized that GABA+ and Glx concentra-
tions, and/or their ratio in these areas modulate the effects of 
MPH on metacontrol and the aperiodic exponent.

Summary

•	 Metacontrol is reflected by aperiodic neural activity

•	 Catecholamines shift metacontrol and the aperiodic 
exponent toward more stable processing. GABA+ and 
Glx baseline levels predict both metacontrol perfor-
mance and MPH effects on it.
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2   |   Materials and Methods

2.1   |   Participants

The current study is based on existing datasets collected by 
Koyun et  al.  (2024). Participants were identified as outliers 
and excluded from all analyses if they fulfilled any of the 
following criteria: behavioral accuracy below chance level 
(< 50%), technical issues during data recording, insufficient 
EEG signal quality after preprocessing, or missed the second 
appointment (see for details, Koyun et al. 2024). N = 101 par-
ticipants (M = 25.26; SD = 3.03; range 20–31 years; comprising 
59 males) were included in the behavioral analyses and sub-
sequent neurophysiological and 1H-MRS analyses. All par-
ticipants reported no neurological or psychiatric disorders, 
developmental conditions affecting brain function, dairy al-
lergies, pregnancy, and all had MRI compatibility and normal 
or corrected-to-normal vision. Participants provided written 
informed consent before participation and received a €60 re-
imbursement after completing the two study appointments. 
The original study was conducted in accordance with the 
Declaration of Helsinki and approved by the ethics commis-
sion of the Medical Faculty of TU Dresden.

2.2   |   Research Methodology

The study included a baseline 1H-MRS measurement and two 
experimental EEG sessions (Figure  1). During each EEG ses-
sion, participants received either the assigned MPH dose (low, 
medium or high dose) or a lactose placebo in a double-blind 
manner. The two testing sessions were scheduled 7 days apart to 
prevent carryover effects and guarantee drug washout. Pseudo-
randomization ensured equal numbers of participants in each 
subgroup, based on pharmacological dose (low, medium, high) 
and the sequence of appointments (MPH on the first or second 
appointment). This pseudo-randomization also achieved gender 
balance within and across all subgroups. Additionally, group as-
signments were fully randomized and double-blind.

2.3   |   MPH Administration

On one appointment, participants were administered the assigned 
MPH dose (either low: 0.25 mg, medium: 0.50 mg, or high: 0.75 mg/

kg body weight) and a lactose placebo on the other, in a double-
blind manner. Dosage levels were determined based on previous 
studies (e.g., Beste, Adelhöfer, et al. 2018) for the low (0.25 mg/kg) 
and medium (0.50 mg/kg) doses, and the high dose (0.75 mg/kg) 
set just below the recommended maximum of 0.80 mg/kg. The 
experiment started approximately 2 h post-MPH/placebo adminis-
tration on each appointment, aligning with the peak plasma levels 
at 1–3 h post-dose, with maximum concentration around 2 h after 
oral ingestion (Challman and Lipsky 2000).

2.4   |   1H-MRS Data Acquisition and Processing

All MRI and MRS data were acquired using a Siemens 3T 
Prisma scanner (Siemens Healthineers, Erlangen, Germany) 
with a 32-channel receive-only head rf coil.

Following a localizer scan, high-resolution 3D T1-weighted sag-
ittal images were acquired using the MPRAGE sequence (1 mm 
isovoxel) and reconstructed for precise voxel placements. A 
30 × 30 × 30 mm voxel of interest (VOI) was positioned in the right 
striatum, a 20 × 30 × 40 mm VOI centered over the midline covered 
large portions of both left and right ACC (with minimal inclusion of 
neighboring regions), and an additional 20 × 30 × 40 mm VOI was 
placed to encompass both left and right (pre-)SMA. Representative 
placements and spectra of all three VOIs are shown in Figure 2. 
1H-MRS quantified GABA+, Glx, and tCr concentrations in the 
striatum, ACC, and SMA, with separate VOIs positioned for each 
region. Automated shimming was complemented with additional 
manual shimming (using a full width at half maximum value 
below 20 Hz for the unsuppressed water signal as a criterion) to 
optimize spectral resolution. GABA+ and Glx levels were mea-
sured using the MEGA-PRESS (Mescher–Garwood point-resolved 
spectroscopy) sequence (Govindaraju et  al.  2000; Marjańska 
et al. 2013; Tremblay et al. 2014). Spectral data were exported and 
GABA+, Glx, and tCr values were then quantified as ratios from 
the difference spectra (edit on minus edit off) using LCModel soft-
ware (v6.3-1H, copyright Stephen Provencher, Canada) and basis 
sets provided by Purdue University.

The study used an updated 3T Siemens Difference Basis Set with 
values for chemical shifts and J-GABA coupling constants to 
estimate GABA+ and Glx levels (Kaiser et al. 2008; Kreis and 
Bolliger 2012; Near et al. 2013). Total creatine (tCr) reference val-
ues for GABA+ and Glx were derived from the “edit-off” spectra 

FIGURE 1    |    Schematic illustration of the timeline of experimental interventions for each participant. The horizontal axis represents time in min-
utes. Participants underwent a 1H-MRS measurement before the first task appointment. The behavioral task and concurrent EEG recording started 
120 min after MPH/placebo administration and lasted for approximately 30 min. Participants were administrated either MPH or a placebo at the start 
of each appointment, with the sequence being randomly assigned.
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FIGURE 2    |    Illustration of VOI placements (left panel) and representative difference spectra (“edit on–edit off”) from MRS (right panel) in three 
brain regions: (A) Striatum, (B) ACC, and (C) SMA. The bottom plots show the measured spectrum (black line) overlaid with the fitted spectrum (red 
line). The top plot displays residuals. The x axis shows chemical shift (ppm) and the y axis represents signal intensity (arbitrary units, a.u.).
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of the MEGA-PRESS measurement. To enhance quantitation 
accuracy, the LC-Model's DKNTMN parameter was adjusted to 
0.45, optimizing baseline flexibility to minimize measurement 
error without compromising SNR (Stock et al. 2023). Only spec-
tra with acceptable shim quality (FWHM of 3–7 Hz for the NAA 
peak) were included in the analyses, with all three VOIs meet-
ing the Cramér–Rao lower bound (CRLB) criterion of less than 
15%. See the original published study by Koyun et al. (2024) for 
further details.

Statistical analyses used an internal metabolite reference signal 
(Mikkelsen et al. 2017; Mikkelsen et al. 2019), separately refer-
encing both GABA+ and Glx to tCr in the edit-OFF spectrum. 
Furthermore, we divided GABA+/tCr by Glx/tCr to obtain a 
GABA+/Glx ratio. Of note, the resulting ratios used for further 
analyses are unitless.

2.5   |   Task

Participants performed a combined Simon and Go/NoGo 
paradigm (Chmielewski and Beste  2017). Figure  3 illustrates 
the task design and sequence of events. The task consists of 6 
blocks with 120 trials each, totaling 720 trials. These include 
conditions requiring stronger persistence, like the conflict-
inducing incongruent trials and the less frequent NoGo trials 
(30%), as well as conditions requiring less persistence, like the 
nonconflicting congruent trials and more frequent Go trials 
(70%). Immediately after MPH/placebo administration, par-
ticipants completed a 16-trial practice session to familiarize 
themselves with the task. For the experiment, participants sat 
around 60 cm from a 24-in. LCD monitor displaying visual 
stimuli on a black background. Participants were instructed 
to respond quickly and accurately to avoid the appearance of 
the speed-up prompt (“Faster!”), which occurred in Go trials 
whenever no response was given within 500 ms after stimulus 
onset. After each of the six blocks, participants were allowed a 

self-timed break before resuming with a button key press. The 
entire task lasted about 30 min.

2.6   |   EEG Recording and Processing

During the task, EEG signals were captured using 60 equi-
distant Ag/AgCl electrodes at a sampling rate of 500 Hz with 
a QuickAmp amplifier (Brain Products GmbH, Gilching, 
Germany) and BrainVision Recorder software (Version 2.2). 
All electrodes were referenced to Fpz (θ = 90, φ = 90), and the 
ground electrode was placed at θ = 58, φ = 78. Electrode im-
pedances were kept below 10 kΩ. EEG data preprocessing uti-
lized the automagic toolbox (Pedroni et al. 2019) and EEGLAB 
(Delorme and Makeig 2004) in Matlab 2020a (The MathWorks 
Corp.). Initially, raw EEG data were downsampled to 256 Hz, 
and flat channels were removed. Channels were re-referenced 
to an average reference, and the PREP pipeline (Bigdely-Shamlo 
et al. 2015) was applied to address line noise and discard noisy/
bad channels. EOG artifacts were removed using a subtrac-
tion method (EOG Regression; Parra et al. 2005). A band-pass 
filter ranging from 0.5 to 40 Hz was applied using EEGLAB's 
pop_eegfiltnew() function, with filter order estimated by de-
fault. Additionally, to detect remaining artifactual components, 
the Multiple Artifact Rejection Algorithm (MARA; Winkler 
et al. 2011) was applied to automate the independent component 
analysis (ICA) process. Ultimately, previously discarded chan-
nels were interpolated using a spherical method. The prepro-
cessed data was loaded into Matlab 2020a for further analysis 
using the FieldTrip toolbox (Oostenveld et al. 2011). The EEG 
data segmentation of Go and NoGo conditions was separately 
carried out for congruent and incongruent trials. Only correct 
responses (Go conditions) and omissions (NoGo conditions) 
were segmented into 4-s epochs (from −2000 to 2000 ms, locked 
to the onset of the target letter stimulus). For more details about 
EEG recording and processing, please see the original published 
study (Koyun et al. 2024).

FIGURE 3    |    The Simon Go/NoGo task with all possible stimulus configurations. (A) The upper panel displays stimuli in the Go condition. The 
upper left panel shows stimuli (i.e., “A,” yellow) which require a left-hand response, while upper right panel shows stimuli (i.e., “B,” yellow) which 
require a right-hand response. The lower panel illustrates NoGo stimuli (i.e., “A” or “B”) that require no response. Trials where the letter stimuli ap-
peared on the same side as their corresponding Go response hand (e.g., “A” on the left, “B” on the right) were labeled as congruent. Trials where the 
letters appeared on the opposite side (e.g., “A” on the right, “B” on the left) were labeled as incongruent. (B) In each trial, a single letter target stimulus 
and a contralateral distractor stimulus were simultaneously presented for 200 ms. The maximum time for response was 1700 ms after stimulus pre-
sentation and the intertrial interval (ITI) was jittered between 1300 and 1700 ms.
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2.7   |   Parameterization of the Spectral Data

EEG data were analyzed in two distinct time windows: from 0 
to 1000 ms poststimulus presentation (within-trial period) and 
from −1000 to 0 ms (pretrial period). Power spectral density 
(PSD) at each frequency was calculated using Welch's method 
(0.25 s Hamming window, 50% overlap) (Welch 1967). The cal-
culation was implemented in Matlab using the “pwelch” func-
tion. The PSDs were estimated separately for each participant, 
electrode, condition, and both pretrial and within-trial peri-
ods. For estimating aperiodic activity, the power spectra were 
parameterized using the Python-based FOOOF toolbox (ver-
sion 1.0.0; https://​github.​com/​fooof​-​tools/​​fooof​), which de-
composes the signal into aperiodic and periodic components 
(detailed overview of this approach see Donoghue et al. 2020), 
following the methodology of previous work (Adelhöfer 
et  al.  2021; Gao et  al.  2024; Pi et  al.  2024; Yan et  al.  2024). 
The FOOOF algorithm conceptualizes the power spectrum as 
a linear combination of aperiodic activity [L( f )] and periodic 
(oscillatory) activity [Gn( f )]. Precisely, the model formula can 
be written as

where f represents the frequency. The PSD is the linear combi-
nation of the aperiodic component, L( f), and n total Gaussians.

The aperiodic component is fit as a function across the entire 
fitted range of the spectrum. The function for the aperiodic com-
ponent, L( f), is defined as

where b represents the aperiodic offset reflecting the broadband 
power shift, and x denotes the aperiodic exponent, equivalent 
to the slope of the line fitted to the power spectrum in a log–
log space.

The periodic (oscillatory) components are characterized as fre-
quency regions of power over and above the aperiodic compo-
nent. Each oscillatory component, also referred to as “peak” is 
modeled with a Gaussian profile, defined by three distinct pa-
rameters. Each Gaussian fit can be modeled as

where an is the amplitude, μn is the center frequency, and σn is 
the bandwidth of each component.

To obtain a reliable estimation of the aperiodic component, the 
power spectra data were fitted over a broad frequency range of 
3–35 Hz, in accordance with recommendations in the FOOOF 
documentation. The FOOOF algorithm was configured with 
the following settings: {aperiodic mode = “fixed,” peak width 
limits = (2, 8), maximum number of peaks = 8, minimum peak 
height = 0.05, default settings otherwise}. The power spectra 
were fit for each electrode, each participant, each task condi-
tion, and each period. The n = 6 participants whose FOOOF 

spectra fits (R2) were smaller than the group mean minus three 
times the standard deviation (SD), and aperiodic exponent val-
ues that exceeded the group mean ± 3 × SD were also excluded. 
Additionally, n = 4 participants were excluded due to poor MRS 
data quality. The average R2 of spectral fits for all participants 
(N = 91) was above 0.95.

2.8   |   Aperiodic Exponent

The aperiodic parameters encompass both aperiodic expo-
nent and aperiodic offset. The aperiodic exponent was found 
to be sensitive to index metacontrol states (Zhang et al. 2023). 
Hence, our analysis primarily focuses on the exponent. Due to 
the absence of a priori assumptions regarding the scalp distri-
bution of the aperiodic neural activity, we derived the “global” 
aperiodic-only signal for each electrode and each participant 
(Hill et  al.  2022). Initially, we averaged the exponent values 
across 60 electrodes for each participant (Hill et al. 2022) to dis-
cern the overall trend of variation. Subsequently, to investigate 
the distribution of the aperiodic components on the scalp, we 
conducted an extra cluster-based permutation test, resulting in 
statistically significant findings on a global scale. The nonpara-
metric cluster-based permutation test is a method proposed to 
localize effects in space, frequency, and time while correcting 
for multiple comparisons in high-dimensional EEG/MEG data 
(Maris and Oostenveld 2007). In this study, clusters were formed 
based on the adjacency of thresholded sample-level F-values 
(α = 0.001), with the sum of F-values within a cluster represent-
ing the cluster-level statistics. Significant clusters were deter-
mined based on 1000 Monte Carlo random samplings using a 
significance level of 0.05.

2.9   |   Statistical Analysis

The behavioral data (accuracy and hit response times) as well 
as the aperiodic exponent and MRS data were analyzed using 
SPSS software (IBM, version: 27.0). Only trials with correct 
responses were used for the further analysis of the aperi-
odic exponent. Behavioral and EEG data was analyzed using 
repeated-measures analyses of variances (ANOVAs), where 
the drug treatment (MPH/placebo), Go/NoGo condition (Go/
NoGo), and congruency (congruent/incongruent) were used as 
within-subject factors, while MPH dose (low/medium/high) 
was used as a between-subject factor. For EEG analyses, time 
(pretrial/within-trial period) was used as an additional within-
subject factor.

In order to examine whether baseline GABA+ and/or Glx con-
centrations predict the catecholaminergic modulation of meta-
control, we ran Pearson's correlation analyses between the 
already calculated exponent and/or behavioral measures of the 
congruency effect, the inhibition rates (percentage correct re-
sponses), the Go/Nogo effect, and MRS data in different areas 
(ACC, SMA, striatum).

The p values were corrected using the Greenhouse–Geisser and 
Bonferroni methods whenever appropriate. For all descriptive 
statistics, the mean and the standard error of the mean (SEM) 
are reported.

PSD(f ) = L(f ) +
∑

n

Gn(f )

L(f ) = b − log
[

f x
]

Gn(f ) = anexp

[

−

(

f−�n

)2

2�2n

]

https://github.com/fooof-tools/fooof
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3   |   Results

3.1   |   Behavior

Overall, the common Simon Go/NoGo task effects were repli-
cated: The repeated measures ANOVA for accuracy showed a 
main effect of Go/NoGo (F(1,98) = 135.12, p < 0.001, ηp

2 = 0.580), 
with higher accuracies in the Go (95.48% ± 0.308%) than 
in the NoGo (85.89% ± 0.940%) condition. A main effect of 
congruency (Simon effect) was also found (F(1,98) = 40.04, 
p < 0.001, ηp

2 = 0.290), with higher accuracy in incongruent 
(91.43% ± 0.566%) than in congruent (89.94% ± 0.589%) trials. 
Importantly, there was an interaction of Go/NoGo × congruency 
(F(1,98) = 83.38, p < 0.001, ηp

2 = 0.460). Post hoc analyses revealed 
a typical Simon effect, showing higher accuracy in congruent Go 
(96.25% ± 0.287%) than in incongruent Go (94.71% ± 0.408%) tri-
als. In contrast, in the NoGo condition, higher accuracy in incon-
gruent (88.15% ± 0.925%) than in congruent (83.62% ± 1.010%) 
trials was found. As for the Go reaction times, a main effect of 
congruency (F(1,98) = 220.24, p < 0.001, ηp

2 = 0.692) indicated 
faster responses in congruent (449.52 ± 3.947 ms) than in incon-
gruent (467.96 ± 4.067 ms) trials.

Regarding drug treatments, the ANOVA for Go reaction times re-
vealed a significant main effect of MPH/placebo (F(1,98) = 10.96, 
p = 0.001, ηp

2 = 0.101) indicating that participants responded faster 
in the MPH condition (454.036 ± 3.911 ms) than in the placebo con-
dition (463.445 ± 4.482 ms), which is consistent with our previous 
findings (Gao et  al.  2024). No interaction effects were found for 
Go reaction times (all F < 1.456, all p > 0.238). Accuracy measures 
showed neither a main effect (F = 2.546, p = 0.114) nor interac-
tion effects of MPH/placebo (all F ≤ 0.697, all p ≥ 0.406). ANOVAs 
for both accuracy and reaction times showed no main effects (all 
F < 0.219, all p > 0.804) or interaction effects involving the between-
subject factor of MPH dose group (all F ≤ 2.737, all p ≥ 0.070).

3.2   |   Aperiodic Exponents (Brain-Wide)

The aperiodic component analyses presented below are based on 
EEG data from N = 95 participants, after excluding six outliers 
identified through FOOOF analyses (see criteria in Section 2). 
In line with the guidelines of the FOOOF toolbox (Donoghue 
et al. 2020), PSD within a 3–35 Hz frequency range in log–log 
space is shown in Figure  4, comparing the MPH and placebo 

FIGURE 4    |    Log–log transformed power spectral density plot after averaging all electrodes and participants. PSDs of MPH and placebo conditions 
during pretrial and within-trial for Go congruent (A), Go incongruent (B), NoGo congruent (C) and NoGo incongruent (D) conditions. The beige 
window in each panel was chosen to better visualize the differences.
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conditions during both within-trial and pretrial periods across 
different task conditions. These PSDs were averaged across all 
electrodes and participants.

After calculating the average aperiodic exponent for all 60 elec-
trodes for each participant, we ran a mixed repeated measures 
ANOVA. The main effects of time (F(1,92) = 1084.69, p < 0.001, 
ηp

2 = 0.922), drug (F(1,92) = 27.59, p < 0.001, ηp
2 = 0.231), Go/

NoGo (F(1,92) = 42.07, p < 0.001, ηp
2 = 0.314) and congruency 

(F(1,92) = 15.07, p < 0.001, ηp
2 = 0.141) were significant, indi-

cating that the exponent was higher (i.e., noise was lower) 
in the within-trial than in the pretrial period (1.433 ± 0.019 
vs. 1.228 ± 0.019), in the MPH than in the placebo condi-
tion (1.367 ± 0.017 vs. 1.294 ± 0.022), in the NoGo than in the 
Go condition (1.337 ± 0.018 vs. 1.324 ± 0.019), and in the in-
congruent than in the congruent condition (1.333 ± 0.018 vs. 
1.329 ± 0.018). Furthermore, there were significant interactions 
of drug × time (F(1,92) = 6.412; p = 0.013; η2

p = 0.065), of Go/
NoGo × time (F(1,92) = 51.43; p < 0.001; η2

p = 0.359), of congru-
ency × time (F(1,92) = 10.22; p = 0.002; η2

p = 0.100), and of Go/
NoGo × congruency × time (F(1,92) = 4.398; p = 0.039; η2

p = 0.046). 
All other main effects and interactions were not significant (all 
F(1,92) ≤ 2.598; p ≥ 0.080).

To disentangle this higher-order interaction involving time, we 
ran separate ANOVAs for pre- and within-trial periods with the 
other four factors. For the pretrial, only drug showed a signif-
icant main effect (F(1,92) = 30.05, p < 0.001, ηp

2 = 0.246), with a 
higher exponent under MPH administration (1.267 ± 0.018) than 
under placebo administration (1.189 ± 0.022), thus indicating 
less aperiodic activity (less noise) in the MPH condition than in 
the placebo condition (Figure 5A). All other main effects and in-
teractions were not significant (all F ≤ 2.720; p ≥ 0.102). For the 
within-trial, the ANOVA uncovered significant main effects of 
drug (MPH: 1.468 ± 0.018/placebo: 1.399 ± 0.022) (F(1,92) = 24.19, 
p < 0.001, ηp

2 = 0.208), of Go/Nogo condition (Go: 1.421 ± 0.019/
NoGo: 1.446 ± 0.019) (F(1,92) = 52.09, p < 0.001, ηp

2 = 0.362), 
and of congruency (congruent: 1.430 ± 0.018/incongruent 
1.437 ± 0.019) (F(1,92) = 26.86, p < 0.001, ηp

2 = 0.226) (Figure 5B). 
Moreover, Go/NoGo interacted with congruency (F(1,92) = 18.30, 
p < 0.001, ηp

2 = 0.166). No other main effect or interaction was 
found (all F ≤ 2.469; p ≥ 0.090).

3.3   |   Aperiodic Exponents (Electrode-Specific)

In order to identify electrodes that contributed to significant dif-
ferences across our conditions, we assessed the scalp distribution 
of the exponent by means of a cluster-based permutation test.

Specifically, the cluster-based permutation one-sample t test 
comparing pretrial and within-trial of the MPH condition was 
separately performed for different conditions.

Under MPH administration, the pre/within-trial effect was ev-
ident across a broad range of central electrodes, with significant 
clusters emerging (all p = 0.001; t(94) ≥ 2.115 in Go congruent, 
t(94) ≥ 3.833 in Go incongruent, t(94) ≥ 2.751 in NoGo congruent and 
t(94) ≥ 4.342 in NoGo incongruent) (Figure 6A). As the drug effect 
was identified in the within-trial period at the “global” level, the 

analysis comparing MPH versus placebo was performed during 
the within-trial period (all p = 0.001; t(94) ≥ 2.001) (Figure 6B).

Since electrodes FCz, FC1, and FC2 were concurrently identified 
in three of the four different conditions in Figure 6A, and also in 
Figure 6B, this indicates that aperiodic exponents at these sites 
exhibited the most significant changes. Therefore, focused statis-
tical analysis was warranted for these electrodes.

Based on the averaged aperiodic exponents of electrodes FCz, FC1, 
and FC2 for each participant and each condition, we performed a 
repeated measures ANOVA during the within-trial period. It iden-
tified main effects of drug (F(1,92) = 8.220, p = 0.005, ηp

2 = 0.082), 
Go/NoGo (F(1,92) = 244.56, p < 0.001, ηp

2 = 0.727), congruency 
(F(1,92) = 38.04, p < 0.001, ηp

2 = 0.293) (Figure  7A). Importantly, 
there was an interaction of drug × Go/NoGo × congruency 
(F(1,92) = 5.293, p = 0.0224, ηp

2 = 0.054). Moreover, three other in-
teractions emerged: first, Go/NoGo × congruency interaction 
(F(1,92) = 22.47, p < 0.001, ηp

2 = 0.196); second, drug × Go/NoGo in-
teraction (F(1,92) = 12.36, p < 0.001, ηp

2 = 0.118); third, drug × con-
gruency interaction (F(1,92) = 5.372, p = 0.023, ηp

2 = 0.055).

The highest interaction (drug × Go/NoGo × congruency) was 
further disentangled. That is, in congruent trials, the drug ef-
fect (i.e., the difference between MPH and placebo) was signif-
icant both in the Go condition (MPH 1.622 ± 0.017 vs. placebo 
1.582 ± 0.018, p < 0.001) and in the NoGo condition (MPH 
1.750 ± 0.019 vs. placebo 1.721 ± 0.021, p = 0.016) (Figure 7B). In 
incongruent trials, the drug effect was significant in the Go con-
dition (MPH 1.648 ± 0.018 vs. Placebo 1.607 ± 0.019, p < 0.001), 
but not in the NoGo condition (MPH 1.743 ± 0.020 vs. Placebo 
1.736 ± 0.020, p = 0.519) (Figure 7C). No other main effects or in-
teractions were found (all F(1,92) ≤ 2.012; p ≥ 0.140).

3.4   |   Correlations

We found several significant correlations of the MRS data with 
the other assessed data: Two correlations were related to the 
ACC: a negative correlation between the Glx/tCr ratio in the 
ACC and the congruency effect of the exponent in the MPH 
condition, r(87) = −0.224, p < 0.05 (Figure  8A), and a negative 
correlation between the GABA+/Glx ratio and the Go/Nogo 
effect of the exponent in the placebo condition, r(87) = −0.250, 
p < 0.05 (Figure 8B).

Five correlations were related to the SMA: a positive correla-
tion between the Glx/tCr ratio and the drug effect on the aperi-
odic exponent (MPH minus the placebo condition), r(83) = 0.261, 
p < 0.05 (Figure  8C), a negative correlation between the Glx/
tCr ratio and the inhibition rates in the placebo condition, 
r(83) = −0.259, p < 0.05 (Figure  8D), a positive correlation be-
tween the GABA+/Glx ratio and the drug effect on inhibition 
rates (inhibition rate under MPH minus inhibition rate in the 
placebo condition), r(83) = 0.226, p < 0.05 (Figure 8E), a positive 
correlation between the GABA+/Glx ratio and the congru-
ency effect in RT in the placebo condition, r(83) = 0.232, p < 0.05 
(Figure 8F), and a negative correlation between the GABA+/
tCr ratio and the congruency effect in RT in the placebo condi-
tion, r(84) = −0.263, p < 0.05 (Figure 8G).
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Finally, two correlations were related to the striatum: a positive 
correlation between the GABA+/Glx ratio and the inhibition 
rates in the MPH condition, r(83) = 0.217, p < 0.05 (Figure  8H), 
and a positive correlation between the GABA+/tCr ratio and 
the drug effect on inhibition rates (inhibition rate under MPH 
minus inhibition rate in the placebo condition), r(89) = 0.208, 
p = 0.05 (Figure 8I).

4   |   Discussion

The present study had two primary aims. First, we tested 
whether the previous observations of (Gao et al. 2024) regard-
ing the impact of MPH on the aperiodic exponent in task con-
ditions that call for different kinds of metacontrol could be 
replicated. Indeed, this could be confirmed. Specifically, MPH 

FIGURE 5    |    (A, B) The violin plots of the aperiodic exponent under different task conditions: Go congruent (Go/C), Go incongruent (Go/IC), 
NoGo congruent (No/C), and NoGo incongruent (No/IC). These conditions are analyzed between placebo and MPH administration conditions 
during pretrial (A) or within-trial (B) periods. The dots represent individual data points, and the dashed lines indicate the median (middle), upper 
quartile (top), and lower quartile (bottom). *p < 0.05.

FIGURE 6    |    Scalp topographies (A) reveal electrode sites with a significant main effect of time (within-trial vs. pretrial) across the different task 
conditions. (B) Electrode sites with a significant drug main effect during the within-trial period. Labels indicate significant electrode clusters, with 
colors denoting the sum of cluster-level t values.
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increased the aperiodic exponent during both the pretrial pe-
riod and the within-trial period, which indicates a state-like 
effect. If the aperiodic exponent can be taken to indicate per-
sistence and flexibility biases of metacontrol, this suggests that 
the drug induces a longer-lasting persistence bias and thus 
renders information processing more focused and more selec-
tive. Moreover, MPH increased the aperiodic exponent in the 
within-trial period and interacted with the two task factors. 

This under-additive pattern of this interaction precisely repli-
cates the findings of (Gao et  al.  2024) and suggests an upper 
limit to the impact of MPH: more persistence-demanding condi-
tions (i.e., Nogo and incongruent conditions) increase the expo-
nent, and this increase adds to the MPH-induced increase—but 
at some point, adding another factor does not further increase 
the exponent. This might point to a physical limitation, in the 
sense that neural noise can be reduced but only to a certain 

FIGURE 7    |    Descriptive results for the aperiodic exponents averaged for electrodes FCz, FC1, and FC2 across Go/congruent (Go/C), Go/incon-
gruent (Go/IC), NoGo/congruent (No/C) and NoGo/incongruent (No/IC) during within-trial periods. The violin plots represent the distribution of 
aperiodic exponents, with dots represent individual data points and the dashed lines indicate the median (middle), upper quartile (top), and lower 
quartile (bottom). *p < 0.05, n.s., no significance.
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extent. Taken altogether, these observations are fully consistent 
with and successfully replicate the findings of (Gao et al. 2024), 
which implies that the found impact of MPH on the aperiodic 
exponent is robust and reliable.

The second aim of our study concerns our GABA+ and Glx mea-
sures. We were interested in seeing whether, to which degree, 
and in which sense these measures, and the individual charac-
teristics they imply, can predict behavior and (changes in) meta-
control biases.

Measures related to the ACC were involved in two significant 
correlations: the GABA+/Glx ratio was negatively correlated 
with the Go/Nogo effect in the exponent of the placebo condi-
tion, and the Glx/tCr ratio was negatively related to the congru-
ency effect in the MPH condition. Given that the direction and 
sign of the respective correlations in the two other (i.e., MPH 
and placebo, respectively) conditions were similar, we are reluc-
tant to make much of the condition-related differences in sig-
nificance. The two findings suggest that individual differences 
in baseline amino acid levels in the ACC (Duncan et al. 2011; 

Duncan et al. 2014; Enzi et al. 2012; Northoff et al. 2007) have 
an impact on how strongly people respond to persistence-heavy 
task challenges, which are consistent with the findings that 
GABA levels in the ACC, as well as glutamatergic projections 
from the ACC to the striatum, play an important role in response 
inhibition (Li et al. 2020; Naaijen et al. 2018; Silveri et al. 2013; 
Wolff, Chmielewski, et al. 2019). It is interesting to see that the 
implications of the two significant correlations seem opposite 
to each other, in the sense that a reduced response to different 
metacontrol challenges with respect to the Go/Nogo manipu-
lation is driven by (GABAergic) inhibition while a reduced re-
sponse to different metacontrol challenges with respect to the 
congruency manipulation is driven by (glutamatergic) exci-
tation. However, GABA and glutamate have opposing effects in 
terms of neuronal inhibition and excitation, and opposite effects 
of GABA and glutamate in the ACC have been reported before 
(see Kiemes et al. 2021), like the observation that impulsivity is 
negatively correlated with GABA, but positively correlated with 
glutamate in the ACC (Ende et al. 2016). The fact that the ACC 
is related to metacontrol is unsurprising. The ACC is assumed 
to monitor for and pick up signals indicating response conflict, 

FIGURE 8    |    Scatter plots with linear fitted curves for the significant Pearson's correlations between distinct parameters. The displayed r values 
represent Pearson's correlation coefficients. The p values correspond to the significance of Pearson's correlation coefficients.
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with the aim to initiate processes that increase goal-related se-
lectivity (Botvinick et al. 2001). From a metacontrol perspective, 
this amounts to an increase in metacontrol persistence in case 
of response conflict or stimuli indicating such conflict. GABA 
and glutamate are likely to be involved in modulating the level 
of activation of the ACC and/or the noisiness of the signals it 
receives (Kiemes et al. 2021), which would render a relationship 
between GABA and glutamate in the ACC on the one hand and 
metacontrol expressions in the aperiodic exponent on the other 
very reasonable indeed.

Measures related to the SMA were involved in five significant 
correlations. First, the positive correlation between Glx/tCr ra-
tios and the drug effect on the aperiodic exponent suggests that 
individuals with higher SMA Glx levels (stronger excitatory 
tone) show greater aperiodic changes in response to catechol-
aminergic stimulation. Hence, the SMA's baseline excitatory 
tone seems to increase the sensitivity of aperiodic activity to cat-
echolaminergic drugs. Second, the negative correlation between 
the Glx/tCr ratio and the inhibition rates in the placebo condi-
tion suggests that higher excitatory activity in the SMA disrupts 
the ability to effectively inhibit incorrect responses—which is in 
line with the ratio's role and the importance of neurochemical 
states in the SMA (de Joode et al. 2023).

Third, the positive correlation between the GABA+/Glx ratio 
in the SMA and the drug effect on inhibition rates (inhibition 
rate under MPH minus inhibition rate in the placebo condition) 
suggests that strong baseline inhibitory capacities in the SMA 
create a neural environment where MPH can exert its effects 
and improve inhibition more effectively (Boy et al. 2010). Fourth 
and fifth, we found two significant correlations involving the 
congruency effect in RT in the placebo condition, one positive 
with the GABA+/Glx ratio and one negative with the GABA+/
tCr ratio. The positive correlation may suggest that excessive 
inhibition can hinder metacontrol “adaptability” to conditions, 
which may have slowed down conflict resolution. Like the ACC 
results, this pattern reflects that GABA and glutamate act as op-
posite forces in terms of neuronal excitability (Ende et al. 2016; 
Kiemes et al. 2021). In any case, it implies that, under placebo 
conditions, the congruency effect in RT depends on the partici-
pant's baseline neurochemical state.

Finally, measures related to the striatum were involved in two 
significant correlations. First, the positive correlation between 
GABA+/Glx ratios and the inhibition rates in the MPH condi-
tion indicates that higher baseline GABA+ concentrations or 
lower Glx concentrations in the striatum may prime neural cir-
cuits for efficient modulation under MPH. Second, and relatedly, 
the positive correlation between GABA+/tCr ratio and the drug 
effect on inhibition rates (inhibition rate under MPH minus in-
hibition rate in the placebo condition) supports the role of GABA 
in the striatum in predicting response inhibition performance 
(Quetscher et al. 2015; Yildiz et al. 2014).

In summary, our findings underline the idea that aperiodic ac-
tivity reflects metacontrol processes in general and biases of 
metacontrol in particular. They also provide evidence for an 
important role of individual characteristics and dispositions as 
reflected by GABA+ and Glx baseline levels in the ACC, the 
SMA, and the striatum. Given that the ACC and the striatum 

are also suspected to contribute to the regulation of meta-
control, our observations point to an important role of cate-
cholamines in the regulation of metacontrol and task-specific 
metacontrol biases.
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