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Code conflict in an event file task is reflected by aperiodic 
neural activity
Jimin Yan, Lorenza Colzato and Bernhard Hommel

We investigated the relationship between aperiodic 
electroencephalography (EEG) activity and code conflict, 
hypothesizing that the former might serve as an indicator 
of the latter. We analyzed EEG and behavioral outcomes of 
a sample performing the event file task, which assesses 
code conflict in co-occurring or temporally overlapping 
stimulus and response features. To quantify aperiodic 
activity, we employed the fitting oscillations & one-over-f 
algorithm. The behavioral results revealed a typical 
partial-repetition cost effect, indicating that performance 
is impaired if the stimulus repeats while the response 
alternates, or vice versa. This suggests that the previously 
combined shape and response were stored in an event 
file and retrieved when any one of these components 
was repeated. Notably, this effect was also evident in the 
aperiodic exponent, which was lower for partial repetitions 
than for full repetitions or alternations, implying increased 

cortical noise, a higher excitatory E/I ratio, and noisier 
decision-making processes. The scalp distribution of this 
effect aligns with its sensorimotor characteristics. Thus, 
we interpret these findings as promising preliminary 
evidence that the aperiodic exponent may serve as a 
valuable neural marker of code conflict.  NeuroReport 36: 
337–341 Copyright © 2025 Wolters Kluwer Health, Inc. All 
rights reserved.
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Introduction
Heider [1] and Treisman [2] emphasized that even 
though our primary cortices code sensory input in terms 
of its separable features, like shape or pitch, our eventual 
perceptual experience always refers to complete, inte-
grated objects. The same holds for actions, which do not 
target individual features but fully integrated goal objects 
[3]. To account for this discrepancy, the theory of event 
coding (TEC) claims that the basic units of human cog-
nition consist of event files [4] – bundles of codes of co- 
occurring or temporally overlapping stimulus and 
response features [5].

The most popular paradigm to study event files has par-
ticipants carry out two responses to two stimuli in a row 
(Fig. 1a) [6]. The first (R1) is precued by a response cue 
that signals a left or right keypress, say, which is carried 
out as soon as the actual stimulus (S1) appears. TEC 
assumes that the co-occurrence of S1s features (e.g. its 
red color and horizontal shape) are integrated with the 
codes of R1 into an S1/R1 event file. Next, S2 appears 
to signal R2 according to an instructed mapping (e.g. a 
horizontal/vertical shape indicates a left/right keypress). 
Repeating one or multiple features of the S1/R1 file 
should retrieve this file and reactivate its codes, which can 
create code conflict. If all features are repeated (if S1 = S2 
and R1 = R2) the S1/R1 file would be retrieved, but the 
reactivated feature codes would not conflict with the S2/
R2 codes. If all alternate (if S1 shares no feature with S2, 
and R1 none with R2), no code would be reactivated. 

However, if some features repeat while others alternate 
(e.g. S1 = S2, but R1 ≠ R2, or S1 ≠ S2, but R1 = R2), fea-
ture codes would conflict with each other, which should 
create uncertainty and prolong decision-making. Hence, 
partial (but not complete) feature repetition should 
induce cognitive conflict.

Behavioral and neuroscientific studies provide strong evi-
dence for such partial-repetition costs in reaction-time (RT) 
studies [4,6–8] and functional MRI studies [9,10], which 
demonstrated that partial feature repetition reactivates 
previously integrated features. However, diagnosing fea-
ture conflict by assessing partial-repetition costs remains 
indirect, and employing brain scanning to identify reac-
tivations is costly and not overly convenient, and fails to 
provide the temporal resolution that is necessary to mon-
itor the dynamics of code conflict over time. Accordingly, 
we sought a more convenient and better time-resolved 
procedure to assess code conflict.

Aperiodic electroencephalography (EEG) activity has 
been shown to vary systematically across development 
and aging [11,12], between sleep and wake stages [13,14], 
and during cognitive tasks such as attentional processes 
[15], sensory integration [16], and working memory [17]. 
Interestingly, tasks involving response conflict (e.g. Go/
No-go or Flanker tasks) elicit cognitive control adjust-
ments, manifested as an increase in the aperiodic expo-
nent [18–20]. Furthermore, aperiodic activity decreases 
significantly during task switching compared with task 
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Fig. 1

(a) Illustration of displays and timing of task. (b) Shape × response interaction in RTs. (c) Shape × response interaction in aperiodic exponent. Error 
bars in (c) and (d) represent SEM; ***P < 0.001, **P < 0.01. (d) Scalp distribution of significant shape × response interactions in the aperiodic 
exponent. Colors indicate cluster-level summed F values. RT, reaction time.
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repetition, suggesting that task switching requires a more 
flexible cognitive state [21]. Here, we tested whether 
the aperiodic exponent, which corresponds to the neg-
ative 1/f slope of the logarithmic transformation of the 
power spectrum [22], might serve as a convenient proxy 
to diagnose code conflict. This exponent has been taken 
to indicate ‘neural variability’ (i.e. the brain’s ability to 
flexibly adjust to situational demands [23]) and to reflect 
the so-called ‘E/I ratio’ – which expresses the relation-
ship between excitatory and inhibitory brain processes. 
Given that code conflict should create decision-making 
uncertainty and induce a dominance of excitatory over 
inhibitory processes, which in turn implies a weaker 
signal-to-noise ratio and a noisier decision-making pro-
cess [24], more code conflict in the sense of TEC may 
be reflected by the aperiodic exponent. As lower values 
of this exponent indicate higher noise levels and greater 
dominance of excitatory processes, we expected that 
greater code conflict would be associated with a lower 
exponent. While many codes can be involved in code 
conflict [6], here we focused on the two task-relevant fea-
ture codes: the instructed S2 feature (horizontal or ver-
tical shape) and the instructed R2 feature (left or right 
location).

Materials and methods
Participants
Data from 74 healthy participants, originally collected for a 
different research purpose [25], were reanalyzed (48 males, 
26 females; mean age: 19.16 ± 9.96 SD; 8–49 years). Two 
participants were excluded from the behavioral data analy-
sis because of having zero correct responses in several con-
ditions and six from the EEG analyses, because of errors, 
poor EEG quality, or different channel settings. All par-
ticipants underwent a standardized clinical assessment to 
gather lifetime clinical information, which included a clin-
ical neuropsychiatric interview, screening for neuropsychi-
atric disorders, and IQ testing. Only those without clinically 
significant neuropsychiatric issues at the time of the study 
and with an IQ above 80 were included. For more details, 
see Adelhöfer et al. [25]. The study and all procedures were 
conducted in accordance with the Declaration of Helsinki 
and received approval from the Ethics Committee of the 
Medical Faculty of the TU Dresden.

Apparatus and stimuli
Participants were seated approximately 60 cm from a 
computer screen. A vertically aligned 6.7 × 2.8 cm white 
rectangle was displayed at the center of a black screen. 
It was divided into three 2.2 × 2.8 cm sections. The cen-
tral section showed the arrowhead cue indicating a left or 
right R1. The upper and lower sections showed S1 and 
S2, which consisted of a vertical or horizontal line (rele-
vant shape feature) in red or green color appearing in the 
top or bottom location. EEG data were recorded using 
60 equidistant Ag/AgCl electrodes mounted on an elastic 

cap. The data were sampled at 500 Hz, with the refer-
ence electrode at Fpz, the ground electrode at θ = 58 and 
ϕ = 78, and the impedances less than 10 kΩ throughout.

Procedure and design
Participants executed two speeded responses per trial: 
R1, a left or right keypress as indicated by the arrow 
cue, carried out upon presentation of S1 (regardless of 
its shape, position, or color), and R2, a left or right key-
press as indicated the S2 shape. 50% of the participants 
pressed the left/right key in response corresponding to a 
vertical/horizontal shape, while the other 50% had this 
mapping reversed. After an intertrial interval (see Fig. 1a 
for timing), a fixation cross appeared at the screen center, 
followed by the arrow cue indicating R1, a blank to pre-
pare the response, and S1 to trigger R1. S2 appeared for 
2000 ms or until R2 was made. There were three blocks 
of 128 trials each, totaling 384 valid trials. Each block was 
made up by repeating twice the factorial combination of 
the two shapes (vertical and horizontal), the two colors 
(green and red), and the two positions (top and bot-
tom) of S2, with repetitions of shape, location, color, and 
response varied, leading to 128 different combinations 
(2 × 2 × 2 × 2 × 2 × 2 × 2). The trials within each block 
were presented in random sequence, with an optional 
break after each block.

EEG recording and preprocessing
As reported in the original study [25], an initial manual 
review of the raw data was conducted to eliminate sig-
nificant technical artifacts, followed by the application 
of a band-pass filter set to 2–40 Hz (slope: 48 dB/oct). 
Independent component analysis, utilizing the infomax 
algorithm, was then performed to detect and remove 
periodically occurring artifacts, including horizontal and 
vertical eye movements, as well as pulse artifacts. The 
EEG data were segmented based on the onset of the S2 
stimulus. Separate segments were created for every possi-
ble combination of stimulus feature overlap and response 
type (repetition versus alternation), with each segment 
lasting 4000 ms and starting 2000 ms before the S2 stim-
ulus onset. Only trials that resulted in correct responses 
to both the cue and the S2 stimulus were included in the 
analysis. During artifact rejection, epochs were discarded 
if any of the following criteria were met: amplitudes 
exceeding 200 µV or dropping below −200 µV, voltage 
spikes greater than 200 µV within a 200-ms interval, or 
activity levels falling below 0.5 µV in a 100-ms period. To 
remove the reference potential from the data, a current 
source density transformation was applied. Finally, the 
data underwent baseline correction within a time interval 
from −200 to 0 ms.

Parameterization of spectral data
Of 1000 ms after the onset of the S2 was identified to 
be a specific time windows for analysis. On the basis 
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of previous research, which utilized a 0.25-s Hamming 
window with 50% overlap, the power spectral density for 
each frequency was calculated using the ‘pwelch’ func-
tion in MATLAB (version R2024a, Mathworks, https://
ww2.mathworks.cn). These calculations were con-
ducted separately for each participant, electrode, and 
condition. The EEG power spectra were then analyzed 
using version 1.0.0 of the Python-based FOOOF tool-
box (available at https://github.com/fooof-tools/fooof). 
It decomposes the power spectrum into aperiodic activ-
ity and periodic (oscillatory) activity and represents it 
as a linear combination of these two components. The 
mathematical expression for the aperiodic component, 
L(f), is defined as: L(f) = b – log [fx]. It includes the ape-
riodic offset ‘b’, indicating the overall shift in broadband 
power, and the aperiodic exponent ‘x’, which reflects the 
slope of the power spectrum when plotted on a log–log 
scale (for further details, see Donoghue et al. [22]). We 
computed this exponent for each participant and elec-
trode using the aperiodic-only signal. Given the lack of 
prior assumptions regarding the distribution of aperiodic 
neural activity on the scalp, we employed the ‘global’ 
exponent for our statistical evaluations [26]. We first cal-
culated the average exponent values across 60 electrodes 
for each participant to observe the overall trends in varia-
tion over different periods, and then performed a cluster- 
based permutation test to analyze the distribution of 
aperiodic components on the scalp. This nonparametric 
statistical method is specifically designed for examining 
high-dimensional EEG/magnetoencephalography data 
and aimed to detect significant differences between 
electrodes while accounting for multiple comparisons 
[27]. The method involves creating clusters based on the 
adjacency of thresholded sample-level F values, with a 
significance level set at 0.05). We utilized MNE-Python 
(https://mne.tools/stable/index.html) to conduct the per-
mutation cluster test (for further details, see Maris and 
Oostenveld [27]).

Results
Behavioral results
A 2 (shape = repeated/alternated) × 2 (location =  
repeated/alternated) × 2 (color = repeated/alternated) × 2 
(response = repeated/alternated) analysis of variance 
(ANOVA) on RTs revealed significant main effects for 
location (F(1,71) = 4.94, P <  0.05, ηp

2 = 0.07) and response 
(F(1,71) = 14.41, P < 0.001, ηp

2 = 0.17). Both factors were 
involved in numerous interactions, which mostly indi-
cated partial-repetition costs. Most importantly for our 
purposes, the significant interaction of shape and response 
(F(1,71) = 45.62, P <0.001, ηp

2 = 0.39) indicating that RT 
was significantly shorter when both shape and response 
repeated (580 ± 16) or both alternated (560 ± 15) than 
when shape alternated but response repeated (600 ± 16) 
or shape repeated but response alternated (589 ± 16; 
Fig. 1b).

Aperiodic exponent
A four-factor repeated-measures ANOVA revealed one 
significant interaction between shape and response 
(F(1,67) = 4.68, P < 0.05, ηp

2 = 0.07). Simple effects analysis 
showed a significant decrease in the aperiodic exponent 
with alternated (1.79 ± 0.04) as compared with repeated 
responses (1.80 ± 0.04) when the shape was repeated 
(F(1,67) = 4.68, P < 0.05, ηp

2 = 0.07), but no significant dif-
ference when the shape was alternated, see 1C. A cluster- 
based permutation test examined the distribution 
of the aperiodic components on the scalp, where the 
shape × response interaction was significant over central 
and posterior areas (cluster: C4/CP4/P2/Pz, F(1,67) = 3.98, 
P < 0.05, ηp

2 = 0.75; Fig. 1d).

Conclusion
The behavioral outcomes demonstrate a classical partial- 
repetition cost effect [4,6–8], showing that the repetition 
of either shape or response and for performance if the 
other feature alternates. This pattern indicates that the 
previous shape/response combination was integrated into 
an event file, which was retrieved upon the repetition of 
at least one of these two components.

In this study, the aperiodic exponent was lower for par-
tial repetitions than for complete repetitions or alter-
nations. This indicates more cortical noise, greater 
excitatory dominance of the E/I ratio, and noisier  
decision-making. The scalp distribution of this effect 
also fits with its sensorimotor nature. Our findings align 
with previous studies indicating that tasks requiring 
response conflict (such as Go/No-go or Flanker tasks) 
trigger adjustments in cognitive control, evidenced by 
an increase in the aperiodic exponent [18–20]. This is 
not surprising, as both code conflict and response con-
flict engage cognitive control mechanisms, whereby 
the brain must allocate resources to reconcile compet-
ing information and maintain focus on the task at hand. 
The necessity for resolution in both scenarios can lead 
to an elevated aperiodic exponent, reflecting the inef-
ficiencies that emerge when the cognitive system pro-
cesses multiple pieces of information. To conclude, we 
consider the current findings as the first, encouraging 
evidence that the aperiodic exponent might represent 
a useful neural indicator of code conflict which extends 
previous findings on the association between the ape-
riodic exponent and attentional processes [15], sensory 
integration [16], and task switching [21].
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