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Higher-level cognitive functions are mediated via complex oscillatory activity patterns and its analysis is dominating cognitive
neuroscience research. However, besides oscillatory (period) activity, also aperiodic activity constitutes neural dynamics, but its
relevance for higher-level cognitive functions is only beginning to be understood. The present study examined whether the broadband
EEG aperiodic activity reflects principles of metacontrol. Metacontrol conceptualizes whether it is more useful to engage in more
flexible processing of incoming information or to shield cognitive processes from incoming information (persistence-heavy processing).
We examined EEG and behavioral data from a sample of n = 191 healthy participants performing a Simon Go/NoGo task that can be
assumed to induce different metacontrol states (persistence-biased vs. flexibility-biased). Aperiodic activity was estimated using the
FOOOF toolbox in the EEG power spectrum. There was a higher aperiodic exponent and offset in NoGo trials compared with Go trials,
in incongruent (Go) trials compared with congruent (Go) trials. Thus, aperiodic activity increases during persistence-heavy processing,
but decreases during flexibility-heavy processing. These findings link aperiodic features of the EEG signal and concepts describing the
dynamics of how cognitive control modes are applied. Therefore, the study substantially extends the importance of aperiodic activity
in understanding cognitive functions.
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Introduction
Higher-level cognitive functions are mediated via complex oscilla-
tory activity patterns (Ward 2003; Fries 2005; Buzsáki 2006; Beste
et al. 2023), and the analysis of these pattern has been domi-
nating cognitive neuroscience research using electrophysiological
methods (e.g. using the EEG) for decades. Crucially, such EEG
power spectra are comprised of two components: the periodic
component (also known as neural oscillations) and the aperiodic
component (He 2014; Voytek and Knight 2015). Neural oscillations
are recurring patterns of brain activity with a particular temporal
frequency and have been linked to a wide variety of cognitive
processes and behaviors.

The aperiodic component is often described as background
activity or “scale-free” broadband activity, which follows a 1/f-
like distribution with decreasing spectral power across increasing
frequency (Pritchard 1992; He 2014; Donoghue et al. 2020). This
component can be described by a 1/f x function, where f repre-
sents the frequency and x reflects an exponent that determines
the steepness of the decrease in power across frequencies (Miller
et al. 2009; Voytek and Knight 2015; Donoghue et al. 2020). The
aperiodic component of the EEG power spectrum is characterized
by the aperiodic exponent (x, 1/f slope) and aperiodic offset. The
aperiodic exponent is analogous to the negative slope of the log-
log transformed power spectrum, reflecting the steepness (or
slope) of the decay of power across frequencies (Donoghue et al.
2020). The aperiodic offset denotes the broadband shift in power
across frequencies.

The aperiodic component was traditionally treated either as
noise or a nuisance variable to be neglected or corrected for

(Groppe et al. 2013; Gyurkovics et al. 2021). Generally, the topic of
“noise” in neural activity and its relevance for human (cognitive)
brain function has attracted considerable importance in recent
years (Nakao et al. 2019; Wolff et al. 2022; Zhang and Northoff
2022). The neurophysiological origin and functional significance
of the aperiodic component of the EEG spectrum are currently not
fully understand. However, there is accumulating evidence for a
cognitive importance of the aperiodic component, as well as its
developmental and clinical relevance (He et al. 2010; Voytek et al.
2015; Huang et al. 2017; Pertermann et al. 2019a; Donoghue et al.
2020; Merkin et al. 2021; Münchau et al. 2021; Ostlund et al. 2021;
Wainio-Theberge et al. 2021; Adelhöfer et al. 2021b; Gyurkovics
et al. 2022; Hill et al. 2022; Shuffrey et al. 2022; Virtue et al.
2022). Of particular interest, recent studies have shown aperiodic
activity to be modulated by the behavioral state (Podvalny et al.
2015), task performance (He et al. 2010), arousal level (Lendner
et al. 2020), working memory (Donoghue et al. 2020; Virtue et al.
2022), and cognitive control processes, such as response inhibition
(Pertermann et al. 2019b). Recent work showed a steeper 1/f
slope (i.e. increased exponent) during the controlled inhibition
of a prepotent response (Pertermann et al. 2019a, 2019b). More
recently, it has been suggested that 1/f slope in EEG signals may
serve as a maker of “neural variability,” which enables the brain to
dynamically adjust its neural activity to meet the demands of a
given situation (Waschke et al. 2021b). Both, the findings that 1/f
activity may reflect a process enabling the brain to dynamically
adjust its neural activity to meet the demands of a given situation,
and findings underlining the relevance of 1/f activity in cognitive
control (Pertermann et al. 2019a, 2019b) suggest that 1/f activity
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may be relevant for the for the understanding of how the brain
dynamically adjust the processing mode/style in higher-level cog-
nitive functions.

The cognitive-control style people prefer or engage in when
facing a particular situation has been referred to as “metacontrol”
(Hommel 2015). Situations or so-called control dilemmas do
not just call for cognitive functions to operate, but to operate
in particular ways. For instance, some situations require or
call for a persistent, focused control style—like when facing
distracting but irrelevant information, while others require or
call for a more flexible, open and associative control style—
like when acting under uncertainty. The fact that people can
deal with both kinds of situations suggests that they can adjust
their control style (to some degree) between extreme persistence
and extreme flexibility (Goschke 2000; Goschke and Bolte 2014;
Hommel and Colzato 2017; Beste et al. 2018). A strong bias
toward persistence is assumed to imply strong focus on the
current goal and the processing of task-relevant information only,
whereas a strong bias toward flexibility should involve a broader
focus and openness even to currently task-irrelevant information
(Hommel 2015).

The Metacontrol State Model (MSM: Hommel 2015) assumes
that cognitive control styles reflect metacontrol states that
emerge from (or are represented by) the interplay of function-
al/neural systems promoting persistence on the one hand and
flexibility on the other. A persistence bias is characterized by
the increased top-down impact of the current goal and stronger
competitions between alternatives, which makes it easier to stick
with goal-consistent actions and suppress irrelevant information.
In contrast, a flexibility bias is characterized by a reduced impact
of the goal and irrelevant alternatives, which facilitates the
switch to other options. Interestingly, metacontrol biases not
only show systematic individual differences, but also vary with
task demands (Hommel and Colzato 2017; Mekern et al. 2019;
Zhang et al. 2022). Aperiodic neural activity explains variance in
human cognitive control (i.e. response inhibition) (Pertermann
et al. 2019a; Pertermann et al. 2019b). If this variance reflects
differences in metacontrol states, metacontrol may thus be
reflected by aperiodic activity. This will considerably broaden
the conceptual relevance of this aspect of neurophysiological
activity. This possibility would also fit with considerations that
situational noise (i.e. the presence of distracting information) may
be an important parameter to adjust metacontrol biases toward
more flexibility or persistence (Goschke 2000; Goschke and Bolte
2014; Hommel and Colzato 2017).

Aperiodic activity, as estimated by the slope of the 1/f noise
function (He et al. 2010; He 2014; Voytek and Knight 2015; Dave
et al. 2018) (for critique see Touboul and Destexhe 2017), is
determined by the level of neuronal population spiking activity
(Voytek and Knight 2015). This activity contributes to local
field potentials which constitute large parts of the EEG signal
(Katzner et al. 2009; Musall et al. 2014). Synchronized neuronal
spiking activity is associated with reduced neuronal noise. In
contrast, asynchronous spiking, related to increased neural noise
levels, is associated with a flatter slope (Podvalny et al. 2015),
of the 1/f parameter. Therefore, the 1/f parameter (reflecting
aperiodic or “noise” activity) may be of relevance when it comes
to concepts (such as metacontrol) drawing on internal “noise”
as a parameter regulating the system’s state shifts more to
the flexibility or the persistence. The central hypothesis of
the current study is thus that metacontrol states, and their
dynamic adjustment to task demands, might be reflected by,

and thus associated with different levels of aperiodic neural
activity.

We tested this hypothesis by assessing the level of aperiodic
neural activity during a cognitive control task that can be
assumed to induce different metacontrol states (persistence-
biased vs. flexibility-biased). A recently developed spectral
parameterization approach [Fitting Oscillations and One Over
f (FOOOF); Donoghue et al. 2020] was applied to estimate
aperiodic activity of EEG signals including aperiodic exponent
and offset. We attempted to induce different metacontrol states
by means of a Simon Go/NoGo task, which combines a Simon task
(Simon 1969) with a Go/NoGo task (Chmielewski and Beste 2017;
Chmielewski et al. 2018; Wendiggensen et al. 2022). In the Simon
task, participants were required to carry out spatial responses
(i.e. left and right) to a non-spatial feature of a stimulus (i.e.
letter “A” and “B”) presented on the left or right side of the
screen. The spatial stimuli are assumed to prime responses
in corresponding locations (Simon 1969; Hommel 2011), which
should facilitate performance if this response is the correct one
(i.e. if it is signaled by the relevant stimulus—so-called congruent
conditions) but impair performance if this response is the wrong
one (i.e. if the relevant stimulus signals the other response)—the
incongruent condition. Hence, participants face more response
conflict in incongruent than congruent conditions (Hommel
2011). Overcoming this conflict requires a more persistent control
style, supporting stronger focus on the relevant and more neglect
of the irrelevant information (Botvinick et al. 2004; Botvinick
2007). Accordingly, we expected that incongruent trials would be
associated with a stronger metacontrol bias toward persistence
than congruent trials.

This Simon task was combined with a Go/NoGo task, which
means that in some trials, participants were to withhold their
response. Importantly, for our purposes, Go stimuli were more
frequently presented (70% Go trials), which can be expected to
result in a prepotent Go response. Biased response probabilities
are commonly assumed to reduce top-down control demands for
the more frequent response(s) and accordingly increase top-down,
goal-driven control demands for the less frequent response(s)
(Bokura et al. 2001). Accordingly, we expected the NoGo trials to
be associated with a stronger metacontrol bias toward persistence
than Go trials. The combination of Simon task and Go/NoGo task
yielded four conditions, which should be associated with different
metacontrol biases: Whereas (frequent) Go trials and congruent
conditions would be more likely to come with a comparatively
stronger bias toward metacontrol flexibility, (less frequent) NoGo
trials and incongruent trials should come with a comparatively
stronger bias toward persistence. Moreover, as the Simon conflict
in incongruent Simon trials should enhance inhibitory control,
which, in turn, would benefit correct (no) responses in the NoGo
condition (for detailed explanation, see Chmielewski and Beste
2017), NoGo congruent trials should come with more persistence-
heavy processing (or less flexibility-heavy processing) than NoGo
incongruent trials.

Intriguingly, emerging evidence indicates a role of neural
activity in the pre-trial period (or between-trial period), which
is the time window before the stimuli presentation during
inhibitory control (Adelhöfer and Beste 2020; Adelhöfer et al.
2021a; Prochnow et al. 2022; Wendiggensen et al. 2022), as it may
reflect a “stage-setting state” that affects subsequent cognitive
processes. Therefore, besides the typically used within-trial period
(i.e. a time window after stimulus presentation), we also assessed
aperiodic activity during the pre-trial period.
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Materials and methods
Participants
The present study reanalyzed existing data which were collected
for other scientific aims with a cohort of n = 204 participants. As
13 participants were identified as outliers, the reported analy-
ses are from n = 191 participants (99 females; age 18–40 years;
M = 24.93; SD = 4.28). Participants were identified as outliers and
excluded from further data analyses if one of the following cri-
teria were met: false alarm rate in NoGo trials higher than 60%,
FOOOF spectra fits (R2) smaller than group mean minus three
times standard deviation (SD), and aperiodic exponent or offset
values exceeds group mean ± 3 × SD. All remaining participants
were right-handed with no record of neurological or psychiatric
illnesses. The present study was approved by the Psychology
Research Ethics Committee of Leiden University and by the TU
Dresden. The original study was approved by the Ethics Com-
mission of the TU Dresden, and all participants provided written
informed consent for their participation. The study was con-
ducted in accordance with the Declaration of Helsinki.

Task
A combined Simon-Go/NoGo task (Chmielewski and Beste 2017)
was employed to assess cognitive control. The different task
conditions are illustrated in Fig. 1. Participants were presented
with letter stimuli and were instructed to make corresponding
responses or no response to a given stimulus. In each trial, a letter
“A” or “B” was displayed either in normal font (i.e. “A,” “B”) or
in bold-italics (i.e. “A” or “B”). A normal font “A” or “B” indicated
Go trials in which participants were required to respond as fast
as possible, while bold italics “A” or “B” represented NoGo trials
in which responses had to be inhibited. In Go trials, participants
were required to press the left “Ctrl” button when the stimulus
was an “A” and right “Ctrl” button when it was a “B” regardless of
the spatial position of the stimuli. Letter stimuli pseudo-randomly
appeared on the left or right side. There were two Go conditions:
the congruent Go condition = stimuli were presented on the side
of the hand carrying out the response (i.e. “A” on the left side and
“B” on the right side); in the incongruent Go condition = stimuli
were presented on the opposite side of the hand carrying out the
response (i.e. “A” on the right side and “B” on the left side). In
NoGo trials, left side ‘A’s and right side ‘B’s indicated congruent
NoGo trials, whereas left side ‘B’s and right side ‘A’s represented
incongruent NoGo trials.

All stimuli were in white color and presented on a black back-
ground. A fixation cross was always displayed in the middle of
screen and a white frame box displayed on the left and right
sides of the fixation cross was also constantly presented during
the task. Each trial started with the letter stimuli presented for
200 ms. In Go trials, participants were asked to respond within
250–1200 ms after stimulus presentation. If no response was
made, trials were coded as misses. For NoGo trials, any response
within 1,200 ms after stimulus presentation was recorded as a
false alarm (i.e. a failure to inhibit the response). Each trial ended
after 1700 ms. The inter-trial interval (ITI) was jittered between
1,100 and 1,600 ms. The experiment consisted of 720 trials (70% Go
and 30% NoGo trials), of which 50% were congruent trials and 50%
were incongruent trials. The test was divided into six equally sized
blocks, and trial types were equally distributed across blocks.
Before the experiment, each participant completed a practice
block of 40 trials.

As behavioral parameter in this Simon Go/NoGo task, we cal-
culated the rate of false alarms (FA, i.e. frequency of responding to

a NoGo stimulus), the proportion of correct responses in Go trials
(i.e. hit rate) and reaction times (RTs) in correct hits (i.e. hit RT) as
behavior parameters of interest.

EEG recording and processing
The data were recorded at the Cognitive Neurophysiology Lab at
TU Dresden, Germany. During the Simon-Go/NoGo task, the EEG
activity was recorded using QuickAmp and BrainAmp amplifiers
(Brain Products GmbH, Gilching, Germany) from 60 equidistantly
positioned Ag/AgCl electrodes. All electrodes were referenced to
Fpz. The data were recorded at a sampling rate of 500 Hz. Elec-
trode impedances were kept below 5 kΩ. The raw EEG data were
preprocessed using the “Automagic” toolbox (Pedroni et al. 2019)
and EEGLAB (Delorme and Makeig 2004) on Matlab R2021b (The
MathWorks Corp.). First, the raw EEG data were down-sampled
to 256 Hz. Afterwards, flat channels were removed, and EEG data
were re-referenced to average reference. Subsequently, the PREP
preprocessing pipeline (Bigdely-Shamlo et al. 2015) was applied to
remove line-noise at 50 Hz and calculate a robust average refer-
ence after removing bad channels. The EEGLAB clean_rawdata()
pipeline was used to detrend the EEG data using an IIR high-
pass filter of 0.5 Hz (slope 80 dB). Flat-line, noisy, and outlier
channels were detected and removed. Epochs with extremely
strong power (>15 standard deviations relative to calibration data)
were reconstructed using Artifact Subspace Reconstruction (burst
criterion: 15) (Mullen et al. 2013). Time windows that could not
be reconstructed were removed. This is followed by a low-pass
filter of 40 Hz (sinc FIR filter; order: 86) (Widmann et al. 2015).
EOG artifacts were removed using a subtraction method (Parra
et al. 2005). Muscle and remaining eye artifacts were classified
and removed by an independent component analysis (ICA)-based
Multiple Artifacts Rejection Algorithm (Winkler et al. 2011, 2014).
Components containing cardiac artifacts were identified using
ICLable (Pion-Tonachini et al. 2019) and removed consecutively.
Finally, all removed channels were interpolated using a spherical
method.

After preprocessing, the EEG data were segmented and locked
to the onset of stimulus. Each segment started at 2,000 ms prior to
the stimulus and ended at 2000 ms after the stimulus. Segments
were built for Go congruent, Go incongruent, NoGo congruent,
and NoGo incongruent conditions, separately. Only correct Go
and NoGo trials were analyzed further. An automated artifact
rejection procedure was applied in the segmented data to remove
trials with residual artifacts (rejection criteria: maximal value
difference of 200 μV in a 200-ms interval; activity below 0.5 μV in a
100-ms period). Afterwards, a baseline correction was performed
using EEG data from −200 to 0 ms (i.e. stimulus onset).

Parameterization of the spectral data
We used EEG data in a time window from 0 to 1,000 ms after the
stimulus presentation as the within-trial period and a time win-
dow from −1000 to 0 ms as the pre-trial period. The power spectral
density (PSD) for each frequency was calculated using Welch’s
method (0.25 s Hamming window, 50% overlap) (Welch 1967). The
calculation was implemented in Matlab using the “pwelch” func-
tion. The PSDs were estimated separately for each participant,
electrode, condition, and the pre-trial/within-trial period.

To estimate aperiodic activity, the Python-based FOOOF toolbox
(version 1.0.0; https://github.com/fooof-tools/fooof) was applied
to parameterize the power spectra by decomposing the aperiodic
and periodic components of the signal (for a detailed overview of
this approach, see Donoghue et al. 2020) as done in previous work
(Adelhöfer et al. 2021b). The FOOOF algorithm conceptualizes the
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Fig. 1. The Simon Go/NoGo task with all possible stimulus configurations. (A) The Simon Go/NoGo task with all possible stimulus configurations. The
upper panel displays stimuli in the go condition. The upper left panel shows stimuli (i.e. “a”) which require a left-hand response, whereas the upper
right panel shows stimuli (i.e. “B”) which require a right-hand response. The lower panel illustrates stimuli (i.e. “A” and “B”) that require no response.
(B) The schematic of a trial. Each trial began with the letter stimuli presented for 200 ms. In Go trials, a correct response was recorded if participants
responded within 250–1,200 ms after stimulus presentation. In NoGo trials, any response within 1,200 ms after stimulus presentation was recorded as
a false alarm. A trial ended after 1,700 ms, followed by the ITI jittered between 1,100 and 1,600 ms.

power spectrum as a linear combination of aperiodic activity [L(f )]
and periodic (oscillatory) activity [Gn(f )]. Precisely, the model of
the power spectrum can be written as

PSD(f ) = L(f ) +
∑

n

Gn(f )

where f represents the frequency. The PSD is the linear combina-
tion of the aperiodic component, L(f ), and n total Gaussians. The
aperiodic component is fit as a function across the entire fitted
range of the spectrum. The function for the aperiodic component,
L(f ), is described as

L(f ) = b − log [f x]

where b is the aperiodic offset reflecting the broadband power
shift, and x is the aperiodic exponent that is equivalent to the
slope of the line fitted to the power spectrum in a log-log space.
The periodic (oscillatory) components are characterized as fre-
quency regions of power over and above the aperiodic component.
Each oscillatory component (also referred to as “peak”) is modeled
with a Gaussian and characterized by three parameters that
define a Gaussian. Each Gaussian fit can be modeled as

Gn(f ) = an exp

[
−

(
f − μn

)2

2σ 2
n

]

where an is the amplitude, μn is the center frequency, and σ n is the
bandwidth of each component.

In order to obtain a reliable estimation of the aperiodic compo-
nent of data, the power spectra data were fit over a broad range
of frequency between 1 and 40 Hz, which is consistent with prior
studies (Ostlund et al. 2021; Hill et al. 2022) and recommendations
in the FOOOF documentation. The FOOOF algorithm used the
settings {aperiodic mode = “fixed,” peak width limits = [1, 8], max-
imum number of peaks = 8, minimum peak height = 0.05, default
settings otherwise}. The power spectra were fit for each electrode,
each participant, each task condition, and each period. The aver-
age R2 of spectral fits for all participants was 0.98 (n = 191).

Aperiodic exponent and offset
The aperiodic exponent and offset were extracted from the
aperiodic-only signal for each participant and for each EEG
electrode. Due to the absence of priori assumptions regarding
the scalp distribution of the aperiodic neural activity, we adopted
the “global” exponent and offset in the statistical analysis (Hill
et al. 2022). The “global” exponent and offset were obtained by
averaging the exponent and offset values across 60 electrodes
for each participant. To analyze the scalp distribution of the
aperiodic components, we performed an additional cluster-based
permutation test where significant results were reached at the
global level. The non-parametric cluster-based permutation test
was proposed to localize effects in space, frequency, and time
while correcting the multiple comparison problem in high-
dimensional EEG/MEG data (see Maris and Oostenveld 2007 for
details). Here, we applied this approach to identify electrodes
that differ between conditions over participants. Clusters were
formed based on the adjacency of thresholded sample-level F-
values (α = 0.005). The sum of F-values in a cluster was used as the
cluster-level statistics. Significant clusters were obtained based
on 1,000 Monte Carlo random sampling using the 0.05 significance
level.

Statistical analysis
The aperiodic exponent and offset were analyzed using two-way
repeated measures ANOVAs. The factor “Go/NoGo” (Go versus
NoGo) and factor “congruency” (congruent versus incongruent)
were used as within-participants factors. Simple effect analyses
were performed where the interaction effect is significant. All post
hoc tests were Bonferroni-corrected. Wilcoxon tests were used
to evaluate differences in behavioral performance between task
conditions, as our behavioral data (i.e. the hit rate and hit RT in Go
trials, and false alarm rate in NoGo trials) were not normally dis-
tributed. Paired-sample t-tests were employed to test differences
in aperiodic activity between the pre-trial and within-trial period.
All t-tests are two-tailed. Bayesian statistics were reported for all
ANOVAs, Wilcoxon tests, and paired-sample t-tests. In ANOVAs,
the inclusion Bayesian factor (BFincl) was calculated to assess the
evidence in the data for including a predictor (van den Bergh
et al. 2020; van Bergh et al. 2022). For the Wilcoxon test and
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Fig. 2. Descriptive statistics for behavioral data. (A) shows the hit rate in go trials; (B) displays the mean RT in go trials; (C) depicts the false alarm rate
in NoGo trials. Each violin plot contains a boxplot. The black dot within the box represents the median; the box in the center represents interquartile
range; the vertical black line depicts the remaining distribution, except for any data points identified as “outliers” (i.e. those more than 1.5 standard
deviations above or below the median).

paired-sample t-test, the BF10 was used to quantify the evidence
supporting the alternative hypothesis over null hypothesis. Statis-
tical analyses were performed using SPSS and JASP packages.

Results
Behavior results
The descriptive results of behavioral data are illustrated in Fig. 2.
Wilcoxon tests showed that, within Go trials, the rate of correct
responses (hit rate) in the congruent condition (0.96 ± 0.03) was
significantly higher than the incongruent condition (0.95 ± 0.05)
(Z = −6.00, P < 0.001; BF10 = 53,513.87). RTs)in the congruent condi-
tion (511 ± 81 ms) were significantly faster than in the incongru-
ent condition (529 ± 77 ms) (Z = −9.76, P < 0.001; BF10 = 5.63 × 106),
indicating a robust Simon effect. The false alarm rate was sig-
nificantly higher in the congruent NoGo condition (0.13 ± 0.12),
as compared with the incongruent NoGo condition (0.10 ± 0.10)
(Z = −8.81, P < 0.001; BF10 = 9.72 × 106).

Aperiodic exponent and offset results in the
pre-trial and within-trial period
Figure 3 shows the PSD in a log-log space at the frequency from
1 Hz to 40 Hz for different experimental conditions in the within-
trial period and pre-trial period, separately. PSDs were averaged
across electrodes and participants.

In the pre-trial period, two-way repeated measures ANOVAs
revealed no significant main effect or interaction effect for either
the aperiodic exponent or the aperiodic offset (all P > 0.05, BFincl

< 1).
In the within-trial period, the two-way repeated measures

ANOVA for the aperiodic exponent revealed a significant Go/NoGo
main effect (F(1,190) = 37.64, P < 0.001, η2

p = 0.17; BFincl = 2.09 × 106).
The aperiodic exponent in the NoGo condition (1.15 ± 0.13) was
higher than the Go condition (1.14 ± 0.13), thus indicating more
aperiodic activity in the NoGo condition than the Go condition.
A significant interaction between Go/NoGo and congruency was
evident (F(1,190) = 8.98, P = 0.003, η2

p = 0.05; BFincl = 13.53). The
simple effect analysis showed that, within Go trials, the aperiodic
exponent in the incongruent condition (1.14 ± 0.13) was signifi-
cantly higher than the congruent condition (1.14 ± 0.13) (P < 0.001;
BF10 = 193.72). Within NoGo trials, no significant difference was
found in aperiodic exponent between the congruent and incon-
gruent condition (P > 0.05; BF10 = 0.04) (see Fig. 4A and B).

The analysis for the within-trial aperiodic offset showed a sig-
nificant Go/NoGo main effect (F(1,190) = 60.56, P < 0.001, η2

p = 0.24;
BFincl = 1.43 × 1010). The aperiodic offset in the NoGo condition

(0.61 ± 0.22) was higher than the Go condition (0.59 ± 0.21). A sig-
nificant interaction effect between Go/NoGo and congruency was
also found (F(1,190) = 7.30, P = 0.008, η2

p = 0.04; BFincl = 5.52). More
precisely, within the Go condition, the aperiodic offset was signif-
icantly higher in incongruent trials (0.59 ± 0.21) compared with
congruent trials (0.58 ± 0.21) (P = 0.001; BF10 = 51.12). No significant
difference was found between congruent and incongruent trials in
offset in NoGo condition (P > 0.05; BF10 = 0.05) (see Fig. 4C and D).

Above analyses were based on the aperiodic exponent and
offset averaged across all electrodes. To explore the scalp dis-
tribution of aperiodic parameters, we performed a cluster-based
permutation test to detect electrodes contributing to significant
differences between task conditions. The analysis was performed
for the within-trial period only, as no difference was identified in
the pre-trial period at the “global” level. The scalp topography for
aperiodic exponent and offset is shown in Fig. 5. For the aperiodic
exponent parameter, the “Go/NoGo × congruency” interaction
was evident at FC2, FC3, FC4, Cz, C4, CP2. The significant “Go/NoGo
× congruency” interaction effect in the offset parameter was
observed at FC1, FC2, Cz, CP2. We found a broad range of elec-
trodes across frontal, central, temporal, posterior, and occipital
areas where aperiodic exponent and offset in Go trials were
significantly different with them in NoGo trials. Vastly evident
differences were observed in frontal-central and posterior regions.

The comparison of aperiodic activity in pre-trial
and within-trial period
To test the difference of aperiodic activity between the pre-trial
and within-trial time window, we performed paired-sample t-tests
for the aperiodic exponent and the aperiodic offset separately.
Results reflected significantly higher aperiodic activity in the
within-trial period compared with the pre-trial period in all task
conditions (all P < 0.001, BF10 ≥ 2.41 × 1064) (see Table 1), indicating
increased aperiodic neural activity for task execution (i.e. in the
within-trial period).

Discussion
The main aim of the present study was to test whether the broad-
band aperiodic activity in the EEG power spectrum is associated
with demand-specific biases of metacontrol toward persistence
or flexibility. To achieve this, we assessed the aperiodic activity in
the EEG power spectrum during a Simon Go/NoGo task in the pre-
trial period and within-trial period, separately. Using the cluster-
based permutation test, we then examined the scalp distribution
for aperiodic exponent and offset parameters. Several key findings
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Fig. 3. Log-log transformed power spectral densities averaged across electrodes and participants. (A) shows PSDs in the within-trial period; (B) displays
PSDs in the pre-trial period. The left figure showed PSDs for congruent trials, and the right figure displayed PSDs for incongruent trials.

emerged from this study: First, in the within-trial period, the
aperiodic exponent and offset were higher in the NoGo condition
than the Go condition. The aperiodic activity in incongruent trials
was higher than congruent trials in the Go condition; however,
the difference failed to reach significance in the NoGo condition.
In contrast, in the pre-trial period, no significant difference was
detected for aperiodic activity between experimental conditions.
Second, we found significant Go/NoGo effects in the aperiodic
exponent and offset across a number of electrodes over the scalp,
and Go/NoGo × congruency effects in several frontal and central
electrodes. In addition, we observed increased aperiodic activity
across task conditions in the within-trial period, as compared with
the pre-trial period.

Importantly, our findings suggest that aperiodic activity
measured in the EEG power spectrum reflects metacontrol states
or, more specifically, dynamic adjustments of metacontrol states
to task demands: More concretely, in the within-trial period, we
observed increased aperiodic exponent and offset values in the
NoGo condition than in the Go condition. As explained above,
the infrequent NoGo trials should have induced more response
conflict, which would need to be overcome with a stronger
persistence bias in metacontrol (Hommel 2015). In contrast, in Go
trials, the stimulus conditions unequivocally support the correct
response, so that participants can afford a more flexible meta-
control state. Another indication that metacontrol is reflected
in aperiodic activity is that, in the Go condition, the aperiodic
exponent and offset values were higher in (persistence-heavy)
incongruent trials than in (flexibility-friendly) congruent trials.

As discussed above, incongruent trials can be assumed to
induce more response conflict. Given that both responses are
legal responses in the task, this conflict can only be overcome
by relying on goal-information, which, in turn, implies a
stronger metacontrol bias toward persistence. Taken together,
these findings suggest that aperiodic activity increases during
persistence-heavy processing, but decreases during flexibility-
heavy processing.

Several studies have demonstrated that aperiodic activity is
modulated by the behavioral state (Podvalny et al. 2015), task per-
formance (He et al. 2010) and arousal level (Lendner et al. 2020).
A recent study by Pertermann et al. (2019a, b), who recorded EEG
activity during the motor response inhibition task, found a steeper
“1/f slope” (i.e. higher aperiodic exponent) when inhibiting a pre-
potent response. Our results extend previous findings by demon-
strating that aperiodic activity reflects the demand-specific meta-
control state, with increased values during persistence-heavy pro-
cessing and reduced values during flexibility-heavy processing. It
is also noteworthy that main or interaction effects did not reach
significance in the pre-trial period (i.e. before the stimulus pre-
sentation). This observation may suggest that the modulation of
aperiodic activity is reactive and stimulus-induced—which would
fit with the counter-intuitive idea that control operations may
be driven by the environment (Waszak et al. 2003; Dignath et al.
2019). Based on MEG data, recent research has shown that ape-
riodic activity demonstrates less significant task-related changes
than oscillatory activity, indicating a more stable aspect of brain
activity (Wainio-Theberge et al. 2022). Our results expand upon
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Fig. 4. Descriptive results for the within-trial aperiodic exponent and offset in different Simon Go/NoGo conditions. (A) and (B) show the violin plot
and line plot for the aperiodic exponent in different task conditions; (C) and (D) reveal the violin plot and line plot for the aperiodic offset in different
experimental conditions. Each violin plot contains a boxplot. The horizonal line within the box represents the median; the box in the center represents
interquartile range; the vertical black line depicts the remaining distribution, except for any data points identified as “outliers” (i.e. those more than 1.5
standard deviations above or below the median). In line plots, error bars represent the standard error of the mean.

prior findings and indicate that, while aperiodic activity can serve
as a stable background for neural activity, it also demonstrates the
capacity to adapt to changing cognitive demands. Furthermore,
the observation of higher aperiodic activity in the within-trial
period than pre-trial period indicates a tight connection between
aperiodic activity and metacontrol states, in keeping with recent
findings that the steepness of 1/f activity increases after auditory
stimulation (Gyurkovics et al. 2022).

Although the precise neurophysiological and cognitive mecha-
nisms underlying aperiodic activity remain under discussion, sev-
eral potential explanations for aperiodic exponent in EEG signals
have been proposed. The “neural noise” account assumes that
aperiodic exponent in EEG signals is a measure of the level of
noise in the underlying neural circuits (He et al. 2010; Voytek
and Knight 2015; Voytek et al. 2015; Gao 2016; Dave et al. 2018).
Synchronized neural spiking activity results in a steeper 1/f slope
and is associated with an increased signal-to-noise ratio (SNR)
in the nervous system, whereas asynchronous spiking activity
gives rise to a flatter 1/f slope and decreased SNR (Podvalny et al.
2015; Voytek and Knight 2015; Voytek et al. 2015). The neural
noise account of aperiodic activity has been extensively employed
to gain a better understanding of clinical phenomena, such as
schizophrenia (Wolff et al. 2022), Tourette syndrome (Münchau
et al. 2021; Adelhöfer et al. 2021b), ADHD (Pertermann et al.
2019a; Ostlund et al. 2021), and age-related cognitive decline
(Voytek et al. 2015; Dave et al. 2018). Recently, researchers have

considered that 1/f slope in EEG signals may serve as a maker
of “neural variability,” which enables the brain to dynamically
adjust its neural activity to meet the demands of a given task or
situation (Waschke et al. 2021b). Hence, our findings may indicate
that different metacontrol states manifest in altered levels of
neural variability, with decreased neural noise/variability during
persistence-heavy and increased neural noise/variability during
flexibility-heavy processing.

The potential mechanisms underlying the link between
aperiodic activity and metacontrol is not yet fully understood.
One possible account is that neural variability may be related to
dynamics of cortical network states, which could be associated
with the representation of goal- and task-related information
(Tsujimoto et al. 2008; Deco et al. 2009; Armbruster-Gençet al.
2016; Nogueira et al. 2018). In persistence-heavy processing, the
system needs to maintain stable representation of task goals
to focus on task-relevant stimuli and ignore task-irrelevant
stimuli (Hommel 2015). The sustained representation of task
goals may require fewer transitions between cortical network
states, reflected by lower neural variability (Durstewitz and
Seamans 2008; Tsujimoto et al. 2008; Armbruster-Gençet al. 2016).
Therefore, lower aperiodic activity may be associated with more
stable cortical network states and sustained representations
of the task goal. However, in flexibility-heavy processing, the
system is less bounded by the task goal and sensitive to task-
irrelevant stimuli (Hommel 2015). This may require/result in
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Fig. 5. Scalp distributions of the aperiodic exponent and offset in the within-trial period. Scalp topographies in the upper row show electrode sites with
significant “Go/NoGo × congruency” interaction effect (the upper left figure) and Go/NoGo main effect (the upper right figure) in the aperiodic exponent.
Scalp topographies in the lower row show electrode sites with significant “Go/NoGo × congruency” interaction effect (the lower left graph) and Go/NoGo
effect (the lower right graph) in the aperiodic offset. Labels are shown for significant clusters of electrodes. The colors denote cluster-level summed
F-values.

more frequent and easier transitions between cortical network
states (Durstewitz and Seamans 2008; Tsujimoto et al. 2008;
Armbruster-Gençet al. 2016). Thus, higher neural variability may
be associated with easier switches between cortical network
states and unstable representations of goal-information. However,
this interpretation is currently speculative and requires further
research in the future.

In a broader sense, the link between neural noise/aperiodic
activity and metacontrol is consistent with previous fMRI findings
showing that higher levels of brain variability (i.e. high brain
noise) facilitate cognitive flexibility, but impair cognitive stabil-
ity (Armbruster-Gençet al. 2016). Recent work found that higher
levels of resting-state fMRI signal variability are associated with
increased flexibility bias of metacontrol (or decreased persistence
bias of metacontrol), which also points to an association between
neural “noise” and individual metacontrol policies (Zhang et al.
2022). The present findings provide evidence for an interesting
connection between neural noise in terms of EEG signal and
cognitive metacontrol states.

Moreover, physiological evidence has shown that the balance
between excitation and inhibition (E/I) can be estimated from
the exponent of EEG power spectrum (Gao et al. 2017; Lombardi
et al. 2017). A flatter exponent is assumed to be driven by an
increased E/I ratio, whereas a steeper exponent is assumed to
be induced by a decreased E/I ratio (Gao et al. 2017; Lombardi
et al. 2017). The association between E/I balance and aperiodic
activity has been implicated in several studies. For example,
Lendner and colleagues (Lendner et al. 2020) discovered that
aperiodic exponent can distinguish arousal levels, and higher
values found in REM sleep than NREM sleep, and higher values in
NREM sleep than during wakefulness. These findings align with
in vivo calcium imaging evidence in mice that indicates a shift

toward predominant inhibition in cortical networks during REM
sleep (Niethard et al. 2016). More recently, a study revealed that
aperiodic exponent increased under propofol anesthesia (which
results in a relative increase of inhibition), and decreased under
ketamine anesthesia (which results in a relative increase of exci-
tation) (Waschke et al. 2021a). The present findings may indicate a
decreased E/I ratio during persistence-heavy processing whereas
an increased E/I ratio during flexibility-heavy processing. Our
results suggest that the state of metacontrol might be associated
with a shift toward increased inhibitory tone or toward increased
excitatory tone within neural circuits. Even though the aperiodic
exponent has been demonstrated to approximate E/I balance
(Gao et al. 2017; Lombardi et al. 2017), evidence for joint changes
between E/I balance, aperiodic variability, and behavior is still
lacking.

Future work may test whether control-related changes in ape-
riodic activity affect behavior in a direct or indirect manner. The
scalp distribution results indicate that the difference of aperiodic
activity between the Go and NoGo condition is relatively global,
given that a broad range of electrodes on the scalp showed
significant Go/NoGo effect for both exponent and offset. In con-
trast, only a few electrodes in the frontal and central scalp con-
tribute to the congruency effect in the Go condition, indicating
a region-specific congruency effect. The finding that aperiodic
offset reflects metacontrol states also warrants further inves-
tigation. Evidence from humans and macaques demonstrated
that broadband power shifts are positively correlated to neuronal
population spiking (Manning et al. 2009; Ray and Maunsell 2011).
Thus, our present observation of an enlargement in aperiodic
offset during persistence-heavy processing and a reduction during
flexibility-heavy processing could be tentatively interpreted to
reflect a control-state dependent changes in the spiking rates of
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Table 1. Comparisons of aperiodic exponent and offset between the pre-trial and within-trial period.

Exponent Offset

Pre-trial Within-
trial

t(1, 190) P BF10 Pre-trial Within-
trial

t(1, 190) P BF10

Condi-
tions

Go congruent 1.03 ± 0.13 1.14 ± 0.13 31.36 <0.001 4.86 × 1073 0.45 ± 0.21 0.58 ± 0.21 27.3 <0.001 2.40 × 1064

Go
incongruent

1.03 ± 0.13 1.14 ± 0.13 32.47 <0.001 1.19 × 1076 0.45 ± 0.21 0.59 ± 0.21 28.54 <0.001 2.03 × 1067

NoGo
congruent

1.04 ± 0.13 1.15 ± 0.13 30.34 <0.001 2.57 × 1071 0.45 ± 0.21 0.61 ± 0.22 27.32 <0.001 2.55 × 1064

NoGo
incongruent

1.03 ± 0.13 1.15 ± 0.13 30.82 <0.001 2.98 × 1072 0.44 ± 0.21 0.61 ± 0.22 28.38 <0.001 8.79 × 1066

cortical neurons. The current study opens a window on the role
of aperiodic activity in metacontrol, but the precise mechanisms
underlying this association remain to be determined.
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et al. A tutorial on conducting and interpreting a Bayesian ANOVA
in JASP. LAnnee Psychol. 2020:120:73–96.

van den Bergh D, Wagenmakers E-J, Aust F. Bayesian repeated-
measures ANOVA: an updated methodology implemented in
JASP. 2022. https://doi.org/10.31234/osf.io/fb8zn.

Virtue-Griffiths S, Fornito A, Thompson S, Biabani M, Tiego J,
Thapa T, Rogasch NC. Task-related changes in aperiodic activ-
ity are related to visual working memory capacity inde-
pendent of event-related potentials and alpha oscillations.
2022. https://doi.org/10.1101/2022.01.18.476852.

Voytek B, Knight RT. Dynamic network communication as a unifying
neural basis for cognition, development, aging, and disease. Biol
Psychiatry. 2015:77:1089–1097.

Voytek B, Kramer MA, Case J, Lepage KQ, Tempesta ZR, Knight RT,
Gazzaley A. Age-related changes in 1/f neural electrophysiologi-
cal noise. J Neurosci. 2015:35:13257–13265.

Wainio-Theberge S, Wolff A, Gomez-Pilar J, Zhang J, Northoff G. Vari-
ability and task-responsiveness of electrophysiological dynam-
ics: scale-free stability and oscillatory flexibility. NeuroImage.
2022:256:119245.

Wainio-Theberge S, Wolff A, Northoff G. Dynamic relationships
between spontaneous and evoked electrophysiological activity.
Commun Biol. 2021:4:741.

Ward LM. Synchronous neural oscillations and cognitive processes.
Trends Cogn Sci. 2003:7:553–559.

Waschke L, Donoghue T, Fiedler L, Smith S, Garrett DD, Voytek B,
Obleser J. Modality-specific tracking of attention and sensory
statistics in the human electrophysiological spectral exponent.
eLife. 2021a:10:e70068.

Waschke L, Kloosterman NA, Obleser J, Garrett DD. Behavior needs
neural variability. Neuron. 2021b:109:751–766.

Waszak F, Hommel B, Allport A. Task-switching and long-term prim-
ing: role of episodic stimulus–task bindings in task-shift costs.
Cogn Psychol. 2003:46:361–413.

Welch P. The use of fast Fourier transform for the estimation of
power spectra: a method based on time averaging over short,
modified periodograms. IEEE Trans Audio Electroacoustics. 1967:15:
70–73.

Wendiggensen P, Ghin F, Koyun AH, Stock A-K, Beste C. Pretrial theta
band activity affects context-dependent modulation of response
inhibition. J Cogn Neurosci. 2022:34:605–617.

Widmann A, Schröger E, Maess B. Digital filter design for electrophys-
iological data – a practical approach. J Neurosci Methods. 2015:250:
34–46.

Winkler I, Brandl S, Horn F, Waldburger E, Allefeld C, Tangermann M.
Robust artifactual independent component classification for BCI
practitioners. J Neural Eng. 2014:11:035013.

Winkler I, Haufe S, Tangermann M. Automatic classification of arti-
factual ICA-components for artifact removal in EEG signals. Behav
Brain Funct. 2011:7:30.

Wolff A, Gomez-Pilar J, Zhang J, Choueiry J, de la Salle S, Knott
V, Northoff G. It’s in the timing: reduced temporal precision in
neural activity of schizophrenia. Cereb Cortex. 2022:32:3441–3456.

Zhang C, Beste C, Prochazkova L, Wang K, Speer SPH, Smidts A,
Boksem MAS, Hommel B. Resting-state BOLD signal variability
is associated with individual differences in metacontrol. Sci Rep.
2022:12:18425.

Zhang J, Northoff G. Beyond noise to function: reframing the
global brain activity and its dynamic topography. Commun Biol.
2022:5:1350.

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/33/12/7941/7078815 by Jacob H

eeren user on 16 June 2023

https://doi.org/10.1103/PhysRevE.95.012413
https://doi.org/10.1103/PhysRevE.95.012413
https://doi.org/10.31234/osf.io/fb8zn
https://doi.org/10.1101/2022.01.18.476852

	 Aperiodic neural activity reflects metacontrol
	 Introduction  
	 Materials and methods
	 Results
	 Discussion
	 Acknowledgments
	 CRediT author statement
	 Funding
	 Data availability


