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A B S T R A C T

Event segmentation, which involves dividing continuous information into meaningful units, changes as children 
develop into adolescents. Adolescents tend to segment events more coarsely than adults. This study explores 
whether adolescents could adjust their segmentation style to resemble that of adults when provided with explicit 
metacontrol-related instructions. We compared event segmentation in two adolescent groups and one adult 
group, while simultaneously recording EEG data. One adolescent group was instructed to perform segmentation 
as finely as possible, whereas the other adolescent group and adults received no specific instructions on seg
mentation granularity. EEG data were analyzed using multivariate pattern analysis and source reconstruction. 
The findings revealed that adolescents given fine-grained instructions adjusted their segmentation probability 
closer to adult levels, although they did not fully match adults in processing multiple simultaneous changes. 
Neurophysiological results indicated that adolescents with fine-grained instructions exhibited neural decoding 
performance more similar to adults. Increased activity in the inferior frontal gyrus in these adolescents compared 
to adults related to this. The results suggest that adolescents with fine-grained instructions demonstrated more 
persistent cognitive control and enhanced top-down attention than their peers and adults. The study shows that 
adolescent cognitive processes can be shifted toward adult-like performance through instructions.

1. Introduction

“Please behave yourself in a more mature way” – likely belongs to the 
most common expressions of parents. However, the question of how 
much children and adolescents can adjust their behavior towards an 
adult-like level and what neural processes are called on to support this 
ability still remains unanswered. One fundamental cognitive function 
that may be key to this is the ability to segment incoming information 
into meaningful segments (Radvansky and Zacks, 2014; Zacks, 2019), 
which likely reflects an important basis for goal-directed action. This 
ability undergoes maturational changes (Benear et al., 2023; Ghorbani 
et al., 2024; Ren et al., 2021). According to the Event Segmentation 
Theory (EST, Zacks et al., 2007), two types of event representations are 
important in event segmentation: First, there are working event models, 

actively held in working memory, depicting ongoing activities. They set 
the basis for predicting how events are most likely to evolve. Second, 
there are event schemata, representations of various types of events 
stored in long-term memory and used to create the event models (Zacks, 
2019). The ability to integrate various information into a working event 
model is correlated with working memory capacity (Radvansky and 
Copeland, 2006), which increases during cognitive development 
(Cowan, 2016; Spencer, 2020). Moreover, due to their limited life 
experience, children and adolescents typically have fewer event sche
mata available than adults, resulting in a restricted and superficial un
derstanding of different event types (Levine et al., 2019).

The developmental process of event segmentation is closely linked 
with the hierarchical organization of event segmentation, as previous 
studies have shown that children and adolescents are more likely to 
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segment incoming information in coarser bins of events than adults 
(Ghorbani et al., 2024; Meyer and Baldwin, 2011; Yates et al., 2022). 
However, most research has been conducted in young children and even 
infants (Benear et al., 2023; Chai et al., 2024; Yates et al., 2022); thus, 
event segmentation in adolescents is not fully understood. In addition, it 
is known that adults can purposefully segment activities into different 
levels of granularity (Zacks et al., 2009, 2001), requiring them to adapt 
cognitive control strategies to varying levels of detail (Kurby and Zacks, 
2008; Zacks and Tversky, 2001). Adjusting the granularity of segmented 
events can be seen as an effect of metacontrol (Zhou et al., 2024). 
Metacontrol allows individuals to balance persistent and flexible 
cognitive control styles, directing information processing towards either 
a more detailed or a broader focus (Hommel, 2015a; Hommel et al., 
2024; Hommel and Colzato, 2017a; Van Schependom et al., 2024; Wang 
et al., 2024). In a rather persistence-heavy processing style characterized 
by robust top-down cognitive control and a narrow focus, finer-grained 
events are formed. We hypothesize that adolescents might also be able to 
adapt their segmentation style with different instructions. When 
wanting adolescents to behave in a more adult-like way, they should 
thus resemble a more persistence-heavy processing style and, therefore, 
be instructed to find finer-grained segments. In the current study, we 
used metacontrol manipulations to examine the neurophysiological 
principles underlying how adolescents can behave in a more adult-like 
way.

One instruction asked the participants to segment a movie in a 
meaningful manner when watching it, while another instruction was 
added to this meaningful segmentation instruction to be as fine-grained 
as possible. We expected adolescents instructed to perform a rather fine- 
grained segmentation to exhibit outcomes more akin to those of adults 
than their peers without such specific instruction. Given that both the 
working event models and event schemata could be considered as 
mental representations undergoing development throughout childhood 
and adolescence (Kurby and Zacks, 2008; Zacks and Swallow, 2007), we 
assumed that the neural representation patterns of the adolescents 
instructed to segment as fine-grained as possible would closely resemble 
those of adults compared to their peers. A method that was suitable to 
precisely capture the dynamics of these neural representation patterns 
during the event segmentation process was the multivariate pattern 
analysis (MVPA, (Fahrenfort et al., 2018; Grootswagers et al., 2017; 
King and Dehaene, 2014; Petruo et al., 2021; Takacs et al., 2020) on EEG 
recordings. Specifically, temporal generalization MVPA was employed 
for its ability to generalize neural patterns from one time point to 
another, providing insight into the stability and reactivation of event 
representations over time. Furthermore, source reconstruction methods 
were utilized to examine which brain regions were associated with the 
differences between adolescents’ and adults’ neural representation 
patterns (sLORETA, Pascual-Marqui, 2002). Adolescents instructed to 
segment as fine-grained as possible were expected to focus more on 
detailed changes in the movie by employing a more persistent cognitive 
control style than their peers. Consequently, their working event models 
would compare predictions and inputs more frequently, necessitating 
increased online monitoring. Therefore, we hypothesized that in ado
lescents instructed to segment the movie in a fine-grained manner, 
MVPA outcomes would be better decodable than in their peers, partic
ularly during the time window surrounding boundaries of events. 
Additionally, during this period, it was assumed that they would show 
heightened activity in brain regions associated with performance 
monitoring, such as fronto-polar regions (Koechlin, 2014; Mansouri 
et al., 2017), insula cortex (Gogolla, 2017; Ham et al., 2013) and ante
rior cingulate cortex (Carter et al., 1998; Ham et al., 2013).

2. Materials and methods

2.1. Sample

The sample consisted of three groups of participants. There were two 

adolescent groups (age range 11–16 years), one with a fine-grained 
segmentation instruction (FG-Teen, N = 42) and an age- and gender- 
matched group with a free segmentation instruction (Free-Teen, 
N = 42, see Task for details). Moreover, there was an adult group (age 
range 20–30 years) receiving the free segmentation instruction (N = 45). 
The participants were recruited via an in-house database and adver
tisements. Before participation, the participants and/or their legal 
guardians underwent a brief telephone interview to exclude any psy
chiatric or neurological conditions. After the data collection was con
ducted, there were exclusions from the final analysis due to poor EEG 
data quality (N = 3 Free-Teen, N = 3 FG-Teen, N = 2 adults) and too few 
key presses for a behavioral analysis. After within-group outlier exclu
sions regarding the number of key presses (N = 1 Free-Teen, N = 2 FG- 
Teen, N = 2 adults) and the mean segment length (N = 2 Free-Teen, 
N = 6 FG-Teen, N = 3 adults), the final sample consisted of N = 34 
Free-Teen (14.06 ± 1.45 years, 12 males), N = 32 FG-Teen 
(14.19 ± 1.57 years, 10 males) and N = 36 adults (26.06 ± 2.77 
years, 18 males). The participants and, if applicable, their legal guard
ians provided written informed consent before the participation in the 
study. The local ethics committee approved the study.

2.2. Task

The participants completed an event segmentation task while 
watching the short movie “The Red Balloon” (Le ballon rouge, 1956), 
which has frequently been used in event segmentation tasks (e.g., 
Prochnow et al., 2024c; Zacks et al., 2009; Zacks, 2010) and recently 
implemented for EEG research (Ghorbani et al., 2024; Prochnow et al., 
2024c, 2024b). In the free segmentation instruction, the participants 
received the instruction to “press the space key whenever something in 
the movie ended, and something else was about to start,” while in the 
fine-grained segmentation instruction, the participants were told to 
“define these units as small as possible.” For the adult sample, the movie 
was separated into four clips (durations of 7:43 min, 7:48 min, 7:26 min, 
and 10:00 min), whereas for the adolescent sample, the movie was 
separated into three clips (durations of 10:22 min, 11:08 min, 
11:05 min) to create the illusion of the total task duration being shorter 
and thus increase the commitment (Ghorbani et al., 2024). Between the 
clips, all participants could take breaks of self-chosen length. Before 
conducting the event segmentation task on “The Red Balloon”, the 
participants conducted a supervised exercise to ensure they understood 
the task instruction. To this end, different short videos (about 5 min 
duration) were chosen for practicing which have been used previously in 
event segmentation research (Bailey et al., 2013; Sargent et al., 2013). 
The situational change coding for “The Red Balloon” established by 
Zacks et al. (2009) was used to analyze the segmentation behavior in the 
task.

2.3. EEG recording and preprocessing

During the event segmentation task, EEG signals were recorded using 
elastic caps (EasyCap Inc.) outfitted with 60 Ag/AgCl electrodes, with 
the reference electrode placed at Fpz and the ground electrode at θ = 58, 
ϕ = 78. EEG signals were amplified using BrainAmp amplifiers (Brain 
Products Inc.), while ensuring electrode impedances remained below 5 
kΩ. A sampling rate of 500 Hz was employed online, which was sub
sequently down-sampled to 300 Hz during offline preprocessing. Data 
preprocessing was conducted using the "Automagic" pipeline (Pedroni 
et al., 2019) and EEGLAB (Delorme and Makeig, 2004). Initially, flat 
channels were identified and removed, followed by applying an average 
referencing to the EEG data. Subsequently, the PREP preprocessing 
pipeline and the EEGLAB ’clean_rawdata()’ pipeline were applied. Line 
noise at 50 Hz was eliminated, and a robust average reference was 
employed post-removal of contamination by bad channels. A finite im
pulse response (FIR) high-pass filter (.5 Hz, order 1286, stop-band 
attenuation − 80 dB, transition band.25–.75 Hz) was utilized to detect 
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and exclude flat-lined, noisy, or outlier channels. To remove electro
myographic (EMG) artifacts, a low-pass filter of 40 Hz (sinc FIR filter; 
order: 86;(Widmann et al., 2015) was applied. Electro-oculographic 
(EOG) artifacts were discarded using a subtraction method (Parra 
et al., 2005). Muscle, cardiac, and residual ocular artifacts were 
addressed via Independent Component Analysis (ICA) utilizing the 
Multiple Artifact Rejection Algorithm (MARA; (Winkler et al., 2014). 
Artifact Subspace Reconstruction (ASR; burst criterion: 15; (Mullen 
et al., 2013) was employed to reconstruct epochs with abnormally 
strong power (>15 standard deviations relative to calibration data) 
within the segmented data (details provided below). Time windows that 
could not be reconstructed were discarded. Finally, any missing or 
eliminated channels were interpolated using a spherical method.

We utilized FieldTrip (Oostenveld et al., 2011) for subsequent 
analysis procedures. To elucidate the distinction between time windows 
containing event boundaries and those lacking such boundaries, we 
delineated Boundary intervals (BI; characterized by key presses indi
cating event boundaries) and No-Boundary intervals (NBI; without key 
presses indicating event boundaries), following the protocol outlined by 
Prochnow et al. (2024c). While BI inherently encompassed response 
markers (key presses), NBI lacked such markers. Thus, we inserted vir
tual markers for NBI based on response markers by implementing the 
following steps (Fig. 1): (a) Aligning with behavioral data, continuous 
data were segmented into 2 s intervals. Notably, there were more in
tervals lacking response markers than those containing them across all 
participants. (b) For each participant, intervals without response 
markers were randomly chosen in a quantity matching that of intervals 
with response markers. These intervals were then randomly paired with 
intervals possessing response markers. (c) The time instance of a 
response marker within an interval was projected as a virtual marker 
onto the corresponding interval without a response marker, as assigned 
in step (b). In doing so, corresponding response markers for BI and 

virtual markers for NBI were created, maintaining consistent numbers 
across participants. This study adopted response-locked data analysis for 
two principal reasons: Firstly, the absence of distinctly separable stimuli 
akin to conventional EEG paradigms, and secondly, the pivotal nature of 
event segmentation, as delineated by the timing of motor responses or 
key presses. Subsequently, data spanning from -1s to 1 s relative to both 
types of markers were included in subsequent analysis stages.

2.4. Multivariate pattern analysis (MVPA)

To discern differences between BI and NBI over time, we employed 
multivariate pattern analysis (MVPA) on time domain data utilizing the 
MVPA-Light toolbox (Treder, 2020) as done in previous studies by our 
group (Ghin et al., 2024; Graf et al., 2024; Prochnow et al., 2024a; Yu 
et al., 2023). Each individual subject underwent two distinct analyses. 
Within each trial, only signals within the − 1–1 s timeframe relative to 
key presses were fed into the MVPA. First, binary classification across 
time was conducted to identify specific time points showing distinctive 
spatial patterns on the electrode level between BI and NBI. Second, to 
investigate the temporal dynamics of representational content, temporal 
generalization MVPA was performed. The classifier utilized in this study 
was Regularized Linear Discriminant Analysis (Renton et al., 2022) 
evaluated via a 10-fold cross-validation approach repeated 10 times. 
Default parameter values in the MVPA-Light toolbox were employed, 
unless stated otherwise. Classification accuracy was assessed using the 
area under the curve (AUC), a non-parametric measure derived from 
signal detection theory, and the classification accuracy. Within each 
group, time points exhibiting significant classification performance, as 
indicated by AUC values, were identified through cluster-based per
mutation testing. This entailed 1000 random draws and employed 
non-parametric Wilcoxon tests with a significance level of p = .05. The 
cluster level statistic was determined by summing all Wilcoxon test 
values within the specified time range. The null value for AUC was set at 
a chance level of 0.5, corresponding to 50 %. To conduct statistical 
comparisons of the MVPA results between the groups, cluster-based 
permutation tests were employed to compare the outcomes of 
different MVPA analyses. The Matlab function permutest (Gerber, 2022) 
was applied for these comparisons by utilizing independent t-tests be
tween two groups. A reference distribution was generated through 1000 
random draws, with an alpha value of p = .001 set for the t-tests. Each 
significant cluster’s direction of effect (positive or negative) and the sum 
of t-values within the cluster (Tsum) are provided.

2.5. Source localization (sLORETA)

Subsequently, we employed standardized low-resolution brain elec
tromagnetic tomography (sLORETA, (Pascual-Marqui, 2002) identify 
the neuroanatomical structures contributing to the different neural 
representation patterns detected for various groups through MVPA. 
Specifically, we selected the significant time windows from the MVPA 
results for each pair of groups to determine which brain regions were 
involved in these differences during this time window. During these time 
windows the difference between BI and NBI within a group was con
trasted with the same difference in the comparison group. sLORETA 
utilizes a realistic MNI152 head model, dividing the intracerebral vol
ume into 6239 voxels with a spatial resolution of 5 mm, and subse
quently calculates a standardized current density for each voxel 
(Pascual-Marqui, 2002). This method offers a linear solution to the in
verse problem while avoiding localization bias (Sekihara et al., 2005), 
and the reliability of this method has been corroborated by brain stim
ulation and MRI studies (Dippel and Beste, 2015; Ocklenburg et al., 
2018). We performed a built-in voxel-wise randomization test with 2000 
permutations to assess statistical significance, employing statistical 
non-parametric mapping (SnPM). The results section presents voxels in 
the MNI brain template showing significant differences (p < 0.05) in the 
modulation between each pair of groups.

Fig. 1. Schematic illustration of the creation of virtual markers for No- 
Boundary intervals. Boundary intervals are indicated in black, No-Boundary 
intervals are shown in grey. In the first step, Boundary intervals were 
randomly assigned to No-Boundary intervals. Virtual markers were then placed 
within the No-Boundary intervals at the same time point as the key press in the 
corresponding Boundary interval (upper section). In the second step, data were 
re-segmented according to these markers, allowing for the analysis of data from 
− 1–1 sec relative to the marker’s position (lower section).
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2.6. Statistics

A mixed-effects logistic regression model was utilized to analyze 
behavioral effects. To this end, the movie was divided into time bins of 
2 sec. The predictor was the number of situational changes within each 
2-second interval (ranging from 0 to 5), while the outcome variable was 
the occurrence of a response within this interval (0 indicating no 
response, 1 indicating a response occurred). Additionally, group mem
bership was incorporated as a predictor in the model, always comparing 
two of the groups with each other. Random intercepts for subjects were 
estimated in both models to account for variability between subjects. 
Odds ratios (ORs) were computed from the coefficient results of the fixed 
effects in both models, and multicollinearity was assessed using the 
variance inflation factor (VIF). In addition, the mean length of segments 
defined by participants was compared between groups using a one-way 
analysis of variance (ANOVA).

Moreover, to assess the similarity in the segmentation between 
groups at the behavioral level, we calculated each group’s segmentation 
agreements (Bailey et al., 2013). The movie was divided into 1-second 
bins, and for each participant, we determined whether they identified 
an event boundary within each bin. Then, in each bin, we calculated the 
proportion of participants who identified an event boundary here. A 
higher proportion within a bin indicates greater segmentation agree
ment. We can assess the similarity between their segmentation patterns 
by correlating the dynamic changes in these proportions between 
groups. Additionally, we applied Spearman correlation analysis (Matlab 
function ‘corr’) between each pair of groups after smoothing the datasets 
across time points to mitigate the time jitter effect to further evaluate the 
similarity of the segmentation pattern between the groups. Further, we 
performed a Fisher Z-transformation on the correlation results to assess 
whether their differences were statistically significant.

3. Results

3.1. Behavioral results

The results of the hierarchical mixed-effects logistic regression for 
each group pairing are displayed in Fig. 2A and Table 1.

The main finding concerned the sole effects of the predictor group 
membership and the interaction effects between the number of changes 
and the group membership in the comparisons involving the FG-Teen 
group. When comparing the FG-Teen group with their peers with the 

free-segmentation instruction, there was a significant effect of the pre
dictor group membership (1.03, p < .001, OR = 2.80, 95 % CI: 
2.23–3.52), indicating a higher probability for segmentation behavior in 
the FG-Teen than in the Free-Teen group. However, the interaction of 
the predictors number of changes and group membership (.01, p = .553, 
OR = 1.01, 95 % CI:.97–1.06) did not reach significance, indicating a 
similar slope of the logistic regression in both groups. In contrast, when 
comparing the FG-Teen group with the adults, there was no significant 
effect of the predictor group membership (-.05, p = .703, OR =.95, 95 % 
CI:.74–1.23), indicating a similar general probability of segmentation 
behavior in both groups. However, the interaction of the number of 
changes and the group membership was significant for this comparison 
(.10, p < .001, OR = 1.11, 95 % CI: 1.07–1.15), indicating a different 
slope of the logistic regression between both groups.

The comparison of the mean segment length between groups 
employing an ANOVA revealed a significant difference in the mean 
segment length between groups (F(2,99) = 43.04, p < .001, ηp

2 = 0.47; 
Fig. 2B). Post-hoc t-tests established significant differences between the 
Free-Teen and the FG-Teen (t(64) = 6.90, p < .001, Cohen’s d = 1.70) 
and the adults (t(68) = 6.82, p < .001, Cohen’s d = 1.71), but no sig
nificant difference between the adults and the FG-Teen group could be 
found (t(66) = -.32, p = .748).

Fig. 3 presents the segmentation agreement results for each group. 
The Spearman correlation analysis of the proportion of participants 
between each pair of groups yielded the following results: between Free- 
Teen and FG-Teen, ρ = 0.719 (p < 0.001, df = 1954); between FG-Teen 
and adults, ρ = 0.742 (p < 0.001, df = 1954); and between Free-Teen 
and adults, ρ = 0.654 (p < 0.001, df = 1954). Fisher Z-transformation 
analysis revealed significant differences between ρ = 0.719 and ρ 
= 0.654 (Z = 3.854, p < 0.001), as well as between ρ = 0.742 and ρ 
= 0.654 (Z = 5.395, p < 0.001), but no significant difference between ρ 
= 0.719 and ρ = 0.742 (Z = 1.542, p = 0.123). These findings align 
with the segmentation patterns shown in Fig. 3, indicating that after the 
fine-grain instruction, the segmentation pattern of FG-Teen aligns more 
closely with adults compared to their peers.

3.2. MVPA across time

The results of the MVPA across time are shown separately for each 
group in Supplementary Fig. 1.

In the Free-Teen group, the MVPA established time windows of 
significant classification ranging from about − 203–580 ms relative to 

Fig. 2. Behavioral results of the mean event length analyses and mixed-effects logistic regression. The Free-Teen group data are shown in green, the FG-Teen group 
data in purple, and the adult group data in pink. Part A illustrates the predicted likelihood of segmentation (y-axis) as a function of the number of situational changes 
within a 2 s interval (x-axis) for the three groups. Part B displays the distribution of the mean event length within each group in boxplots. Asterisks denote significant 
differences between the groups (*** indicates p < .001).
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the event boundary, with an average AUC of.59 (AUCmin =.54, AUCmax 
=.68). In the FG-Teen group, the MVPA established time windows of 
significant classification ranging from − 557–737 ms relative to the 
event boundary, with an average AUC of.59 (AUCmin =.52, AUCmax 
=.71). In the adult group, the MVPA established time windows of sig
nificant classification ranging from − 527–770 ms relative to the event 
boundary, with an average AUC of.59 (AUCmin =.52, AUCmax =.75). The 
values of the separate significant clusters are displayed in Table 2.

Importantly, the subsequent comparison of the results revealed sig
nificant differences between each two groups (Fig. 4). Comparing the 
Free-Teen and the FG-Teen, a significantly different time window 
around the event boundary was found (-60–123 ms, Tsum = − 130.40, 
p < .001). Moreover, for the comparison of FG-Teen and adults, a sig
nificant difference was revealed around the event boundary (-130–43 
ms, Tsum = − 149.47, p = .006). Also, comparing the Free-Teen and the 
adults, large time windows with different classification accuracy could 
be established (first cluster: − 147–57 ms, Tsum = − 244.70, p < .001; 
second cluster: 107–183 ms, Tsum = − 53.40, p = .033; third cluster: 
307–407 ms, Tsum = − 75.30, p = .010).

3.2.1. Source localization (sLORETA)
The source localization by means of sLORETA was conducted for 

each group pairing based on the time windows around the event 

boundary showing significant differences between these groups in the 
MVPA across time. For the comparison between FG-Teen and adults 
(from − 130–43 ms), significant differences (t value > 3.46, α = 0.05) 
were localized in the bilateral inferior frontal gyrus (BA 44, 45 and 9; 
FG-Teen > adults; Fig. 4B). However, the comparisons between the Free- 
Teen and FG-Teen groups (from − 60–123 ms) and between the Free- 
Teen and the adult groups (from − 147–57 ms) did not yield signifi
cant differences.

3.3. Temporal generalization MVPA

Regarding the temporal generalization MVPA, the comparison re
sults between BI and NBI for each group are displayed in Fig. 5A. For the 
Free-Teen group, about 3.4 % of the classifications resulted in a signif
icant AUC value, with an average AUC of.57 (AUCmin =.51, AUCmax 
=.68) for the significant classifications. These significant classifications 
were distributed around the diagonal, spanning from approximately 
− 250–600 ms near the boundaries. For the FG-Teen group, about 
11.1 % of the classifications resulted in a significant AUC value, with an 
average AUC of.55 (AUCmin =.50, AUCmax =.71) for the significant 
classifications. These significant classifications appeared in two distinct 
parts: one part was distributed around the diagonal, spanning approxi
mately − 600–800 ms near the boundaries, while the other part was 

Table 1 
Results of the post-hoc mixed-effects logistic regression for each two groups.

comparison intercept number of changes group membership number of changes*group membership

coeff OR with 95 % CI coeff OR with 95 % CI coeff OR with 95 % CI

Free-Teen [0] vs FG-Teen [1] − 3.20 
(p < .001)

.32 
(p < .001)

1.38 
[1.33–1.43]

1.03 
(p < .001)

2.80 
[2.23–3.52]

.01 
(p = .553)

1.01 
[0.97–1.06]

FG-Teen [0] vs adults [1] − 2.17 
(p < .001)

.34 
(p < .001)

1.40 
[1.36–1.44]

− .05 
(p = .703)

0.95 
[.74–1.23]

.10 
(p < .001)

1.11 
[1.07–1.15]

Free-Teen [0] vs adults [1] − 3.21 
(p < .001)

.32 
(p < .001)

1.38 
[1.33–1.43]

.99 
(p < .001)

2.68 
[2.03–3.54]

.12 
(p < .001)

1.12 
[1.08–1.17]

The number in squared brackets behind the group name in the comparison column indicates the reference group [0] or the comparison group [1]. CI – confidence 
interval; coeff – coefficient; OR – Odds Ratio.

Fig. 3. Agreement on the locations of event boundaries across three groups. Each panel displays the proportion of participants (y-axis) from one of the three groups 
who identified event boundaries at each time point of the movies (x-axis).
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completely off-diagonal, ranging from about − 250 ms to − 100 ms for 
train time and 600–750 ms for test time. For the adult group, about 
15.6 % of the classifications resulted in a significant AUC value, with an 
average AUC of.55 (AUCmin =.51, AUCmax =.74) for the significant 
classifications. These significant classifications also appeared in two 
distinct parts: the part distributed around the diagonal, similar to the 
FG-Teen group, spanned approximately − 500–800 ms near the bound
aries. In contrast, the off-diagonal part was much larger than the FG- 
Teen group, ranging from about − 980 ms to − 20 ms for train time 
and 30–750 ms for test time.

Crucially, we also compared the AUC values between different 
groups within these significant clusters (Fig. 5B). These analyses 
revealed significant differences between the FG-Teen and adult groups 
(FG-Teen < adult) along the diagonal, spanning approximately from 

− 200–50 ms for both train and test times. Even greater differences were 
found between the Free-Teen and adult groups (Free-Teen < adult), 
spanning roughly − 250–50 ms and 300–500 ms for both train and test 
times. Lastly, no differences were observed between the Free-Teen and 
FG-Teen groups.

4. Discussion

The current study examined whether and how children, in the pro
cess of event segmentation, can exhibit adult-like responses by adjusting 
their cognitive control style after receiving metacontrol-related in
structions. To investigate this question, we presented an event seg
mentation task to adolescents and adults while concomitantly recording 
EEG using different instructions. One group of adolescents and a group 
of adults were asked to segment a movie meaningfully while watching it, 
whereas another group of adolescents was asked to perform this 
meaningful segmentation as fine-grainedly as possible. We observed that 
adolescents instructed to do the segmentation as fine-grained as possible 
were able to show behavioral and neural responses that were more 
similar to those of adults compared to their peers. Our findings provide 
the first evidence that adolescents can partially be more adults-like in 
event segmentation merely through metacontrol-related instruction, 
which likely shifts their cognitive control towards a more persistent 
state.

The behavioral data revealed that adolescents with the “fine- 
grained” instruction demonstrated more adult-like behavior compared 
to their peers: adolescents with the “fine-grained” instruction identified 
more segments than those adolescents who could freely segment the 
movie (see Fig. 2B). Thus, they performed on a similar level as the adult 
group. Furthermore, the probability of setting an event boundary given 
incoming information, such as changes in movie scenes, was higher in 
the adolescents with the “fine-grained” instruction than in the adoles
cents without these specific instructions (see Fig. 2B and Table 1), 
indicating that adolescents with the “fine-grained” instruction were 
generally more sensitive to these changes compared to their peers. 
However, compared to adults, adolescents with the “fine-grained” in
struction were not increasing their sensitivity with more changes in the 
movie as much as adults, indicating that adolescents still cannot perform 
exactly adult-like. Besides, the segmentation pattern of adolescents 
given the “fine-grained” instruction (see Fig. 3) showed greater simi
larity to that of adults compared to their peers. Thus, the metacontrol- 
related instruction partially altered how incoming information was 
processed: adolescents with “fine-grained” instructions were more 
focused and restrictive in determining whether the incoming informa
tion still fit the current working event model compared to their peers; 
however, they were still not as proficient as adults when there were 
multiple changes simultaneously.

Table 2 
MVPA results for separate clusters in all three groups.

Group Cluster Min 
time

Max 
time

Min 
AUC

Max 
AUC

Mean 
AUC

Free- 
Teen

1 − 203 
ms

− 187 ms .54 .57 .56

2 − 163 
ms

− 140 ms .54 .56 .55

3 − 113 
ms

307 ms .55 .68 .61

4 317 ms 443 ms .55 .58 .56
5 553 ms 580 ms .54 .56 .55

FG-Teen 1 − 557 
ms

− 540 ms .52 .53 .53

2 − 410 
ms

− 360 ms .52 .54 .53

3 − 350 
ms

− 327 ms .52 .54 .53

4 − 320 
ms

− 303 ms .53 .53 .53

5 − 290 
ms

607 ms .53 .71 .60

6 620 ms 737 ms .52 .54 .53
adults 1 − 527 

ms
− 513 ms .52 .52 .52

2 − 443 
ms

− 410 ms .53 .53 .53

3 − 397 
ms

− 223 ms .53 .56 .54

4 − 217 
ms

687 ms .52 .75 .61

5 693 ms 717 ms .53 .54 .54
6 750 ms 770 ms .52 .54 .53

Min Time – time point of the beginning of the cluster; Max time – time point of 
the end of the cluster. Time points are given relative to the response of the 
participant. Min AUC – minimal AUC value in the cluster; Max AUC – maximum 
AUC value in the cluster; Mean AUC – mean AUC value in the cluster.

Fig. 4. Outcome of MVPA across time for pairwise comparisons. The three panels show the Area Under the Curve (AUC) comparisons between each pair of groups for 
the across-time MVPA, with grey shadings highlight time periods showing significant differences between the groups. For the comparison of FG-teen vs adults, the 
significant sLORETA contrast in the time window of significant AUC differences between the groups is presented; color shading indicates t-value.
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Importantly, our neurophysiological findings demonstrated that 
adolescents with “fine-grained” instructions not only partially showed 
adult-like behavior in event segmentation behavior, but also changed 
their neurophysiological. Both across time and temporal generalization 
MVPA findings (see Supplementary Fig.1 and Fig. 5A) indicated that 
during the time window around boundaries, neural patterns were 
distinguishable between BI and NBI for each group (King and Dehaene, 
2014), similar to the results of Zhou et al. (Zhou et al., 2024). Subse
quent group comparisons revealed that for the MVPA across time, the 
distinguishability between BI and NBI was greater in adolescents with 
“fine-grained” instructions compared to their peers who did the free 
segmentation, yet still lower compared to adults (see Fig. 4). Intrigu
ingly, similar results were obtained for the temporal generalization 
MVPA (see Fig. 5B). For the comparison between adolescents given 
"fine-grained" instructions and adults, a significant difference was 
observed around event boundaries. In comparing adolescents who 
segmented events freely and adults, significant differences were also 
found around boundaries, with an additional significant cluster 
emerging after the boundaries. Better distinguishability implied a 
clearer differentiation between representations between BI and NBI, 
which was a fundamental aspect of a persistent cognitive control style 
(Hommel, 2015b; Hommel and Colzato, 2017a). Of note, the findings 
indicated an increase of decoding performance toward an adult-like 
level in adolescents after receiving “fine-grained” instructions, though 
it remained unclear whether the distinct patterns were similar between 
the groups. Nevertheless, these findings offered an explanation why 
adolescents with “fine-grained” instructions were more sensitive to 
changes in the movie compared to their peers but still not as sensitive as 
adults in behavioral level. Likely, adolescents with “fine-grained” 

instructions had shifted their cognitive control style towards a more 
persistent state characterized by higher levels of top-down cognitive 
control and a stronger focus on details (Hommel and Colzato, 2017b; 
Kurby and Zacks, 2008). Consequently, their working event models had 
become more stringent, leading to establishing an event boundary and 
the closure of the current event segment in response to even minor de
viations from the anticipated future (Richmond et al., 2017; Zacks et al., 
2007). Additionally, the off-diagonal clusters observed in the temporal 
generalization MVPA (Fig. 5 A) indicated the reactivation of neural 
representations before event boundaries, reflecting the influence and 
continuity between preceding and current events (Wahlheim and Zacks, 
2019; Zhou et al., 2024). Our analysis suggested that this effect was 
present in adults but absent in adolescents during free segmentation. 
However, following the “fine-grained” instruction, adolescents also 
exhibited enhanced reactivation, retrieving more information from 
recently occurred events. Prospectively, future studies should employ 
analyses to assess cross-group neural similarity to further clarify how 
adults and specifically instructed adolescents are different in their 
mental representations and which similarities they share.

The findings from the source reconstruction within the significant 
time window in the MVPA across time comparisons between groups 
provided more insights into the differences in brain activity underlying 
their different behaviors and neural representations. Heightened bilat
eral inferior frontal gyrus (IFG, see Fig. 4B) activity modulation among 
fine-grained adolescents compared to adults might suggest enhanced 
top-down attentional control within this group, as previous studies had 
linked IFG activity to top-down attentional control (Braga et al., 2013; 
Chong et al., 2008; Hampshire et al., 2010). As these adolescents aimed 
for more fine-grained event segmentation, they required increased focus 

Fig. 5. Outcome of temporal generalization MVPA for each group, along with pairwise comparisons. Test time (-1–1 s) on the x-axis and train time (-1–1 s) on the y- 
axis. Part A illustrates the classification accuracy between Boundary and No-Boundary intervals for each group, with color gradation indicating significant clusters 
based on the AUC values tested against chance level. Part B shows the effect sizes (Cohen’s d) of comparisons between each pair of groups, with color gradation 
representing significantly different clusters in time windows of significant classification within the respective groups.
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on movie details, placing greater attentional demands on them. More
over, they likely differentiated more strongly between occasions with 
and without event boundaries with respect to their attentional resources 
compared to adults who did the segmentation freely without additional 
demands, making the activity modulation larger in the adolescents 
performing the “fine-grained” instruction. Thus, the stronger IFG ac
tivity modulation observed in fine-grained adolescents likely contrib
uted to their shift towards more adult-like event processing. To achieve 
this, they utilized enhanced top-down attentional control to focus on 
details, which improved their ability to detect changes in the ongoing 
movie, leading to more prediction errors and consequently accelerating 
updates to their working event model and increasing segmentations. 
However, for the other two group comparisons, the source localization 
results did not reveal any significant differences. This could be due to the 
sensitivity of source-level analysis to the timing of the selection. The 
significant time window observed in MVPA might involve multiple 
cognitive processes, potentially engaging brain regions associated with 
each process, which could obscure distinct activity modulations and 
lead to a lack of detectable differences.

One potential limitation of our study was the influence of motor 
activity as a confounding factor in MVPA. Although the MVPA suc
cessfully distinguished between BI and NBI intervals, it is possible that 
motor-related responses, in addition to event segmentation, contributed 
to the observed neural pattern differences within groups. Importantly, 
our primary group comparison results were unaffected, as this potential 
confounding factor likely balanced out between groups, supporting the 
robustness of our main conclusions. Nevertheless, future studies should 
address this limitation by controlling for motor activity or adopting 
designs that more effectively disentangle event segmentation from 
motor responses.

5. Conclusion

Overall, our study established a connection between metacontrol 
and the developmental aspects of event segmentation, demonstrating 
how metacontrol influences the event segmentation process of adoles
cents through instruction. Compared to their peers who segmented 
events freely, adolescents instructed to segment the movie as fine- 
grained as possible were able to partially be more adult-like in both 
behavioral and neural decoding performances, potentially by adapting 
their cognitive control state toward a more persistent mode. This 
adaptation in fine-grained adolescents likely involved improved top- 
down attentional control, supported by heightened activity modula
tions in the inferior frontal gyrus. Therefore, adolescents seem to have 
some leeway to adapt their behavior to a more mature level.
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