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A B S T R A C T

Background: Non-suicidal self-injury (NSSI) is a common high-risk behavior in adolescents and it occurs in 
various psychiatric disorders, especially major depressive disorder (MDD). It remains largely unknown whether 
and which brain functional networks contribute to NSSI across youth mental disorders.
Methods: This study analyzed brain functional data acquired from 156 adolescents (MDD + NSSI group, n = 44, 
age = 15.32 ± 1.51; MDD-NSSI group, n = 32, age = 15.36 ± 1.96; healthy controls, n = 80, age = 15.92 ±
2.72). NSSI behavior, four NSSI functions (internal and external emotion regulation, social influence and 
sensation seeking), as well as the addictive feature were assessed using the Ottawa Self-injury Inventory. Using 
support vector machine recursive feature elimination classification and regression models, we investigated the 
brain functional networks that predicted NSSI. External validations were performed in an ADHD cohort (n = 40) 
and a transdiagnostic psychiatric cohort (n = 40).
Results: The brain networks related to NSSI behavior were mainly composed of inter-network connections be
tween the fronto-parietal, motor, limbic, basal ganglia networks. These networks were also associated with it 
four functions and the additive feature. Notably, the fronto-parietal network was involved in all NSSI compo
nents. External validations in both the ADHD and the transdiagnostic cohorts validated the associations of these 
functional networks with NSSI severity.
Conclusions: Our results demonstrate that the fronto-parietal, motor, limbic and basal ganglia networks play key 
roles in NSSI among youth with psychiatric disorders, offering insights into potential brain targets for prevention 
and intervention.

1. Introduction

Non-suicidal self-injury (NSSI) refers to individuals intentionally 
inflicting repeated and direct harm upon their bodies without any sui
cidal intent. This behavior encompasses various actions, including but 
not limited to cutting, scratching, and burning the skin, leading to direct 
damage to body tissues (Klonsky, 2011; Nock, 2009; Wang et al., 2022). 
Currently, NSSI is a common problematic behavior in adolescents. The 
prevalence of NSSI among adolescents reaches 20 %, and it is up to 30 % 

to 82 % among adolescents with psychiatric disorders (Lucena et al., 
2022; Wang et al., 2024). Considering that NSSI is a prevalent symptom 
in various psychiatric disorders (Bentley et al., 2015; Patel et al., 2021; 
Swanson et al., 2014), and that psychiatric disorders link with altered 
brain functional networks, there is a need to explore the brain functional 
network alterations underlying NSSI among adolescents with distinct 
psychiatric disorders. In addition, as NSSI is a multifactorial behavior, it 
is important not only to observe its occurrence but also to examine po
tential addiction/repeatability and the interpersonal and intrapersonal 
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motivations (i.e. functions) it may serve (Manca et al., 2014; Taylor 
et al., 2018). Identifying the brain functional network associations of 
NSSI occurrence, repeatability and functions may potentially provide 
valuable targets for neuromodulation-based intervention for those with 
NSSI behavior across psychiatric disorders.

Most previous imaging studies focused on the NSSI behavior per se, 
and examined functional connectivity associations by comparing in
dividuals that do or do not engage in NSSI. Researchers have found al
terations in multiple brain networks, such as the fronto-parietal, default 
mode, limbic, and reward networks. In the fronto-parietal and limbic 
networks, individuals engaging in NSSI exhibited altered functional 
connectivity between frontal lobe regions, the anterior cingulate, insula, 
parahippocampal gyrus, and the amygdala (Reitz et al., 2015; Santa
marina-Perez et al., 2019; Schreiner et al., 2017). In the default mode 
network, abnormal functional connectivity has been found between 
angular gyrus and frontoparietal regions, and between anterior cingu
late gyrus and the paracentral gyrus (Mürner-Lavanchy et al., 2023; Otto 
et al., 2023). In the reward circuits, NSSI patients showed stronger 
functional connectivity between the putamen and angular gyrus, 
cingulate gyrus, insula, and superior frontal gyrus when compared with 
healthy controls (Chen et al., 2023; Yi et al., 2023). In addition, func
tional connectivity between nucleus accumbens and inferior cerebellum 
was positively associated with NSSI severity (Chen et al., 2023). These 
findings suggested that NSSI associated with widespread brain func
tional networks. However, it should be noted that previous brain 
network studies on NSSI have mainly utilized seed-based analyses and 
independent component analyses (Chen et al., 2023; Ho et al., 2021; 
Reitz et al., 2015; Santamarina-Perez et al., 2019; Schreiner et al., 2017; 
Yi et al., 2023; Zhang et al., 2025), which mainly rely on prior knowl
edge and assumptions. This may add to inconsistent results between 
studies and miss other important brain regions or functional networks 
(Bookstein, 2001; Davatzikos, 2004; Lv et al., 2018). To gain a full 
picture of NSSI-related brain networks, it is crucial to examine the whole 
brain large-scale functional brain networks.

NSSI is characterized by addictive feature, including a strong urge to 
self-harm and repetitive behavior, similar to craving in substance use 
disorders (Victor et al., 2012). The typical characteristics of NSSI 
addiction include: the individual gradually becomes dependent on 
engaging in NSSI, cannot effectively control the thoughts of NSSI, shows 
obvious tolerance to NSSI, and continues to harm themselves despite the 
negative effects (Buser and Buser, 2013; Nixon et al., 2002). Accord
ingly, in reward-related brain regions such as the ventral striatum, NSSI 
participants showed significantly increased activation during gambling 
tasks and the monetary reward task (Sauder et al., 2016). Amygdala, 
putamen, and frontal cortex showed reduced activation, which was 
associated with an increased frequency of NSSI thoughts (Mayo et al., 
2021; Poon et al., 2019; Reitz et al., 2015). Hence, it is clear that 
addiction is an important feature of NSSI, but the large-scale brain 
networks underlying NSSI addiction have been rarely investigated.

NSSI may serve to satisfy different motivations or functional de
mands, including interpersonal and intrapersonal functions (Klonsky 
et al., 2015; Turner et al., 2012). The intrapersonal function plays a key 
role in emotion regulation, including internal and external emotion 
regulation (Guérin-Marion et al., 2018). Studies based on emotional 
tasks indicate that certain regions in the prefrontal cortex and the basal 
ganglia structures such as amygdala and putamen are involved in the 
emotional regulation function of NSSI (Mayo et al., 2021; Poon et al., 
2019; Reitz et al., 2015). Interpersonal function includes social influence 
and sensation seeking (Guérin-Marion et al., 2018). The motivation of 
social influence is to exert influence within a social context and provoke 
a response from others. Sensation seeking refers to the pursuit of sensory 
stimulation or excitement through NSSI (Guérin-Marion et al., 2018; 
Heath et al., 2009; Kentopp et al., 2021; Knorr et al., 2013). Interper
sonal functions encompass brain regions associated with the reward 
system, social cognition, and emotional resonance, including the limbic 
system and prefrontal cortex (Groschwitz et al., 2016; Osuch et al., 

2014). Few studies have investigated the structural alterations associ
ated with NSSI functions. Smaller volumes in the anterior insula, puta
men and secondary somatosensory cortex are associated with frequent 
engagement in NSSI for emotion regulation and sensation seeking 
functions (Lee et al., 2023; Wang et al., 2022). However, it remains 
largely unknown whether these NSSI functions are associated with 
large-scale brain networks.

This study sought to identify functional networks associated with 
NSSI behavior, its four functions and the addictive feature. Our primary 
cohort consisted of adolescents diagnosed with depression, considering 
the high prevalence of NSSI among them (Csorba et al., 2009; Hawton 
et al., 2013). To examine whether potential biomarkers were robust and 
replicable, we also included two validation cohorts: adolescents with 
attention deficit hyperactivity disorder (ADHD) (Hinshaw et al., 2012; 
Meza et al., 2016) and a transdiagnostic sample (Bentley et al., 2015; 
Swanson et al., 2014). Based on previous studies, we hypothesized that 
NSSI behavior, addiction, and functions relate to multiple brain func
tional networks, such as the fronto-parietal, reward and default mode 
networks.

2. Methods

2.1. Participants

The primary dataset (Dataset 1) included 156 participants from the 
Shandong Adolescent Neuroimaging of Depression (SAND), our ongoing 
project to examine the associations among brain imaging, cognition, and 
adolescent depression (Wang et al., 2022; Zhang et al., 2024). Of these, 
44 were diagnosed with major depressive disorder (MDD) and engaged 
in NSSI (MDD + NSSI group), 32 were MDD patients without NSSI 
(MDD-NSSI group), and 80 were healthy controls. Both patient groups 
were assessed by two psychiatrists from Shandong Mental Health Center 
using the DSM-5 criteria and were receiving medication treatment with 
selective serotonin reuptake inhibitors (SSRIs) antidepressants, 
including Escitalopram and Sertraline. None of the patients had co
morbid psychiatric disorders, such as schizophrenia, ADHD, alcohol use 
disorder, or autism. The detailed diagnostic and inclusion criteria were 
provided in supplemental material. Written informed consent was ob
tained from all participants and their parents. The study obtained 
approval from the ethics committee at Shandong Mental Health Center 
and Shandong Normal University.

Validation datasets included 40 patients with ADHD (Dataset 2) and 
40 patients with transdiagnostic psychiatric disorders (Dataset 3). All 
these patients had a history of NSSI and were from the Healthy Brain 
Network project (releases 1–9, http://fcon_1000.projects.nitrc.org/indi 
/cmi_healthy_brain_network/index.html). This project is a comprehen
sive study aiming at exploring the trajectory of brain development and 
identifying biomarkers associated with mental health (Alexander et al., 
2017). The HBN protocol has received ethical approval from the Ches
apeake Institutional Review Board, and informed written consent was 
obtained from the legal guardians of all participants.

2.2. Clinical assessments

In the primary dataset (Dataset 1), the Ottawa Self-injury Inventory 
was utilized to evaluate patients’ NSSI behavior, addiction and four NSSI 
functions: internal emotion regulation, external emotion regulation, 
social influence, and sensation seeking (Nixon et al., 2015; Rodav et al., 
2014). Chinese version of this inventory has been proven effective in 
measuring related indicators of NSSI in adolescents (Zhang et al., 2019). 
For each subdimension, the score was obtained by calculating the mean 
score of all items within that dimension. The higher a patient scored on a 
specific function, the more likely they were to perceive that function as 
the primary motivation to engage in NSSI (Wang et al., 2022). The 
Children’s Depression Inventory was utilized to assess the severity of 
depression, with a focus on the total score. A higher score indicated a 
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more severe depressive condition.
In validation datasets (Dataset 2 and 3), the Repetitive Behavior 

Scale was used to measure the severity of NSSI (Bodfish et al., 1999; Lam 
and Aman, 2007). This scale contained a total of 43 items, with items 7 
to 14 serving as NSSI subscales. The parent report version was adopted 
based on a 4-point Likert scale ranging from “0 - behavior did not occur” 
to “3 - behavior did occur and is a serious problem.” When filling out the 
scale, respondents were instructed to refer to the child’s situation over 
the previous month. The NSSI severity score was calculated by summing 
the scores of each item within the NSSI subscale.

2.3. Functional network construction and feature selection

Functional brain data were acquired and preprocessed in a standard 
pipeline (see supplemental material). We constructed the functional 
connectivity matrix for each subject based on the Shen functional atlas 
of 268 nodes (Shen et al., 2013). The functional connectivity between 
nodes (i.e., edges) was defined as the Pearson correlation coefficient, 
followed by a Fisher-Z transformation for each edge. Finally, a 268*268 
matrix was obtained for each subject.

After constructing the functional connectivity matrix, we performed 
feature selection by t-test (MDD + NSSI vs. MDD-NSSI, uncorrected, p <
0.01). Edges showing significant differences were selected to build up 
the feature set. We also performed the same feature selection between 
the healthy controls and two MDD groups.

2.4. Functional networks associated with NSSI behavior, addition, and its 
functions

After feature selection, we first constructed a classification model to 
identify the functional networks that were associated with NSSI 
behavior, using functional connectivity to classify the MDD-NSSI group 
and the MDD + NSSI group in Dataset 1. Here, we employed the linear 
kernel support vector machine recursive feature elimination (SVM-RFE) 
classification model (Ding et al., 2015; Richhariya et al., 2020). The core 
principle lied in iteratively removing the features (i.e., edges) that 
contribute minimally to classification. This process progressively refined 
the optimal feature subset, thereby enhancing both the model’s pre
dictive performance and generalization capability. SVM-RFE, compared 
to SVM, was particularly suitable for handling high-dimensional data. 
The detailed steps of SVM-RFE classification were provided in the sup
plemental methods. For healthy controls and two MDD group, SVM 
classification models were performed to investigate whether healthy 
controls vs. MDD + NSSI group would exhibit more abnormal brain 
functional connectivities compared to healthy controls vs. MDD-NSSI 
group. We employed accuracy to evaluate the classification perfor
mance and utilized permutation tests (n = 1000, p < 0.05) to determine 
the significance.

Based on the optimal feature set derived from the SVM-RFE classi
fication model, we utilized an SVM-RFE regression model to predict the 
NSSI addiction scores and the four function scores of NSSI in the MDD +
NSSI group (Dataset 1). The detailed steps of SVM-RFE regression were 
provided in the supplemental materials. We utilized the root mean 
square error (RMSE) to evaluate the prediction performance, and 
employed leave-one-out cross-validation and permutation test to 
determine the model significance. The functional connectivities with 
best prediction performance were depicted as brain functional networks 
associated with NSSI addiction and its functions.

2.5. Internal validation and external validation

For internal validation, we employed a stricter threshold for feature 
selection (MDD + NSSI vs. MDD-NSSI, uncorrected p < 0.005) in 
Datasets 1 and re-classified the MDD + NSSI group and the MDD-NSSI 
group using a SVM classification model. Similarly, if the model was 
statistically significant, the feature set represented the brain functional 

network associated with NSSI behavior. The internal validation was 
conducted by assessing the similarity between this network (with a 
threshold of p < 0.005) and our main findings of NSSI behavior-related 
network (with a threshold of p < 0.01). In addition, to address the issue 
of limited and imbalanced sample sizes, we implemented the Synthetic 
Minority Oversampling Technique (SMOTE) (see supplementary 
methods) to verify the robustness of our classification models (MDD +
NSSI vs. MDD − NSSI and MDD + NSSI vs. healthy controls). SMOTE is a 
widely used method that generates synthetic minority samples through 
feature-space interpolation, thereby improving model performance in 
class-imbalanced datasets.

Regarding external validation, we employed the SVM-RFE regression 
model to predict the severity of self-injury in both the ADHD cohort 
(Dataset 2) and the transdiagnostic cohort (Dataset 3). Specifically, we 
extracted the functional connectivities from the optimal SVM classifi
cation model for NSSI behavior in Dataset 1 as the feature set. We then 
used this feature set to predict NSSI severity in both the ADHD cohort 
and the transdiagnostic cohort. If all or part of these functional con
nectivities demonstrated significant predictive power for NSSI severity 
in these two external datasets, it would indicate that the brain functional 
networks associated with NSSI behavior identified in this study possess 
strong generalizability and external validity.

3. Results

3.1. Demographic and clinical characteristics

In Dataset 1, there were no significant differences in sex and age 
among the MDD + NSSI group, the MDD-NSSI group, and the healthy 
controls. These three groups showed significant differences in depres
sion severity (F = 114.71, p < 0.001, Table 1): MDD +NSSI group scored 
higher than MDD-NSSI group (p < 0.001) and healthy controls (p <
0.001); MDD-NSSI group scored higher than healthy controls (p <
0.001). Illness duration between the MDD + NSSI group and the MDD- 
NSSI group was not significantly different (t = − 1.96, p = 0.054). 
Among the four NSSI functions, internal emotion regulation had the 
highest mean score (Table 1). Demographic and diagnostic information 
for Datasets 2 and 3 are presented in Tables S1 and S2.

Table 1 
Demographic characteristics and clinical information for MDD + NSSI patients, 
MDD-NSSI patients and healthy controls (Dataset 1).

Characteristics MDD +
NSSI

MDD- 
NSSI

Healthy 
controls

F/χ2/t p

Age (Mean ± SD, year) 15.32 
± 1.51

15.36 
± 1.96

15.92 ±
2.72

1.28 0.28

Sex (Female/Male) 8\36 12\20 27\53 4.31 0.12
Children depression 

(Mean ± SD)
26.80 
± 8.96

19.97 
± 8.60

7.51 ±
4.81

114.71 <0.001

Illness duration (Mean 
± SD, month)

14.67 
± 9.21

20.37 
± 16.00

− 1.96 0.054

NSSI addiction (Mean 
± SD)

13.36 
± 7.66

NSSI functions
Internal emotion 
regulation (Mean ±
SD)

10.80 
± 9.01

Social influence 
(Mean ± SD)

7.59 ±
8.05

External emotion 
regulation (Mean ±
SD)

4.98 ±
4.57

Sensation seeking 
(Mean ± SD)

2.89 ±
3.75

SD = standard deviation. NSSI = nonsuicidal self-Injury. MDD = major 
depressive disorder.
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3.2. Functional brain networks related to NSSI behavior

In Dataset 1, t-tests between the MDD + NSSI and MDD-NSSI groups 
yielded 153 edges as the feature set (uncorrected p < 0.01). After SVM- 
RFE classification, we obtained a network containing 60 edges related to 
NSSI behavior (accuracy = 91.30 %, AUC = 0.92), and the SVM clas
sification model based on these 60 edges passed the permutation test (p 
= 0.002). Fig. 1A shows the distribution of these 60 edges that were 
related to NSSI behavior. This network primarily consisted of inter- 
network connections between the fronto-parietal and limbic, basal 
ganglia, motor, visual association, visual I, and cerebellum networks; 
between the motor and limbic, default mode, and cerebellum networks; 
and between the basal ganglia and limbic networks. In general, the 
fronto-parietal, motor, limbic, and basal ganglia networks had more 
inter-network connections with other networks.

The SVM classification models for edges that emerged from healthy 
controls vs. MDD + NSSI/MDD-NSSI groups showed high classification 
accuracy (healthy controls vs. MDD-NSSI: 314 edges, accuracy = 97.06 
%, AUC = 0.99, p = 0.001, Fig. S2A; healthy controls vs. MDD + NSSI: 
701 edges, accuracy = 81.08 %, AUC = 0.94, p = 0.003, Fig. S2B). The 
main differences between the two classification results were the pres
ence of more disturbed brain functional connectivity in healthy controls 
vs. MDD + NSSI group, primarily involving the fronto-parietal, motor 
and basal ganglia networks, which had more connections with other 
networks.

To further investigate the impact of controlling for covariates on our 
results, we conducted two additional analyses. During the feature se
lection stage, we incorporated two sets of covariates (first: age and sex; 
second: age, sex, and illness duration) and performed between-group 
comparisons using a general linear model (p = 0.01, uncorrected) to 

select features. This process yielded 127 edges (first analysis) and 158 
edges (second analysis), respectively. Based on these edges, we reap
plied the SVM-RFE classification model (MDD + NSSI group vs. MDD- 
NSSI group). The results showed that models containing 59 edges 
(first analysis, Fig. S3) and 57 edges (second analysis, Fig. S4) achieved 
optimal classification performance (first: accuracy = 91.30 %, AUC =
0.93, p = 0.003; second: accuracy = 91.30 %, AUC = 0.95, p = 0.002). 
The distribution of these edges was largely consistent with our main 
findings, indicating that the fronto-parietal, basal ganglia, motor, and 
limbic networks exhibit a greater number of inter-network connections 
with other networks.

Given that the between-group difference in illness duration was 
marginally significant (MDD + NSSI group = 14.67 ± 9.21; MDD-NSSI 
group = 20.37 ± 16.00; t = − 1.96; p = 0.054, Table 1), we further 
investigated whether illness duration influenced our main findings. To 
clarify this, we performed support vector regression using the 60 edges 
associated with NSSI behavior from our main results to predict illness 
duration across all MDD subjects. The results showed very poor pre
dictive performance (RMSE = 1.62, r = 0.15, permutation test p = 0.20), 
demonstrating that these 60 edges are relatively specific to NSSI.

3.3. Functional brain networks related to NSSI addiction

Based on the 60 edges related to NSSI behavior, we built the SVM- 
RFE regression model for NSSI addiction. The results showed that a 
model with 12 edges had the best prediction performance (RMSE =
0.66, p = 0.001). Fig. 1B shows these 12 edges related to NSSI addiction. 
These edges mainly involved inter-network connections between fronto- 
parietal and limbic and motor networks, as well as between the cere
bellum and motor networks.

Fig. 1. Functional brain networks that associated with NSSI behavior and its addiction. 60 functional edges are related to NSSI behavior (A), mainly constructed with 
inter-network connections between the fronto-parietal and limbic, basal ganglia, motor, visual association, visual I, and cerebellum networks, particularly con
nections between the fronto-parietal and limbic networks. 12 functional edges are related to NSSI addiction (B), most of which involve inter-network connections 
between the fronto-parietal, limbic and motor networks, as well as between the cerebellum and motor networks. MF = Medial Frontal, FPN = Fronto-parietal, DMN 
= Default Mode, Mot = Motor, Vis I = Visual I, Vis II = Visual II, VA = Visual Association, Lim = Limbic, BG = Basal Ganglia, Cer = Cerebellum.
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3.4. Functional brain networks related to four NSSI functions

Similarly, the SVM-RFE regression models for the four NSSI functions 
were built based on the 60 edges related to NSSI behavior. For internal 
emotion regulation, the SVM regression model with 21 edges had the 
best prediction performance (RMSE = 0.65, p = 0.001; Fig. 2A). For 
social influence, the SVM regression model with 17 edges had the best 
prediction performance (RMSE = 0.66, p = 0.001; Fig. 2B). Regarding 
external emotion regulation, the SVM regression model with 28 edges 
had the best prediction performance (RMSE = 0.66, p = 0.001; Fig. 2C). 
As to sensation seeking, the SVM regression model with 22 edges had the 
best prediction performance (RMSE = 0.72, p = 0.001; Fig. 2D).

Similar patterns of brain networks were observed for the four NSSI 
functions. The frontal-parietal, limbic, motor, basal ganglia, cerebellar 
and other networks exhibited many inter-network connections, indi
cating consistently high participation. Specifically, for internal emotion 
regulation, there were many inter-network connections between the 
frontal-parietal and limbic networks, between the basal ganglia and 
visual I networks, and between the motor and default mode and basal 
ganglia networks. For social influence, there were many inter-network 
connections between the frontal-parietal and motor networks, along 
with intra-network connections in the motor network. For external 
emotion regulation, there were many inter-network connections be
tween the frontal-parietal and visual association, limbic, basal ganglia, 
and cerebellar networks, between the motor and limbic networks, and 
between the cerebellar and basal ganglia networks. For sensation 
seeking, there were many inter-network connections between the 
frontal-parietal and visual association networks, between the motor and 
cerebellar networks, and between the basal ganglia and visual I and 
limbic networks.

3.5. Internal validation: performing feature selection using a stricter 
threshold

We conducted internal validation by constructing the SVM classifi
cation model using a stricter threshold (uncorrected p < 0.005) for the t- 
test between the MDD + NSSI and MDD-NSSI groups. A total of 69 edges 
were identified and they effectively distinguished the two groups (ac
curacy = 95.65 %, AUC = 0.96, p = 0.001, Fig. S1). Similar to the main 
results, this network was mainly composed of inter-network connections 
between the fronto-parietal and limbic networks, between the default 
mode and basal ganglia and motor networks, and between the cere
bellum and motor networks. In addition, SMOTE results demonstrated 
robust and consistent classification performance, further supporting the 
reliability of our main analyses (see Supplementary Results).

3.6. External validation: prediction of NSSI severity in the ADHD cohort 
and the transdiagnostic cohort

The 60 edges associated with NSSI behavior in Dataset 1 were used to 
construct SVM-RFE regression models for NSSI severity in the ADHD 
cohort and the transdiagnostic cohort.

A network with 23 edges showed the best prediction performance in 
the ADHD cohort (RMSE = 0.62, p = 0.001). Fig. 3A shows the distri
bution of these brain networks, which were similar to our main results 
and mainly involved the frontal-parietal, limbic, basal ganglia, motor, 
cerebellar and other networks. The most connections were observed 
between the limbic network and frontal-parietal network and between 
the cerebellar network and motor network.

In the transdiagnostic cohort, we found a network comprising 31 
edges demonstrated the best prediction performance (RMSE = 0.37, p =
0.001). Fig. 3B shows the distribution of these brain networks, which 
were generally consistent with our main findings. Brain networks 
associated with NSSI severity in the transdiagnostic cohort involved 
inter-network connections between the frontal-parietal, limbic, basal 
ganglia, motor and other networks. The most connections were observed 

between the limbic network and frontal-parietal and between the limbic 
network basal ganglia network.

4. Discussion

In the present study, we investigated brain functional networks un
derlying NSSI behavior in adolescent depression, from a large-scale 
brain functional network perspective. The brain networks related to 
NSSI behavior mainly involved connections between the fronto-parietal, 
limbic, motor and basal ganglia networks and other networks. We found 
these functional connectivities could successfully predict NSSI addiction 
and the four related functions (internal emotion regulation, social in
fluence, external emotion regulation, and sensation seeking). These re
sults were validated both internally and externally. In the ADHD and 
transdiagnostic samples, some functional connections identified in the 
primary dataset successfully predicted the severity of NSSI.

We found the involvement of the fronto-parietal, limbic, basal 
ganglia, and motor networks, despite that specific connectivity patterns 
were different for NSSI behavior, addiction, and functions. This was 
validated internally and in the external ADHD and transdiagnostic 
datasets (Dataset 2 and 3). The neuroanatomy of the network found in 
the present study mirrored previous fMRI studies of NSSI, which re
ported lesions of the connectivity in the fronto-parietal, limbic, basal 
ganglia and motor networks (Chen et al., 2023; Groschwitz et al., 2016; 
Plener et al., 2012; Schreiner et al., 2017; Yan et al., 2022). This was in 
line with the NSSI patients’ difficulties in dealing with negative emo
tions (Brañas et al., 2021; Otto et al., 2023), and their reliance on 
physical movement or sensory feedback (Oldehinkel et al., 2019; Scott, 
2016). These problems may further make them more likely to feel self- 
rewarded by NSSI behavior and thus increase the likelihood of the 
occurrence of NSSI (Haber and Knutson, 2010; Halicka-Masłowska et al., 
2020).

Among the brain networks associated with NSSI, the fronto-parietal 
network showed consistently high involvement. This suggests that ab
normalities in the fronto-parietal network might represent the core 
neural underpinnings of NSSI, despite differences in the severity of NSSI 
among patients or their motivation to engage in NSSI. Previous NSSI 
studies have also found abnormalities in the fronto-parietal network. 
Specifically, NSSI adolescents showed abnormal activation in regions 
within the fronto-parietal network, such as the superior frontal gyrus, 
cingulate gyrus, and dorsolateral prefrontal cortex, when performing 
tasks involving social feedback (Dahlgren et al., 2018; Osuch et al., 
2014; Perini et al., 2019), which is often associated with abnormal 
functioning of inhibitory control and emotional regulation (Kim et al., 
2020). The large number of inter-network connections between fronto- 
parietal and other networks (e.g., the limbic network) in our results also 
fit with the observation that NSSI patients exhibit defects in the 
expression and regulation of emotion behaviors (Weir et al., 2012). 
Hence, abnormalities in the fronto-parietal network may serve as po
tential intervention targets for treating NSSI.

Similar to NSSI behavior, our analyses on NSSI addiction and func
tions also suggested associations with functional brain networks. In 
addition to the fronto-parietal, limbic, basal ganglia, and motor net
works, we found abnormal connections of vision-related (visual associ
ation and visual I) networks to be involved in NSSI functions (Zhou et al., 
2022), especially their inter-network connections with the fronto- 
parietal network. This may reflect a synergistic effect between cogni
tive control and visual processing involving in NSSI (Noseda et al., 2019; 
Parlatini et al., 2017; Wang et al., 2014). The identified functional 
connectivity patterns involving the fronto-parietal network may reflect 
its role in modulating cognitive evaluations related to NSSI, potentially 
through regulating attention and decision-making processes. Concur
rently, the visual network’s interactions with fronto-parietal regions 
could facilitate the integration of perceptually salient stimuli that may 
be relevant to NSSI behaviors. The involvement of limbic networks in 
NSSI addiction and functions may underlie NSSI patients’ functional 
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Fig. 2. Functional brain networks that associated with four NSSI functions. 21 edges are related to internal emotion regulation (A); 17 edges are related to social 
influence (B); 28 edges are related to external emotion regulation (C); and 22 edges are related to sensation seeking (D). Similar patterns of dysfunction were 
observed in the brain networks associated with the four NSSI functions. The frontal-parietal, limbic, motor and other networks show a large number of inter-network 
connections, indicating consistent high contribution. MF = Medial Frontal, FPN = Fronto-parietal, DMN = Default Mode, Mot = Motor, Vis I = Visual I, Vis II =
Visual II, VA = Visual Association, Lim = Limbic, BG = Basal Ganglia, Cer = Cerebellum.
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impairments in reward processing and emotional regulation. NSSI 
addiction and functions could provide us with a deeper understanding of 
NSSI and should receive more attention in future neuroimaging studies 
of NSSI.

The brain networks associated with NSSI identified in this study 
shared key commonalities with those implicated in depression and 
anxiety, while also exhibiting features that were distinct from NSSI. The 
fronto-parietal, limbic, and basal ganglia networks—core components of 
the NSSI-related network—have been consistently reported as 
dysfunctional in mental disorders such as depression and anxiety 
(Bryant et al., 2024; Macpherson and Hikida, 2019; Ren et al., 2025; Tse 
et al., 2024). These networks support emotional regulation and cogni
tive control, and abnormalities in their inter-network connectivity (e.g., 
fronto-parietal–limbic dysconnectivity) were well-documented trans
diagnostic neural markers of mood disorders, reflecting overlapping 
mechanisms underlying emotional dysregulation. Importantly, the 
NSSI-related network also exhibited unique characteristics. The NSSI- 
specific edges showed poor predictive performance for depression 
duration, suggesting they were relatively specific to NSSI rather than 
reflecting depression-related processes. Furthermore, NSSI related sub- 
networks—such as inter-network connections between the fronto- 
parietal and motor networks, and between visual networks and basal 
ganglia networks—highlighted mechanisms unique to NSSI, likely sup
porting the motor execution of self-injurious acts and the sensory inte
gration required for processing self-injury–related stimuli.

Our findings provide some possible guidance for clinical practice by 
identifying fronto-parietal, limbic, basal ganglia, and motor networks as 
potential neural targets for NSSI intervention. Notably, the consistent 
involvement of the fronto-parietal network across all NSSI dimensions 
(behavior/addiction/functions) highlights it as a unified therapeutic 
target. Non-invasive neuromodulation (e.g., TMS) aimed at enhancing 

top-down cognitive control could therefore simultaneously mitigate 
multiple NSSI mechanisms. Furthermore, motor network involvement 
provides a potential biological substrate for developing sensorimotor 
based interventions. Replicated network patterns validated in ADHD 
and transdiagnostic cohorts support their utility as biomarkers for early 
identification of at-risk youth through accessible neuroimaging pro
tocols (e.g., fNIRS-based school screenings). While further validation is 
required for clinical translation, this network framework offers potential 
mechanistically-grounded stratification of prevention strategies, for 
example, fronto-parietal network-focused cognitive training for affec
tive subtypes versus motor circuit modulation for impulsive phenotypes.

This study has several limitations. First, the cross-sectional design 
precludes causal inferences and longitudinal tracking of neural devel
opmental changes of NSSI behavior. Second, the relatively small sample 
size in both the primary depressive sample and the external ADHD and 
transdiagnostic cohorts limits our capacity to fully characterize the 
heterogeneity of NSSI, including its types and frequency. Third, poten
tial confounding factors, such as types of self-injury and treatment 
period (hospitalization or pharmacotherapy), could not be systemati
cally controlled due to clinical sample constraints. Fourth, the absence 
of task-based fMRI limits our ability to directly assess brain functional 
networks during specific cognitive and emotional processes relevant to 
NSSI, such as emotion regulation, impulsivity, and cognitive control. 
While resting-state fMRI captures context-independent neural signatures 
that remain stable across conditions, it cannot replace task-based mea
sures of process-specific brain function. Fifth, medication effects could 
not be excluded in the current study, as the NSSI patients had comorbid 
depression and were receiving SSRI treatment; ethical considerations 
prevented the use of drug washout protocols. Finally, although exter
nally validated, the modest sample size warrants replication in larger 
cohorts. Future research could extend these findings by integrating 

Fig. 3. Functional brain networks that associated with NSSI severity in external datasets. In the ADHD cohort, 23 edges are associated with NSSI severity (A). In the 
transdiagnostic cohort, 31 edges are associated with NSSI severity (B). In these two results, the fronto-parietal, basal ganglia, motor and limbic networks exhibit a 
greater number of inter-network connections with other networks. These findings are generally consistent with our main results. MF = Medial Frontal, FPN = Fronto- 
parietal, DMN = Default Mode, Mot = Motor, Vis I = Visual I, Vis II = Visual II, VA = Visual Association, Lim = Limbic, BG = Basal Ganglia, Cer = Cerebellum.
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multimodal neuroimaging approaches, such as intrinsic local brain ac
tivity and structural-functional coupling (Chen et al., 2025; Deco et al., 
2022; Fotiadis et al., 2024), alongside large-scale longitudinal studies 
and task-based fMRI paradigms (Du et al., 2025; Nakua et al., 2025), 
ultimately delineating a more comprehensive neurobiological frame
work for NSSI.

5. Conclusion

In conclusion, our study identified functional brain networks asso
ciated with NSSI behavior, addiction and functions in adolescents with 
MDD. We found evidence that the fronto-parietal, limbic, motor, and 
basal ganglia networks represent the neural underpinnings of NSSI and 
the fronto-parietal network may be the key neural marker involving in 
different aspects of NSSI. These results comprehensively capture the 
brain network abnormalities underlying NSSI and point to potential 
targets for early identification, intervention and treatment.
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