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Background: Non-suicidal self-injury (NSSI) is a common high-risk behavior in adolescents and it occurs in
various psychiatric disorders, especially major depressive disorder (MDD). It remains largely unknown whether
and which brain functional networks contribute to NSSI across youth mental disorders.

Methods: This study analyzed brain functional data acquired from 156 adolescents (MDD + NSSI group, n = 44,
age = 15.32 + 1.51; MDD-NSSI group, n = 32, age = 15.36 + 1.96; healthy controls, n = 80, age = 15.92 +
2.72). NSSI behavior, four NSSI functions (internal and external emotion regulation, social influence and
sensation seeking), as well as the addictive feature were assessed using the Ottawa Self-injury Inventory. Using
support vector machine recursive feature elimination classification and regression models, we investigated the
brain functional networks that predicted NSSI. External validations were performed in an ADHD cohort (n = 40)
and a transdiagnostic psychiatric cohort (n = 40).

Results: The brain networks related to NSSI behavior were mainly composed of inter-network connections be-
tween the fronto-parietal, motor, limbic, basal ganglia networks. These networks were also associated with it
four functions and the additive feature. Notably, the fronto-parietal network was involved in all NSSI compo-
nents. External validations in both the ADHD and the transdiagnostic cohorts validated the associations of these
functional networks with NSSI severity.

Conclusions: Our results demonstrate that the fronto-parietal, motor, limbic and basal ganglia networks play key
roles in NSSI among youth with psychiatric disorders, offering insights into potential brain targets for prevention
and intervention.

1. Introduction

Non-suicidal self-injury (NSSI) refers to individuals intentionally
inflicting repeated and direct harm upon their bodies without any sui-
cidal intent. This behavior encompasses various actions, including but
not limited to cutting, scratching, and burning the skin, leading to direct
damage to body tissues (Klonsky, 2011; Nock, 2009; Wang et al., 2022).
Currently, NSSI is a common problematic behavior in adolescents. The
prevalence of NSSI among adolescents reaches 20 %, and it is up to 30 %
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to 82 % among adolescents with psychiatric disorders (Lucena et al.,
2022; Wang et al., 2024). Considering that NSSI is a prevalent symptom
in various psychiatric disorders (Bentley et al., 2015; Patel et al., 2021;
Swanson et al., 2014), and that psychiatric disorders link with altered
brain functional networks, there is a need to explore the brain functional
network alterations underlying NSSI among adolescents with distinct
psychiatric disorders. In addition, as NSSI is a multifactorial behavior, it
is important not only to observe its occurrence but also to examine po-
tential addiction/repeatability and the interpersonal and intrapersonal
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motivations (i.e. functions) it may serve (Manca et al., 2014; Taylor
et al., 2018). Identifying the brain functional network associations of
NSSI occurrence, repeatability and functions may potentially provide
valuable targets for neuromodulation-based intervention for those with
NSSI behavior across psychiatric disorders.

Most previous imaging studies focused on the NSSI behavior per se,
and examined functional connectivity associations by comparing in-
dividuals that do or do not engage in NSSI. Researchers have found al-
terations in multiple brain networks, such as the fronto-parietal, default
mode, limbic, and reward networks. In the fronto-parietal and limbic
networks, individuals engaging in NSSI exhibited altered functional
connectivity between frontal lobe regions, the anterior cingulate, insula,
parahippocampal gyrus, and the amygdala (Reitz et al., 2015; Santa-
marina-Perez et al., 2019; Schreiner et al., 2017). In the default mode
network, abnormal functional connectivity has been found between
angular gyrus and frontoparietal regions, and between anterior cingu-
late gyrus and the paracentral gyrus (Miirner-Lavanchy et al., 2023; Otto
et al.,, 2023). In the reward circuits, NSSI patients showed stronger
functional connectivity between the putamen and angular gyrus,
cingulate gyrus, insula, and superior frontal gyrus when compared with
healthy controls (Chen et al., 2023; Yi et al., 2023). In addition, func-
tional connectivity between nucleus accumbens and inferior cerebellum
was positively associated with NSSI severity (Chen et al., 2023). These
findings suggested that NSSI associated with widespread brain func-
tional networks. However, it should be noted that previous brain
network studies on NSSI have mainly utilized seed-based analyses and
independent component analyses (Chen et al., 2023; Ho et al., 2021;
Reitz et al., 2015; Santamarina-Perez et al., 2019; Schreiner et al., 2017;
Yi et al., 2023; Zhang et al., 2025), which mainly rely on prior knowl-
edge and assumptions. This may add to inconsistent results between
studies and miss other important brain regions or functional networks
(Bookstein, 2001; Davatzikos, 2004; Lv et al., 2018). To gain a full
picture of NSSI-related brain networks, it is crucial to examine the whole
brain large-scale functional brain networks.

NSSI is characterized by addictive feature, including a strong urge to
self-harm and repetitive behavior, similar to craving in substance use
disorders (Victor et al., 2012). The typical characteristics of NSSI
addiction include: the individual gradually becomes dependent on
engaging in NSSI, cannot effectively control the thoughts of NSSI, shows
obvious tolerance to NSSI, and continues to harm themselves despite the
negative effects (Buser and Buser, 2013; Nixon et al., 2002). Accord-
ingly, in reward-related brain regions such as the ventral striatum, NSSI
participants showed significantly increased activation during gambling
tasks and the monetary reward task (Sauder et al., 2016). Amygdala,
putamen, and frontal cortex showed reduced activation, which was
associated with an increased frequency of NSSI thoughts (Mayo et al.,
2021; Poon et al., 2019; Reitz et al., 2015). Hence, it is clear that
addiction is an important feature of NSSI, but the large-scale brain
networks underlying NSSI addiction have been rarely investigated.

NSSI may serve to satisfy different motivations or functional de-
mands, including interpersonal and intrapersonal functions (Klonsky
et al., 2015; Turner et al., 2012). The intrapersonal function plays a key
role in emotion regulation, including internal and external emotion
regulation (Guérin-Marion et al., 2018). Studies based on emotional
tasks indicate that certain regions in the prefrontal cortex and the basal
ganglia structures such as amygdala and putamen are involved in the
emotional regulation function of NSSI (Mayo et al., 2021; Poon et al.,
2019; Reitz et al., 2015). Interpersonal function includes social influence
and sensation seeking (Guérin-Marion et al., 2018). The motivation of
social influence is to exert influence within a social context and provoke
aresponse from others. Sensation seeking refers to the pursuit of sensory
stimulation or excitement through NSSI (Guérin-Marion et al., 2018;
Heath et al., 2009; Kentopp et al., 2021; Knorr et al., 2013). Interper-
sonal functions encompass brain regions associated with the reward
system, social cognition, and emotional resonance, including the limbic
system and prefrontal cortex (Groschwitz et al., 2016; Osuch et al.,
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2014). Few studies have investigated the structural alterations associ-
ated with NSSI functions. Smaller volumes in the anterior insula, puta-
men and secondary somatosensory cortex are associated with frequent
engagement in NSSI for emotion regulation and sensation seeking
functions (Lee et al., 2023; Wang et al., 2022). However, it remains
largely unknown whether these NSSI functions are associated with
large-scale brain networks.

This study sought to identify functional networks associated with
NSSI behavior, its four functions and the addictive feature. Our primary
cohort consisted of adolescents diagnosed with depression, considering
the high prevalence of NSSI among them (Csorba et al., 2009; Hawton
et al., 2013). To examine whether potential biomarkers were robust and
replicable, we also included two validation cohorts: adolescents with
attention deficit hyperactivity disorder (ADHD) (Hinshaw et al., 2012;
Meza et al., 2016) and a transdiagnostic sample (Bentley et al., 2015;
Swanson et al., 2014). Based on previous studies, we hypothesized that
NSSI behavior, addiction, and functions relate to multiple brain func-
tional networks, such as the fronto-parietal, reward and default mode
networks.

2. Methods
2.1. Participants

The primary dataset (Dataset 1) included 156 participants from the
Shandong Adolescent Neuroimaging of Depression (SAND), our ongoing
project to examine the associations among brain imaging, cognition, and
adolescent depression (Wang et al., 2022; Zhang et al., 2024). Of these,
44 were diagnosed with major depressive disorder (MDD) and engaged
in NSSI (MDD + NSSI group), 32 were MDD patients without NSSI
(MDD-NSSI group), and 80 were healthy controls. Both patient groups
were assessed by two psychiatrists from Shandong Mental Health Center
using the DSM-5 criteria and were receiving medication treatment with
selective serotonin reuptake inhibitors (SSRIs) antidepressants,
including Escitalopram and Sertraline. None of the patients had co-
morbid psychiatric disorders, such as schizophrenia, ADHD, alcohol use
disorder, or autism. The detailed diagnostic and inclusion criteria were
provided in supplemental material. Written informed consent was ob-
tained from all participants and their parents. The study obtained
approval from the ethics committee at Shandong Mental Health Center
and Shandong Normal University.

Validation datasets included 40 patients with ADHD (Dataset 2) and
40 patients with transdiagnostic psychiatric disorders (Dataset 3). All
these patients had a history of NSSI and were from the Healthy Brain
Network project (releases 1-9, http://fcon_1000.projects.nitrc.org/indi
/cmi_healthy _brain_network/index.html). This project is a comprehen-
sive study aiming at exploring the trajectory of brain development and
identifying biomarkers associated with mental health (Alexander et al.,
2017). The HBN protocol has received ethical approval from the Ches-
apeake Institutional Review Board, and informed written consent was
obtained from the legal guardians of all participants.

2.2. Clinical assessments

In the primary dataset (Dataset 1), the Ottawa Self-injury Inventory
was utilized to evaluate patients’ NSSI behavior, addiction and four NSSI
functions: internal emotion regulation, external emotion regulation,
social influence, and sensation seeking (Nixon et al., 2015; Rodav et al.,
2014). Chinese version of this inventory has been proven effective in
measuring related indicators of NSSI in adolescents (Zhang et al., 2019).
For each subdimension, the score was obtained by calculating the mean
score of all items within that dimension. The higher a patient scored on a
specific function, the more likely they were to perceive that function as
the primary motivation to engage in NSSI (Wang et al., 2022). The
Children’s Depression Inventory was utilized to assess the severity of
depression, with a focus on the total score. A higher score indicated a
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more severe depressive condition.

In validation datasets (Dataset 2 and 3), the Repetitive Behavior
Scale was used to measure the severity of NSSI (Bodfish et al., 1999; Lam
and Aman, 2007). This scale contained a total of 43 items, with items 7
to 14 serving as NSSI subscales. The parent report version was adopted
based on a 4-point Likert scale ranging from “0 - behavior did not occur”
to “3 - behavior did occur and is a serious problem.” When filling out the
scale, respondents were instructed to refer to the child’s situation over
the previous month. The NSSI severity score was calculated by summing
the scores of each item within the NSSI subscale.

2.3. Functional network construction and feature selection

Functional brain data were acquired and preprocessed in a standard
pipeline (see supplemental material). We constructed the functional
connectivity matrix for each subject based on the Shen functional atlas
of 268 nodes (Shen et al., 2013). The functional connectivity between
nodes (i.e., edges) was defined as the Pearson correlation coefficient,
followed by a Fisher-Z transformation for each edge. Finally, a 268*268
matrix was obtained for each subject.

After constructing the functional connectivity matrix, we performed
feature selection by t-test (MDD -+ NSSI vs. MDD-NSSI, uncorrected, p <
0.01). Edges showing significant differences were selected to build up
the feature set. We also performed the same feature selection between
the healthy controls and two MDD groups.

2.4. Functional networks associated with NSSI behavior, addition, and its
functions

After feature selection, we first constructed a classification model to
identify the functional networks that were associated with NSSI
behavior, using functional connectivity to classify the MDD-NSSI group
and the MDD + NSSI group in Dataset 1. Here, we employed the linear
kernel support vector machine recursive feature elimination (SVM-RFE)
classification model (Ding et al., 2015; Richhariya et al., 2020). The core
principle lied in iteratively removing the features (i.e., edges) that
contribute minimally to classification. This process progressively refined
the optimal feature subset, thereby enhancing both the model’s pre-
dictive performance and generalization capability. SVM-RFE, compared
to SVM, was particularly suitable for handling high-dimensional data.
The detailed steps of SVM-RFE classification were provided in the sup-
plemental methods. For healthy controls and two MDD group, SVM
classification models were performed to investigate whether healthy
controls vs. MDD + NSSI group would exhibit more abnormal brain
functional connectivities compared to healthy controls vs. MDD-NSSI
group. We employed accuracy to evaluate the classification perfor-
mance and utilized permutation tests (n = 1000, p < 0.05) to determine
the significance.

Based on the optimal feature set derived from the SVM-RFE classi-
fication model, we utilized an SVM-RFE regression model to predict the
NSSI addiction scores and the four function scores of NSSI in the MDD +
NSSI group (Dataset 1). The detailed steps of SVM-RFE regression were
provided in the supplemental materials. We utilized the root mean
square error (RMSE) to evaluate the prediction performance, and
employed leave-one-out cross-validation and permutation test to
determine the model significance. The functional connectivities with
best prediction performance were depicted as brain functional networks
associated with NSSI addiction and its functions.

2.5. Internal validation and external validation

For internal validation, we employed a stricter threshold for feature
selection (MDD + NSSI vs. MDD-NSSI, uncorrected p < 0.005) in
Datasets 1 and re-classified the MDD + NSSI group and the MDD-NSSI
group using a SVM classification model. Similarly, if the model was
statistically significant, the feature set represented the brain functional
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network associated with NSSI behavior. The internal validation was
conducted by assessing the similarity between this network (with a
threshold of p < 0.005) and our main findings of NSSI behavior-related
network (with a threshold of p < 0.01). In addition, to address the issue
of limited and imbalanced sample sizes, we implemented the Synthetic
Minority Oversampling Technique (SMOTE) (see supplementary
methods) to verify the robustness of our classification models (MDD +
NSSI vs. MDD — NSSI and MDD + NSSI vs. healthy controls). SMOTE is a
widely used method that generates synthetic minority samples through
feature-space interpolation, thereby improving model performance in
class-imbalanced datasets.

Regarding external validation, we employed the SVM-RFE regression
model to predict the severity of self-injury in both the ADHD cohort
(Dataset 2) and the transdiagnostic cohort (Dataset 3). Specifically, we
extracted the functional connectivities from the optimal SVM classifi-
cation model for NSSI behavior in Dataset 1 as the feature set. We then
used this feature set to predict NSSI severity in both the ADHD cohort
and the transdiagnostic cohort. If all or part of these functional con-
nectivities demonstrated significant predictive power for NSSI severity
in these two external datasets, it would indicate that the brain functional
networks associated with NSSI behavior identified in this study possess
strong generalizability and external validity.

3. Results
3.1. Demographic and clinical characteristics

In Dataset 1, there were no significant differences in sex and age
among the MDD + NSSI group, the MDD-NSSI group, and the healthy
controls. These three groups showed significant differences in depres-
sion severity (F=114.71, p < 0.001, Table 1): MDD + NSSI group scored
higher than MDD-NSSI group (p < 0.001) and healthy controls (p <
0.001); MDD-NSSI group scored higher than healthy controls (p <
0.001). Illness duration between the MDD + NSSI group and the MDD-
NSSI group was not significantly different (t = —1.96, p = 0.054).
Among the four NSSI functions, internal emotion regulation had the
highest mean score (Table 1). Demographic and diagnostic information
for Datasets 2 and 3 are presented in Tables S1 and S2.

Table 1
Demographic characteristics and clinical information for MDD -+ NSSI patients,
MDD-NSSI patients and healthy controls (Dataset 1).

Characteristics MDD + MDD- Healthy F/y%/t p
NSSI NSSI controls
Age (Mean =+ SD, year) 15.32 15.36 15.92 + 1.28 0.28
+ 1.51 +1.96 2.72
Sex (Female/Male) 8\36 12\20 27\53 4.31 0.12
Children depression 26.80 19.97 7.51 + 11471  <0.001
(Mean =+ SD) + 8.96 + 8.60 4.81
Illness duration (Mean  14.67 20.37 -1.96 0.054
+ SD, month) +9.21 +16.00
NSSI addiction (Mean 13.36
+ SD) +7.66
NSSI functions
Internal emotion 10.80
regulation (Mean + 4+ 9.01
SD)
Social influence 7.59 +
(Mean =+ SD) 8.05
External emotion 4.98 +

regulation (Mean + 4.57

SD)
Sensation seeking 2.89 +
(Mean =+ SD) 3.75

SD = standard deviation. NSSI = nonsuicidal self-Injury. MDD = major
depressive disorder.
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3.2. Functional brain networks related to NSSI behavior

In Dataset 1, t-tests between the MDD + NSSI and MDD-NSSI groups
yielded 153 edges as the feature set (uncorrected p < 0.01). After SVM-
RFE classification, we obtained a network containing 60 edges related to
NSSI behavior (accuracy = 91.30 %, AUC = 0.92), and the SVM clas-
sification model based on these 60 edges passed the permutation test (p
= 0.002). Fig. 1A shows the distribution of these 60 edges that were
related to NSSI behavior. This network primarily consisted of inter-
network connections between the fronto-parietal and limbic, basal
ganglia, motor, visual association, visual I, and cerebellum networks;
between the motor and limbic, default mode, and cerebellum networks;
and between the basal ganglia and limbic networks. In general, the
fronto-parietal, motor, limbic, and basal ganglia networks had more
inter-network connections with other networks.

The SVM classification models for edges that emerged from healthy
controls vs. MDD + NSSI/MDD-NSSI groups showed high classification
accuracy (healthy controls vs. MDD-NSSI: 314 edges, accuracy = 97.06
%, AUC = 0.99, p = 0.001, Fig. S2A; healthy controls vs. MDD + NSSI:
701 edges, accuracy = 81.08 %, AUC = 0.94, p = 0.003, Fig. S2B). The
main differences between the two classification results were the pres-
ence of more disturbed brain functional connectivity in healthy controls
vs. MDD + NSSI group, primarily involving the fronto-parietal, motor
and basal ganglia networks, which had more connections with other
networks.

To further investigate the impact of controlling for covariates on our
results, we conducted two additional analyses. During the feature se-
lection stage, we incorporated two sets of covariates (first: age and sex;
second: age, sex, and illness duration) and performed between-group
comparisons using a general linear model (p = 0.01, uncorrected) to
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select features. This process yielded 127 edges (first analysis) and 158
edges (second analysis), respectively. Based on these edges, we reap-
plied the SVM-RFE classification model (MDD + NSSI group vs. MDD-
NSSI group). The results showed that models containing 59 edges
(first analysis, Fig. S3) and 57 edges (second analysis, Fig. S4) achieved
optimal classification performance (first: accuracy = 91.30 %, AUC =
0.93, p = 0.003; second: accuracy = 91.30 %, AUC = 0.95, p = 0.002).
The distribution of these edges was largely consistent with our main
findings, indicating that the fronto-parietal, basal ganglia, motor, and
limbic networks exhibit a greater number of inter-network connections
with other networks.

Given that the between-group difference in illness duration was
marginally significant (MDD + NSSI group = 14.67 + 9.21; MDD-NSSI
group = 20.37 + 16.00; t = —1.96; p = 0.054, Table 1), we further
investigated whether illness duration influenced our main findings. To
clarify this, we performed support vector regression using the 60 edges
associated with NSSI behavior from our main results to predict illness
duration across all MDD subjects. The results showed very poor pre-
dictive performance (RMSE = 1.62, r = 0.15, permutation test p = 0.20),
demonstrating that these 60 edges are relatively specific to NSSI.

3.3. Functional brain networks related to NSSI addiction

Based on the 60 edges related to NSSI behavior, we built the SVM-
RFE regression model for NSSI addiction. The results showed that a
model with 12 edges had the best prediction performance (RMSE =
0.66, p = 0.001). Fig. 1B shows these 12 edges related to NSSI addiction.
These edges mainly involved inter-network connections between fronto-
parietal and limbic and motor networks, as well as between the cere-
bellum and motor networks.
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Fig. 1. Functional brain networks that associated with NSSI behavior and its addiction. 60 functional edges are related to NSSI behavior (A), mainly constructed with
inter-network connections between the fronto-parietal and limbic, basal ganglia, motor, visual association, visual I, and cerebellum networks, particularly con-
nections between the fronto-parietal and limbic networks. 12 functional edges are related to NSSI addiction (B), most of which involve inter-network connections
between the fronto-parietal, limbic and motor networks, as well as between the cerebellum and motor networks. MF = Medial Frontal, FPN = Fronto-parietal, DMN
= Default Mode, Mot = Motor, Vis I = Visual I, Vis II = Visual II, VA = Visual Association, Lim = Limbic, BG = Basal Ganglia, Cer = Cerebellum.
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3.4. Functional brain networks related to four NSSI functions

Similarly, the SVM-RFE regression models for the four NSSI functions
were built based on the 60 edges related to NSSI behavior. For internal
emotion regulation, the SVM regression model with 21 edges had the
best prediction performance (RMSE = 0.65, p = 0.001; Fig. 2A). For
social influence, the SVM regression model with 17 edges had the best
prediction performance (RMSE = 0.66, p = 0.001; Fig. 2B). Regarding
external emotion regulation, the SVM regression model with 28 edges
had the best prediction performance (RMSE = 0.66, p = 0.001; Fig. 2C).
As to sensation seeking, the SVM regression model with 22 edges had the
best prediction performance (RMSE = 0.72, p = 0.001; Fig. 2D).

Similar patterns of brain networks were observed for the four NSSI
functions. The frontal-parietal, limbic, motor, basal ganglia, cerebellar
and other networks exhibited many inter-network connections, indi-
cating consistently high participation. Specifically, for internal emotion
regulation, there were many inter-network connections between the
frontal-parietal and limbic networks, between the basal ganglia and
visual I networks, and between the motor and default mode and basal
ganglia networks. For social influence, there were many inter-network
connections between the frontal-parietal and motor networks, along
with intra-network connections in the motor network. For external
emotion regulation, there were many inter-network connections be-
tween the frontal-parietal and visual association, limbic, basal ganglia,
and cerebellar networks, between the motor and limbic networks, and
between the cerebellar and basal ganglia networks. For sensation
seeking, there were many inter-network connections between the
frontal-parietal and visual association networks, between the motor and
cerebellar networks, and between the basal ganglia and visual I and
limbic networks.

3.5. Internal validation: performing feature selection using a stricter
threshold

We conducted internal validation by constructing the SVM classifi-
cation model using a stricter threshold (uncorrected p < 0.005) for the t-
test between the MDD -+ NSSI and MDD-NSSI groups. A total of 69 edges
were identified and they effectively distinguished the two groups (ac-
curacy = 95.65 %, AUC = 0.96, p = 0.001, Fig. S1). Similar to the main
results, this network was mainly composed of inter-network connections
between the fronto-parietal and limbic networks, between the default
mode and basal ganglia and motor networks, and between the cere-
bellum and motor networks. In addition, SMOTE results demonstrated
robust and consistent classification performance, further supporting the
reliability of our main analyses (see Supplementary Results).

3.6. External validation: prediction of NSSI severity in the ADHD cohort
and the transdiagnostic cohort

The 60 edges associated with NSSI behavior in Dataset 1 were used to
construct SVM-RFE regression models for NSSI severity in the ADHD
cohort and the transdiagnostic cohort.

A network with 23 edges showed the best prediction performance in
the ADHD cohort (RMSE = 0.62, p = 0.001). Fig. 3A shows the distri-
bution of these brain networks, which were similar to our main results
and mainly involved the frontal-parietal, limbic, basal ganglia, motor,
cerebellar and other networks. The most connections were observed
between the limbic network and frontal-parietal network and between
the cerebellar network and motor network.

In the transdiagnostic cohort, we found a network comprising 31
edges demonstrated the best prediction performance (RMSE = 0.37,p =
0.001). Fig. 3B shows the distribution of these brain networks, which
were generally consistent with our main findings. Brain networks
associated with NSSI severity in the transdiagnostic cohort involved
inter-network connections between the frontal-parietal, limbic, basal
ganglia, motor and other networks. The most connections were observed
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between the limbic network and frontal-parietal and between the limbic
network basal ganglia network.

4. Discussion

In the present study, we investigated brain functional networks un-
derlying NSSI behavior in adolescent depression, from a large-scale
brain functional network perspective. The brain networks related to
NSSI behavior mainly involved connections between the fronto-parietal,
limbic, motor and basal ganglia networks and other networks. We found
these functional connectivities could successfully predict NSSI addiction
and the four related functions (internal emotion regulation, social in-
fluence, external emotion regulation, and sensation seeking). These re-
sults were validated both internally and externally. In the ADHD and
transdiagnostic samples, some functional connections identified in the
primary dataset successfully predicted the severity of NSSL

We found the involvement of the fronto-parietal, limbic, basal
ganglia, and motor networks, despite that specific connectivity patterns
were different for NSSI behavior, addiction, and functions. This was
validated internally and in the external ADHD and transdiagnostic
datasets (Dataset 2 and 3). The neuroanatomy of the network found in
the present study mirrored previous fMRI studies of NSSI, which re-
ported lesions of the connectivity in the fronto-parietal, limbic, basal
ganglia and motor networks (Chen et al., 2023; Groschwitz et al., 2016;
Plener et al., 2012; Schreiner et al., 2017; Yan et al., 2022). This was in
line with the NSSI patients’ difficulties in dealing with negative emo-
tions (Branas et al., 2021; Otto et al., 2023), and their reliance on
physical movement or sensory feedback (Oldehinkel et al., 2019; Scott,
2016). These problems may further make them more likely to feel self-
rewarded by NSSI behavior and thus increase the likelihood of the
occurrence of NSSI (Haber and Knutson, 2010; Halicka-Mastowska et al.,
2020).

Among the brain networks associated with NSSI, the fronto-parietal
network showed consistently high involvement. This suggests that ab-
normalities in the fronto-parietal network might represent the core
neural underpinnings of NSSI, despite differences in the severity of NSSI
among patients or their motivation to engage in NSSI. Previous NSSI
studies have also found abnormalities in the fronto-parietal network.
Specifically, NSSI adolescents showed abnormal activation in regions
within the fronto-parietal network, such as the superior frontal gyrus,
cingulate gyrus, and dorsolateral prefrontal cortex, when performing
tasks involving social feedback (Dahlgren et al., 2018; Osuch et al.,
2014; Perini et al., 2019), which is often associated with abnormal
functioning of inhibitory control and emotional regulation (Kim et al.,
2020). The large number of inter-network connections between fronto-
parietal and other networks (e.g., the limbic network) in our results also
fit with the observation that NSSI patients exhibit defects in the
expression and regulation of emotion behaviors (Weir et al., 2012).
Hence, abnormalities in the fronto-parietal network may serve as po-
tential intervention targets for treating NSSI.

Similar to NSSI behavior, our analyses on NSSI addiction and func-
tions also suggested associations with functional brain networks. In
addition to the fronto-parietal, limbic, basal ganglia, and motor net-
works, we found abnormal connections of vision-related (visual associ-
ation and visual I) networks to be involved in NSSI functions (Zhou et al.,
2022), especially their inter-network connections with the fronto-
parietal network. This may reflect a synergistic effect between cogni-
tive control and visual processing involving in NSSI (Noseda et al., 2019;
Parlatini et al., 2017; Wang et al., 2014). The identified functional
connectivity patterns involving the fronto-parietal network may reflect
its role in modulating cognitive evaluations related to NSSI, potentially
through regulating attention and decision-making processes. Concur-
rently, the visual network’s interactions with fronto-parietal regions
could facilitate the integration of perceptually salient stimuli that may
be relevant to NSSI behaviors. The involvement of limbic networks in
NSSI addiction and functions may underlie NSSI patients’ functional
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Fig. 2. Functional brain networks that associated with four NSSI functions. 21 edges are related to internal emotion regulation (A); 17 edges are related to social
influence (B); 28 edges are related to external emotion regulation (C); and 22 edges are related to sensation seeking (D). Similar patterns of dysfunction were
observed in the brain networks associated with the four NSSI functions. The frontal-parietal, limbic, motor and other networks show a large number of inter-network
connections, indicating consistent high contribution. MF = Medial Frontal, FPN = Fronto-parietal, DMN = Default Mode, Mot = Motor, Vis I = Visual I, Vis II =
Visual II, VA = Visual Association, Lim = Limbic, BG = Basal Ganglia, Cer = Cerebellum.
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Fig. 3. Functional brain networks that associated with NSSI severity in external datasets. In the ADHD cohort, 23 edges are associated with NSSI severity (A). In the
transdiagnostic cohort, 31 edges are associated with NSSI severity (B). In these two results, the fronto-parietal, basal ganglia, motor and limbic networks exhibit a
greater number of inter-network connections with other networks. These findings are generally consistent with our main results. MF = Medial Frontal, FPN = Fronto-
parietal, DMN = Default Mode, Mot = Motor, Vis I = Visual I, Vis II = Visual II, VA = Visual Association, Lim = Limbic, BG = Basal Ganglia, Cer = Cerebellum.

impairments in reward processing and emotional regulation. NSSI
addiction and functions could provide us with a deeper understanding of
NSSI and should receive more attention in future neuroimaging studies
of NSSIL

The brain networks associated with NSSI identified in this study
shared key commonalities with those implicated in depression and
anxiety, while also exhibiting features that were distinct from NSSI. The
fronto-parietal, limbic, and basal ganglia networks—core components of
the NSSI-related network—have been consistently reported as
dysfunctional in mental disorders such as depression and anxiety
(Bryant et al., 2024; Macpherson and Hikida, 2019; Ren et al., 2025; Tse
et al., 2024). These networks support emotional regulation and cogni-
tive control, and abnormalities in their inter-network connectivity (e.g.,
fronto-parietal-limbic dysconnectivity) were well-documented trans-
diagnostic neural markers of mood disorders, reflecting overlapping
mechanisms underlying emotional dysregulation. Importantly, the
NSSI-related network also exhibited unique characteristics. The NSSI-
specific edges showed poor predictive performance for depression
duration, suggesting they were relatively specific to NSSI rather than
reflecting depression-related processes. Furthermore, NSSI related sub-
networks—such as inter-network connections between the fronto-
parietal and motor networks, and between visual networks and basal
ganglia networks—highlighted mechanisms unique to NSSI, likely sup-
porting the motor execution of self-injurious acts and the sensory inte-
gration required for processing self-injury-related stimuli.

Our findings provide some possible guidance for clinical practice by
identifying fronto-parietal, limbic, basal ganglia, and motor networks as
potential neural targets for NSSI intervention. Notably, the consistent
involvement of the fronto-parietal network across all NSSI dimensions
(behavior/addiction/functions) highlights it as a unified therapeutic
target. Non-invasive neuromodulation (e.g., TMS) aimed at enhancing

top-down cognitive control could therefore simultaneously mitigate
multiple NSSI mechanisms. Furthermore, motor network involvement
provides a potential biological substrate for developing sensorimotor
based interventions. Replicated network patterns validated in ADHD
and transdiagnostic cohorts support their utility as biomarkers for early
identification of at-risk youth through accessible neuroimaging pro-
tocols (e.g., fNIRS-based school screenings). While further validation is
required for clinical translation, this network framework offers potential
mechanistically-grounded stratification of prevention strategies, for
example, fronto-parietal network-focused cognitive training for affec-
tive subtypes versus motor circuit modulation for impulsive phenotypes.

This study has several limitations. First, the cross-sectional design
precludes causal inferences and longitudinal tracking of neural devel-
opmental changes of NSSI behavior. Second, the relatively small sample
size in both the primary depressive sample and the external ADHD and
transdiagnostic cohorts limits our capacity to fully characterize the
heterogeneity of NSSI, including its types and frequency. Third, poten-
tial confounding factors, such as types of self-injury and treatment
period (hospitalization or pharmacotherapy), could not be systemati-
cally controlled due to clinical sample constraints. Fourth, the absence
of task-based fMRI limits our ability to directly assess brain functional
networks during specific cognitive and emotional processes relevant to
NSSI, such as emotion regulation, impulsivity, and cognitive control.
While resting-state fMRI captures context-independent neural signatures
that remain stable across conditions, it cannot replace task-based mea-
sures of process-specific brain function. Fifth, medication effects could
not be excluded in the current study, as the NSSI patients had comorbid
depression and were receiving SSRI treatment; ethical considerations
prevented the use of drug washout protocols. Finally, although exter-
nally validated, the modest sample size warrants replication in larger
cohorts. Future research could extend these findings by integrating
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multimodal neuroimaging approaches, such as intrinsic local brain ac-
tivity and structural-functional coupling (Chen et al., 2025; Deco et al.,
2022; Fotiadis et al., 2024), alongside large-scale longitudinal studies
and task-based fMRI paradigms (Du et al., 2025; Nakua et al., 2025),
ultimately delineating a more comprehensive neurobiological frame-
work for NSSI.

5. Conclusion

In conclusion, our study identified functional brain networks asso-
ciated with NSSI behavior, addiction and functions in adolescents with
MDD. We found evidence that the fronto-parietal, limbic, motor, and
basal ganglia networks represent the neural underpinnings of NSSI and
the fronto-parietal network may be the key neural marker involving in
different aspects of NSSI. These results comprehensively capture the
brain network abnormalities underlying NSSI and point to potential
targets for early identification, intervention and treatment.
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