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a b s t r a c t

Individuals organize the evolving stream of events in their environment by partitioning it

into discrete units. Event segmentation theory (EST) provides a cognitive explanation for

the process of this partitioning. Critically, the underlying time-resolved neural mecha-

nisms are not understood, and thus a central conceptual aspect of how humans implement

this central ability is missing. To gain better insight into the fundamental temporal dy-

namics of event segmentation, EEG oscillatory activity was measured while participants

watched a narrative video and partitioned the movie into meaningful segments. Using EEG

beamforming methods, we show that theta, alpha, and beta band activity in frontal, pa-

rietal, and occipital areas, as well as their interactions, reflect critical elements of the event

segmentation process established by EST. In sum, we see a mechanistic temporal chain of

processes that provides the neurophysiological basis for how the brain partitions and

structures continuously evolving scenes and points to an integrated system that organizes

the various subprocesses of event segmentation. This study thus integrates neurophysi-

ology and cognitive theory to better understand how the human brain operates in rather

variable and unpredictable situations. Therefore, it represents an important step toward

studying neurophysiological dynamics in ecologically valid and naturalistic settings and, in

doing so, addresses a critical gap in knowledge regarding the temporal dynamics of how

the brain structures natural scenes.
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1. Introduction

In the face of complex, ongoing streams of events in our

environment, agents likely organize “what is happening”

around by segmenting dynamic scenes into discrete repre-

sentational units (Franklin, Norman, Ranganath, Zacks, &

Gershman, 2020; Richmond & Zacks, 2017; Zacks, 2020;

Zacks, Speer, Swallow, Braver, & Reynolds, 2007), which in

turn serve to orchestrate adaptive behavioral control. Event

Segmentation Theory (EST) is the most comprehensive theo-

retical framework for capturing the processes involved in the

building of discrete events on a cognitive level (Sargent et al.,

2013; Zacks, Speer, & Reynolds, 2009): Aspects of “what is

happening now” are integrated to a working event model, so

the idea, which is supposed to work back on perceptual pro-

cesses in a loop by biasing sensory processing, based on, and

in concert with (top-down) modulations provided by long-

lasting memory representations (i.e. event schemata) (Zacks

& Sargent, 2010). These schemata result from previous expe-

rience and provide expectations based on world-knowledge

about highly probable event sequences (e.g., a bus arriving

while waiting on a bus stop). The working event model's per-

formance to predict what is coming up next is evaluated by

error detection mechanisms comparing the working event

model's predictions to what actually happens. Whenever

predictions fail, the representation of an event segment in

working memory is closed and the representation of a new

segment is opened.

While several fMRI studies have delineated neural dynamics

related to the event segmentation processes in several brain

regions, for instance, the lateral prefrontal cortex and the

anterior cingulate cortex (Baldassano et al., 2017; Hasson, Nir,

Levy, Fuhrmann, & Malach, 2004; Kurby & Zacks, 2008;

Magliano & Zacks, 2011; Speer, Zacks, & Reynolds, 2007, 2009;

Zacks et al., 2001, 2007, 2010), the temporal neural dynamics

underlying event segmentation are largely contentious. This

gap in research is a conceptual problem because the process of

dissecting an ongoing stream of information into discrete seg-

ments is necessarily a process defined by temporal aspects (i.e.,

how a situation evolves). Related to this, it is neural oscillatory

activity at different frequencies which reflects a fundamental

principle of information processing in the brain (Beste,

Münchau, & Frings, 2023; Buzs�aki, Logothetis, & Singer, 2013;

Varela, Lachaux, Rodriguez, & Martinerie, 2001) and which is

also of relevance when it comes to the question of how infor-

mation is being integrated (Engel & Singer, 2001; Singer, 2011).

The fact that these processes in event segmentation have not

yet been thoroughly investigated e although they are of con-

ceptual relevance e is partly due to the difficulty of applying

electrophysiological methods (e.g., EEG) developed and vali-

dated in artificial situations with predefined, clear-cut units/

segments of interest (i.e., trials) to more variable and a priori

unpredictable situations in which these units of interest are

continuously defined by the person themselves (e.g., while

watching a movie). In the current study we adapted EEG anal-

ysismethods to enable a conceptuallymeaningful examination

of oscillatory activity during movie scene comprehension and

segmentation. This provides an important step towards amore

ecologically valid neurophysiology of higher-level cognitive
processes and towards a mechanistic understanding of how

the human brain organizes the continuous stream of events

happening around us.

According to the EST, important components of the event

segmentation process are the working event model, which re-

fers to the currently active representation of the situation, and

the event schema, which refers to the long-term representation

of how similar situations or events normally proceed (Zacks,

2020; Zacks et al., 2007; Zacks & Sargent, 2010). Alpha band

activity (ABA) is thought tomainly reflect the inhibitory gating

mechanisms controlling access of information to a long-term

“knowledge system” and working memory (Klimesch, 2011,

2012; Klimesch, Sauseng, &Hanslmayr, 2007; Roux& Uhlhaas,

2014). Since long-term knowledge and event schemata share

conceptual similarities, one central mechanistic element in

the way the brain structures natural scenes, may be reflected

in ABA. Furthermore, the EST supposes the monitoring and

updating of working event models (Zacks & Sargent, 2010), in

the sense that the current status of the environment in rela-

tion to individuals’ goals and assumptions about the world

around them is continuously evaluated. Monitoring, main-

taining, and updating the expected “status quo” is likely re-

flected in beta band activity (BBA) (Engel & Fries, 2010;

Jenkinson & Brown, 2011; Spitzer & Haegens, 2017), as is an

endogenously controlled transfer of latent memory content

into current working memory (Spitzer & Haegens, 2017). Both

aspects are relevant considering the role of working event

models and their interplay with event schemata in the EST,

which is why besides ABA, also BBA may be relevant in how

the brain structures natural scenes. Moreover, ABA and BBA

may show close inter-relations, because the control of access

of information stored in a “knowledge system” (cf. ABA) and

the monitoring of status quo as well as the transfer of infor-

mation between memory systems (cf. BBA) show close con-

ceptual inter-dependencies. Another central assumption of

EST is that boundaries between successive event segments

are set whenever predictions based on the current working

event model fail (Zacks et al., 2007; Zacks & Sargent, 2010).

Such signaling has been ascribed to theta band activity (TBA)

modulations (Cavanagh, Frank, Klein, & Allen, 2010, 2012;

Cavanagh & Frank, 2014), which is also important during

attentional sampling of the environment (Busch & VanRullen,

2010; Fiebelkorn et al., 2013; Kienitz et al., 2018; Landau &

Fries, 2012; Spyropoulos, Bosman, & Fries, 2018; VanRullen &

Dubois, 2011; VanRullen, Carlson, & Cavanagh, 2007;

Wendiggensen, Ghin, Koyun, Stock, & Beste, 2022). Therefore,

TBA may be a third mechanistic element. All three elements,

TBA, ABA and BBA, may show inter-relations or a mechanistic

chaining of processes. As these three frequency bands reflect

the mechanistic elements described in the EST, there are no

hypotheses and thus no analyses on any other frequency

bands.
2. Material and methods

We report how we determined our sample size, all data ex-

clusions, all inclusion/exclusion criteria, whether inclusion/

exclusion criteria were established prior to data analysis, all

manipulations, and all measures in the study.
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2.1. Participants

The study included N ¼ 34 young healthy individuals, ranging

in age from 18 to 30 years. N ¼ 4 individuals had to be dis-

carded to due problems in data recording. The final analyses

thus included data from 30 individuals (13 females and 17

males, mean age 25.43 ± 2.95 years). Considering previous

studies on event segmentation (Eisenberg, Zacks, & Flores,

2018; Kurby & Zacks, 2011; Zacks et al., 2009, 2010) and EEG

studies (Bensmann, Zink, Werner, Beste, & Stock, 2020;

Guttmann-Flury, Sheng, Zhang, & Zhu, 2019; Hong, Sun,

Wang, Li, & Tong, 2020; Takacs & Beste, 2023), this number

of participants should be sufficient to analyze event segmen-

tation and related neurophysiological processes. Participants

were recruited through the University Clinic Carl Gustav

Carus and the Technical University of Dresden's database as

well as advertisements. Participants were screened prior to

participation to ensure that they had no history of neurolog-

ical or psychiatric disorder, normal or corrected-to-normal

vision, no chronic or acute medication, and no history of

substance abuse or dependence. At the time of the experi-

ment, participants provided written informed consent and

were compensated for their participation with 10 EUR. The

local ethics committee of the Medical Faculty of the Technical

University of Dresden approved the study. No part of the study

procedures and analyses have been preregistered.

2.2. Task

Participants started the experiment with a practice session.

The practice video clip presented a man assembling a boat

using “Duplo” construction blocks (Zacks et al., 2009). Partici-

pants were instructed to segment the movie by pressing the

space button to indicate the time that they perceived some-

thing (e.g., action, behavior, interaction) was ending or

something in themovie was about to start. It was stated in the

instruction as well that there is no right or wrong answer and

only their individual assessment is important. Following the

practice session, participants watched the well-established

movie “The Red Balloon” [Lamorisse & (Director), 1956,

October 19] and at the same time the EEG was recorded. In the

movie “The Red Balloon” the relationship of a little boy and a

balloon who become friends is depicted. This movie has

several specific characteristics that make it suitable for

examining event segmentation, such as a small amount of

spoken language, frequent situational changes, and nearly no

jumps in time (Magliano & Zacks, 2011; Zacks et al., 2009,

2010). The film was divided into four 7e10 min episodes

(lengths of 463.3, 468.4, 446.2, and 600.6 sec); with pauses in

between each clip (Zacks et al., 2009). By tapping the space

button, participants were able to resume the task. All of the

videos were shown using the “Presentation” software (Neu-

roBehavioral Systems Inc.). Different from the previous study

(Zacks et al., 2009), the participants did not watch the movie a

second time without pressing any keys, as task compliance

could not have been ensured in this case and the data could

thus neither be evaluated as event-related nor as resting-

state. Also, no motor control condition such as free key

pressing was implemented, as here no examination of

possible internal rules/strategies of the participants would
have been possible. Thus, in both cases, the obtained data

would have been hardly analyzable.

Situational changes in each video clip of “The Red Balloon”

had already been specified and scored frame by frame for nine

types of situational changes during the study by Zacks et al.

(2009) and has been validated in their study. Therefore, this

established rating scheme was also applied in the current

study. The documentation of the situational changes, the code

and stimuli of the paradigm as well as the behavioral and

neurophysiological data of the study have been deposited

under the following link: https://osf.io/zsfx8/

The changes are characterized as follows: (i) “Character

change” when the focus of the action was an animate char-

acter or characters, and this emphasis was changed from the

previous frame. (ii) “Character-character change”, which was

referring to the interactions, such as touching, conversing,

gesturing, or coming together while walking or running. It

thus reflects alterations in the physical or abstract in-

teractions between characters. (iii) “Character-object change”,

described as the time a character's interaction with an object

changed, such as the time they picked up an object or started

using an object they already had in a new way. (iv) “Temporal

change” was happening when a frame was temporally

discontinuous from the frame before. (v) “Large Space change”

and (vi) “Small Space change” reflect a location change of the

character from the previous scene to the next one or changes

in the narrative point of view regarding the level of the shots,

respectively. (vii) “Cause changes”, which occurred when the

activity in a frame could not be justified by something seen in

the previous frame. (viii) “Goal change” is coded as the time at

which a film character took an action connected with a goal

different from the one in the previous frame. The last change

was characterized as a (ix) “Scene change”, which referred to

the time that a whole shot changed to a new one. For the

behavioral analysis, each clip in the movie was divided into

intervals of 2 sec (982 intervals in total), which is in line with

previous studies (Zacks et al., 2009). The intervals were either

categorized as Boundary interval, if a button press marked an

event boundary occurred in it, or as No-Boundary interval, if

no button press occurred in it. Further, the changes per in-

terval were counted, both collectively and separately by

change type.

2.3. EEG recording and pre-processing

EEG signals were recorded from 60 Ag/AgCl electrodes at

equidistant scalp positions (reference electrode at FPz, ground

electrode at q ¼ 58, 4 ¼ 78) mounted in an elastic cap (EasyCap

Inc.) while participants were watching the movie. The EEG

was recorded using a BrainAmp amplifier (Brain Products

Inc.). The sampling rate was at 500 Hz, which was then down-

sampled offline to 300 Hz in order to align the sampling rate of

the EEG data with the frame rate of the presented movie

(30 Hz). The electrode impedances were kept under 5 kU. The

“Automagic” pipeline (Pedroni, Bahreini, & Langer, 2019) and

EEGLAB (Delorme & Makeig, 2004) running on MATLAB 2019a

(The MathWorks Corp) were used for EEG pre-processing. Flat

channels were eliminated in the first step (removing .70 ± .99

channels per participant on average), and the EEG data were

re-referenced to an average reference. The PREP preparation

https://osf.io/zsfx8/
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pipeline (Bigdely-Shamlo, Mullen, Kothe, Su, & Robbins, 2015)

was then used, followed by the EEGLAB “clean rawdata()”

pipeline. PREP uses a multitaper algorithm to remove line

noise at 50 Hz and then adds a robust average reference after

removing contamination by bad channels. The “clean raw-

data()” procedure starts by detrending the EEG data with a

.5 Hz FIR high-pass filter (order 1286, stop-band attenuation

�80 dB, transition band .25 - .75 Hz). Channels that were flat-

lined (below 5 mV for a duration exceeding 5000 ms), noisy

(based on the standard deviationwithin a channel), or outliers

(correlation with other channels below .85 in more than 40 %

of time points) were identified and removed (8.27 ± 3.97

channels per participant on average). Artifact Subspace

Reconstruction was used to reconstruct epochs in the

segmented data (see below) with abnormally strong power

(>15 standard deviations relative to calibration data) [ASR;

burst criterion: 15 (Mullen et al., 2013)]. Time windows that

could not be reconstructed were removed. A lowpass filter of

40 Hz [pop_eegfiltnew() function in EEGLAB; sinc FIR filter;

order: 86 (Widmann, Schr€oger, & Maess, 2015)] was applied. A

subtraction method was used to remove EOG artifacts (Parra,

Spence, Gerson, & Sajda, 2005). The Independent component

analysis (ICA) automatically categorized and eliminated the

muscle, heart, and remaining eye artifacts based Multiple

Artifact Rejection Algorithm [MARA (Winkler, Haufe, &

Tangermann, 2011, 2014)]. A spherical method was used to

interpolate missing and eliminated channels.

By using the FieldTrip toolbox (Oostenveld, Fries, Maris, &

Schoffelen, 2011), the neurophysiological data were

segmented into intervals of 2s duration centered around the

time of a response. In order to allow a comparison of neuro-

physiological data between Boundary and No-Boundary in-

tervals, virtual response triggers had to be created for the No-

Boundary category to have a locking point in both categories

for subsequent analyses comparing these categories. Thus, a

two-step segmentation procedure was applied: First, the

neurophysiological data were binned into 2-s segments,

which were categorized as either Boundary or No-Boundary

intervals, depending on whether a response was given

within those 2 s (i.e., according to the analysis of the behav-

ioral data). If the distance between any two response markers

was less than 4 s, the later marker was removed to avoid an

overlap between segments. To mark respective time points in
Fig. 1 e Schematic illustration of the segmentation of neurophy

Boundary intervals are displayed in blue; No-Boundary interval

interval plots correspond to the response and virtual markers,

assigned to Boundary intervals. Virtual markers were placed in

interval at which the button press occurred in Boundary interval

on the markers so that data from ¡1 to 1 sec relative to the ma
No-Boundary intervals the following steps were taken: Since

there were more No-Boundary than Boundary intervals, No-

Boundary intervals were randomly selected with the number

of No-Boundary intervals matching the number of Boundary

intervals. This was done for each single participant. Then,

again for each single participant, the Boundary intervals and

the randomly selected No-Boundary intervals were sorted

ascendingly according time in the video clip. This procedure

also ensured the same signal-to-noise ratio in the data to be

compared. Afterwards, time points of each real response

marker in a Boundary interval were projected onto the

selected corresponding No-Boundary intervals to generate

virtual markers in these at the same position within the in-

terval. In the second segmentation step, the neurophysiolog-

ical data in the No-Boundary intervals were then locked onto

the time point of the virtual marker, whereas in the Boundary

intervals the intervals were locked to the responsemarkers. A

response-locked data analysis is the only possible strategy in

this study, because there are (i) no temporally clearly distinct

and separable stimuli as in more standard EEG paradigms and

(ii) because the important aspect in event segmentation is the

time point where an event boundary is set (which is indicated

by the motor response/button press). Data from e1s to 1s

relative to the respective marker (i.e., response marker or

virtual marker) were included in the analyses. The segmen-

tation procedure is schematically shown in Fig. 1.

2.4. Time-frequency analysis

In order to avoid edge effects in the time-frequency (TF)

decomposition in the 2s intervals of interest (see 2.3), seg-

ments of 4s length (-2se2s relative to the respective marker)

were entered into the TF analysis. After TF decomposition, 1s

of the data at the beginning and 1s of the data at the end of the

4s interval were discarded.

For each interval, TF analysis was conducted by applying

Morlet wavelets for the frequency range from 3 to 30 Hz in

frequency domain. The length of the used wavelets in stan-

dard deviations of the implicit Gaussian kernel was three. The

number of cycles for the wavelet was linearly from 3 (3 Hz) to

12 (30 Hz). Then we calculated the average power for three

frequency bands of interest at each time point: the theta fre-

quency band (4e7 Hz), alpha frequency band (8e12 Hz), and
siological data.

s are displayed in orange. The markers shown within the

respectively. First, No-Boundary intervals were randomly

No-Boundary intervals at the same time point within the

s (left part). Subsequently, the segments were aligned based

rker position could be analyzed (right part).

https://doi.org/10.1016/j.cortex.2023.10.005
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beta frequency band (15e30 Hz). Next, in order to analyze the

difference between Boundary interval and No-Boundary in-

terval, a cluster-based permutation test as implemented in

FieldTrip (Maris & Oostenveld, 2007) was computed for the

time-frequency results of these three frequency bands. Of

note, these comparisons weremade using the averaged power

of the frequency bands, since the hypotheses derived from the

theory also refer to the averaged frequency bands. Samples

were classified as members of a sample cluster if their t-value

in the paired-samples t-test fell below p ¼ .050. To define a

cluster, at least two samples (e.g., two adjacent EEG channels

or two successive time points) were required. The reference

distribution of the permutation test was approximated by

1,000 random draws using the Monte Carlo method. A cluster

was considered significant if the corresponding p-values fell

below the critical alpha level of p ¼ .025. Cohen's d was

calculated using FieldTrip for each significant cluster (Meyer,

Lamers, Kayhan, Hunnius, & Oostenveld, 2021).

2.5. Beamforming and source-level correlational
analysis

A two-step beamforming analysis (Adelh€ofer & Beste, 2020;

Prochnow, Wendiggensen, Eggert, Münchau, & Beste, 2022)

was performed to investigate the source activity of theta,

alpha, and beta frequency bands. Further, the correlation of

the difference of Boundary vs. No-Boundary interval between

the theta, alpha, and beta band oscillationswere calculated. In

the following, the two steps of beamforming are described:

The first step was Dynamic Imaging of Coherent Sources

(DICS) beamforming (Gross et al., 2001), which employs a

spatial filter to localize coherent brain regions and relevant

voxels linked with the activity in theta, alpha, and beta fre-

quency bands for the difference of the Boundary vs. No-

Boundary interval. In the second step, Linearly Constrained

Minimum Variance (LCMV) beamforming was applied to

reconstruct the time courses of the power in the sources

revealed by the DICS beamformer results (Van Veen, Van

Drongelen, Yuchtman, & Suzuki, 1997). For the computation

of the DICS beamforming, common spatial filters for both

Boundary and No-Boundary intervals were calculated from

the cross-frequency spectra of a Fast Fourier Transformation

(FFT) on the averaged theta (4e7 Hz), alpha (8e12 Hz), and beta

(15e30 Hz) frequency bands. The DICS beamformer projected

the activity localization into a source space onto an evenly

spaced grid (.5 cm resolution) created using the FieldTrip

toolbox's forward model template, which is based on the

standard Montreal Neurological Institute (MNI) space. The

activity in the theta, alpha, and beta frequency bands was

extracted for both Boundary and No-Boundary intervals. The

power values in each interval were normalized using a decibel

conversion. Clusters of the largest differences in theta, alpha,

and beta band activity between Boundary and No-Boundary

intervals in the DICS-beamformed data were defined by

applying the Density-Based Spatial Clustering of Applications

with Noise (DBSCAN) algorithm (Ester, Kriegel, Sander, & Xu,

1996) in MATLAB (2020b). Using this algorithm, only voxels

within functional neuroanatomical regions were used in the

next analysis steps. The obtained clusters (except regions

belonging to the cerebellum) were labeled using the
Automatic Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer

et al., 2002). Power differences in the labeled regionswere then

thresholded to the top (or bottom, depending on the direction

of the DICS beamforming contrast) 3 % of the power difference

distribution within labeled regions to limit the analyses to

voxels with strongest power differences of theta, alpha, and

beta frequency band power. To identify the neighboring vox-

els, DBSCAN was ran with an epsilon of once the edge length

and a minimum cluster size of two voxels. The DBSCAN re-

sults were further restricted bymanual inspection of size and/

or the affiliated AAL atlas labels. The selected clusters served

as regions of interest for the subsequent analyses. Subse-

quently, an LCMV beamformer was used to obtain the time

course of activity in the theta, alpha, and beta frequency

bands in the chosen clusters (Van Veen et al., 1997). Based on

the covariance data of the averaged data in each interval, a

spatial filter was generated for each cluster and then multi-

plied with the preprocessed data. Time-frequency analyses

were computed using Morlet wavelets, using linearly-spaced

variable cycle numbers from 3 (3 Hz) to 12 (30 Hz), which

were averaged over the selected voxels in each cluster/region

of interest. In a time window of 1s before and 1s after re-

sponses (i.e., key presses) or virtual markers, correlations

were calculated between differences in source activity

reconstructed by LCMV beamforming in clusters in the theta,

alpha, and beta frequency bands. A correlation matrix was

created by calculating a Pearson's correlation across subjects

for the source activity values at each time point (Adelh€ofer &

Beste, 2020; Prochnow, Wendiggensen, et al., 2022;

Wendiggensen, Adelh€ofer, et al., 2022). A false discovery rate

(FDR) correction following the Benjamini-Hochberg method

(Benjamini&Hochberg, 1995) was applied for each correlation

matrix, to account for the potential rise in false positive re-

sults that is increased by the number of correlations. FDR

correction of p-values results in q-values, which were only

regarded as significant if q < .050. To ensure that the results

were not due to type I error alone, the results of the correlation

analyses were also evaluated using an alpha level corrected

for the number of conducted correlational analyses (21

correlational analyses, see Results for details), resulting in a

significance level of q ¼ .0023.

2.6. Readiness potential

Since Boundary and No-Boundary intervals also differed with

respect to the presence of amotor response, the time period of

(pre-)motor processes should be determined since differences

between Boundary and No-Boundary intervals in the fre-

quency bands cannot be interpreted as an event

segmentation-related process unbiased of motor activity in

this period. To identify the time period of (pre-)motor pro-

cesses, the activity before the response at electrode Cz was

quantified, i.e., a readiness potential (RP) (Schurger, Hu, ‘Ben’

Pak, & Roskies, 2021; Travers, Friedemann, & Haggard, 2021;

Travers & Haggard, 2021), based on the topographic distribu-

tion of the difference between Boundary and No-Boundary

intervals in the time domain. This analysis indicates which

time ranges (i.e., those in which no RP is evident) are inter-

pretable in terms of event segmentationwithout a bias related

to motor activity. Averaged voltage amplitudes were both

https://doi.org/10.1016/j.cortex.2023.10.005
https://doi.org/10.1016/j.cortex.2023.10.005
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calculated for Boundary and No-Boundary intervals, as well as

difference between them.

2.7. Statistics

To statistically analyze the behavioral data, mixed-effects lo-

gistic regression (R version 4.2.1, ‘glmer’ function) was per-

formed to determine the effect of situational changes on the

segmentation pattern. As in a previous study (Zacks et al.,

2009), we built two mixed-effects regressions for different

purposes: (i) predicting segmentation probability from the

number of changes, and (ii) evaluating the relationship be-

tween each type of change and segmentation pattern. For

bothmodels, the random intercept for subjects was estimated

to account for the variability between subjects, and odds ra-

tios were calculated based on the coefficient results of fixed

effect to be able to compare the influence of the different

predictors. For (i), the number of changes irrespective of the

type of change was counted for each 2s interval and fed into

the regression analysis as predictor variable. Thus, the inde-

pendent variable was the total number of situational changes

(0e5), and the outcome was either a response by the partici-

pant indicating an event boundary within that interval or no

response during that interval (i.e., Boundary vs. No-Boundary).

For (ii), the predictor variables were the presence or absence (1

or 0) of situational change of each of the 9 situational change

types within a 2s interval, and the outcome variable was the

same as in (i). The variance inflation factor (VIF, R version

4.2.1, ‘vif’ function) was calculated to check for multi-

collinearity between the predictors.

In all neurophysiological analyses, the difference between

Boundary and No-Boundary intervals was computed by sub-

tracting the power values in No-Boundary intervals from

power values in Boundary intervals. Thus, positive differences

imply higher values in Boundary intervals than in No-
Fig. 2 e Behavioral results.

(A) Logistic regression results with the number of situational cha

a response (i.e., segmentation) within an interval as outcome (y

movie increased, viewers' probability of segmentation increase

the logistic regression with the types of change within an interva

a segmentation) within an interval as outcome (x-axis). Dots de

show the 95 % confidence interval. The dashed line represents
Boundary intervals, while negative differences suggest

higher values in No-Boundary intervals than in Boundary

intervals.
3. Results

3.1. Behavioral results

Regarding the number of situational changes in the 2s in-

tervals, there were 518 intervals with no changes, 278 in-

tervals with one change, 106 intervals with two changes, 52

intervals with three changes, 29 intervals with four changes

and 4 intervals with five changes. The mixed-effects logistic

regression model estimating segmentation probability as a

function of the number of changes was converged with sig-

nificant intercept (�2.375, z (28) ¼ �16.30, p < .001) and coef-

ficient (.429, z (28) ¼ 29.96, p < .001; OR ¼ 1.536, 95 %

CI ¼ 1.493e1.580) for predictor in fixed effects. As shown in

Fig. 2A, the probability of segmentation increased with

increasing numbers of situational change.

The second mixed-effects logistic regression examining re-

lations between each type of situational change and event

segmentation was conducted for the 9 types of situational-

change. The amount of multicollinearity was calculated by

using variance inflation factor (VIF),whichwas below 5 for each

independent variable (Character ¼ 1.500, Character-

character ¼ 1.386, Character-object ¼ 1.023, Temporal ¼ 1.298,

Large space ¼ 2.634, Small space ¼ 1.213, Cause ¼ 1.191,

Goal ¼ 1.443, Scene ¼ 2.556), indicating that there was no mul-

ticollinearity issue in thismodel. Thismodelwas convergedand

odds ratios (OR) for coefficients in fixed effects are shown in

Fig. 2B. Character (OR¼ 1.938, 95%CI¼ 1.770e2.122), Character-

character (OR ¼ 2.195, 95 % CI ¼ 1.958e2.460), Character-object

(OR ¼ 1.298, 95 % CI ¼ 1.133e1.487), Temporal (OR ¼ 1.581,
nges per interval as predictor (x-axis) and the probability of

-axis). As the number of situational changes during the

d. (B) Odds ratios of the different situational changes from

l as predictor (y-axis) and the probability of a response (i.e.,

note the mean odds ratio across participants, error bars

the reference for an OR of 1.
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95 % CI ¼ 1.314e1.902), Large space (OR ¼ 1.456, 95 %

CI ¼ 1.257e1.685), Small space (OR ¼ 1.498, 95 %

CI¼ 1.363e1.645), Cause (OR¼ 1.403, 95 % CI¼ 1.248e1.578) and

Scene (OR ¼ 1.136, 95 % CI ¼ 1.004e1.285) changes could

significantly predict the pattern of segmentation. However, the

remaining situational change type Goal (OR ¼ .909, 95 %

CI ¼ .807e1.023) could not predict the segmentation pattern.

3.2. Oscillatory activity results on sensor and source
level

Cluster-based permutation testing revealed significant dif-

ferences of the time-frequency results in TBA, ABA, and BBA

between Boundary intervals and No-Boundary intervals at the

sensor level. Differences were calculated by subtracting No-

Boundary intervals from Boundary intervals. Regarding TBA

(4e7 Hz), as shown in Fig. 3A, cluster-based permutation

testing revealed a positive cluster (p ¼ .024; Cohen's dmean-

¼ .746, Cohen's dmin ¼ .400, Cohen's dmax ¼ 1.654) at fronto-

central electrodes from �.71s to .25s relative to a button

press (i.e., perceived event boundary). The positive cluster

indicates that TBA was stronger in Boundary intervals than in

No-Boundary intervals. Further, a negative cluster (p < .001;

Cohen's dmean ¼ �.844, Cohen's dmin ¼ �.665, Cohen's dmax-

¼ �1.032) was also obtained for TBA at occipital, temporal and

parietal electrodes from 0.2s to 1s relative to button press. The

negative cluster indicates that TBA was stronger in No-

Boundary intervals than in Boundary intervals. Concerning

ABA (8e12 Hz), at the sensor level the cluster-based permu-

tation test showed that there was higher activity in No-

Boundary intervals than in Boundary intervals (p < .001;

Cohen's dmean ¼ �.853, Cohen's dmin ¼ �.828, Cohen's dmax-

¼ �1.072; Fig. 3A). The significant time window ranged from

�.77s to 1s relative to button press at frontal, parietal, tem-

poral and occipital electrodes. Regarding BBA (15e30 Hz),

cluster-based permutation test also revealed significantly

higher activity in No-Boundary intervals compared to

Boundary intervals (p < .001; Cohen's dmean ¼ �.801, Cohen's
dmin¼�.739, Cohen's dmax¼�1.021; Fig. 3A). These significant

differences were found in the time window from -1s to 0.5s

relative to button press and were found at frontal, parietal,

temporal and occipital electrodes.

After establishing sensor-level differences between

Boundary and No-Boundary intervals in TBA, ABA, and BBA,

the sources of these differences were reconstructed using

DICS beamforming (Gross et al., 2001) and were clustered

using the DBSCAN algorithm (Ester et al., 1996) (for details,

please see the Methods section). The DBSCAN algorithm

revealed a positive cluster of TBA-related activity differences

(Boundary > No-Boundary) in mid-frontal regions, encom-

passing the left and right supplementary motor areas (BA6),

the left and right middle cingulum (BA24), the left superior/

middle frontal gyri (BA8/BA9) and the left precentral gyrus

(BA4, Fig. 3B). Further, there was a negative cluster of TBA-

related activity differences (Boundary < No-Boundary) in

right-hemispheric occipital regions, including right superior

and middle occipital areas (BA18/BA19). Regarding the ABA at

the source level, as shown in Fig. 3B, the DBSCAN algorithm

revealed three negative clusters (Boundary < No-Boundary).

One cluster each was located in the right hemispheric and left
hemispheric superior/middle frontal gyri (BA8/BA9), pre-

central gyrus (BA4), postcentral (BA1/BA2/BA3) and supra-

marginal gyrus (BA40). The third cluster was located in the left

inferior parietal cortex (BA40) and the left angular gyrus

(BA39). Concerning the BBA at the source level, the beam-

forming analysis (Fig. 3B) revealed two negative clusters

(Boundary < No-Boundary). One of them was located in the

left supplementary motor area (BA6), the left middle cingulate

gyrus (BA24), the left superior/middle frontal gyri (BA8/BA9),

the left precentral gyrus (BA4) and the left postcentral gyrus

(BA1/BA2/BA3). The other one was located in the right supe-

rior/middle frontal gyri (BA8/BA9) and the right precentral

gyrus (BA4).

3.3. Readiness potential

Although BBA is often considered a reflection of motor pro-

cesses, this cannot act as an explanation of the data in the

current study: First, participants were instructed to press with

their right hand,which should have induced contralateral left-

hemispheric activity differences but in the present datawe see

bilateral BBA differences. Second, significant BBA differences

are present after the response time point, which also argues

against a pure association of BBA with motor processes in the

current study. However, to further rule out that the effects

obtained at the level of TBA, ABA and BBA are trivial motor

effects that are only present in one condition, the readiness

potential (RP) as a standard parameter of (pre-)motor activa-

tion processes was quantified (Schurger et al., 2021; Travers

et al., 2021; Travers & Haggard, 2021). Regarding the readi-

ness potential (RP), according to cluster-based permutation

testing, there was a significant difference (p ¼ .003) for voltage

amplitudebetweenBoundary andNo-Boundary intervals from

�.133 s s to .070s, i.e., there were RPs in Boundary intervals but

not in No-Boundary intervals (Fig. 4).

The RP is only present in approx. 135 ms immediately

before the response, so that only this period is probably

confounded with motor processes. The rest of the 2-s interval

around the key press and can therefore be interpreted in

terms of event segmentation unbiased ofmotor activity. Since

the effects obtained for ABA, TBA and BBA (see above) are not

due to the time interval immediately before the boundary set

(i.e., the motor response), the processes reflected by ABA, TBA

and BBA are very unlikely to reflect mere motor processes

unrelated to the actual cognitive event segmentation process.

3.4. Functional connectivity between frequency bands

To examine the inter-relation of theta, alpha and beta band

dynamics, first, an LCMV beamforming procedure (Van Veen

et al., 1997) was conducted in order to reconstruct the time

course of the power of the respective frequency band in the

established clusters. Regarding TBA, around the time of but-

ton press, i.e., around the time point of the perceived event

boundary, there was increased power in Boundary intervals

compared to No-Boundary intervals for the frontal source (ca.

0e200 ms; Fig. 5A) and decreased power in Boundary intervals

compared to No-Boundary intervals in the occipital cluster

(ca. 100e300 ms; Fig. 5A). Concerning ABA and BBA (Fig. 5A),

there was decreased power (ca. �500 to 1000 ms for ABA; ca.

https://doi.org/10.1016/j.cortex.2023.10.005
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Fig. 3 e Time-frequency results in the intervals and their source localization in the brain.

(A) Results of the time-frequency (TF) analyses (TF plots) and the cluster-based permutation testing (topographic plots;

differing from the calculations in the results section, the cluster-based permutation test on which these plots are based was

calculated across the averaged time for display reasons). TF plots show the average of the power difference of the respective

frequency band between Boundary and No-Boundary intervals over the significant electrodes in the cluster-based

permutation testing (left x-axis indicates frequency). The overlaying lines depict the power time course of the averaged

frequency band in the Boundary intervals (solid line) and the No-Boundary intervals (dotted line; right x-axis indicates

power). (B) Results of the DBSCAN algorithm (top 3 %) after DICS beamforming. The scaling indicates the power difference.

For all analyses, the values from No-Boundary intervals were subtracted from the values in Boundary intervals.
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�100 to 400 ms for BBA) in Boundary intervals compared to

No-Boundary intervals for all clusters. Finally, we examined

possible inter-relations of TBA, ABA, and BBA by correlating

the time courses of the power difference between Boundary

and No-Boundary intervals at the source level (Dippel,

Mückschel, Ziemssen, & Beste, 2017). To this end, 21 correla-

tional analyses were conducted between the seven clusters

established by the DBSCAN algorithm (after excluding double

and self-correlations from the possible 7x7 correlations), and

the results were corrected for the number of tests. Two
correlations had significant results (q < .05, FDR corrected):

There was a negative cross-band correlation between the ABA

source in left inferior parietal areas and the BBA source in left

frontal areas (rmin ¼ �.79; rmax ¼ �.55, qmin < .001, Fig. 5B).

Further, there was a positive within-band correlation between

the ABA sources located in the left and right frontal regions

(rmin ¼ .61; rmax ¼ .80, qmin < .001, Fig. 5B). Using an alpha-level

corrected for the number of correlational analyses (21 corre-

lational analyses, q ¼ .0023) did not change the pattern of re-

sults (Fig. 5B) thus indicating the robustness of the finding.

https://doi.org/10.1016/j.cortex.2023.10.005
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Fig. 4 e Readiness potential (RP) at channel Cz.

RP waveform is shown by a negative difference of voltage

(mV) amplitude between Boundary and No-Boundary

intervals before responses (0s). With a 20 ms time window

around the negative peak, the topographic map displays

differences for all channels, showing typical characteristic

of RPs that are observed in central and fronto-central

regions.
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However, out of the correlations obtained, only one of

these revealed significant correlations around the time point

of a response/virtual marker (cf. Fig. 5). In particular there was

a negative correlation between ABA in parietal structures and

BBA in frontal structures. The pattern of the correlations

shows that ABA at the beginning of the analyzed time in-

tervals (i.e., the first 500ms) was inversely correlatedwith BBA

for more than 500 ms after button press with which partici-

pants indicated the response of an event segment. As

mentioned above, effects in TBA were also centered around

the button press especially in frontal areas. Moreover, frontal

areas associated with TBA modulations partly overlapped

with areas involved in BBA modulations. Therefore, we

examined whether the dynamics observed between parietal

ABA and frontal BBA is related to the dynamics observed for

frontal TBA. To obtain ABA-BBA correlation coefficient esti-

mates for individual participant, a jackknifing procedure was

applied similarly to previous research in order to avoid a bias

in the data analysis (Adelh€ofer & Beste, 2020; Prochnow,

Wendiggensen, et al., 2022). In this procedure, individual es-

timates of the ABA-BBA correlation coefficients (i.e., correla-

tion coefficients at the single-participant level) were

calculated by calculating correlation coefficients across par-

ticipants by successively removing every participant from the

data once. For each participant, the average over the correla-

tionmatrix of the two time courses was computed (Prochnow,

Wendiggensen, et al., 2022). This procedure results in a cor-

relation coefficient estimate for each participant. To correlate

the single-participant ABA-BBA correlation coefficients with

the frontal TBA, the single-participant ABA-BBA correlation

coefficients were Fisher-Z-transformed. The results of the

correlation analysis are shown in Fig. 5C. There was a positive
correlation (rmin ¼ .37; rmax ¼ .50; pmin < .010) between the

strength of the fronto-parietal ABA-BBA connectivity and

frontal TBA. For this correlation a temporal patterning was

observed. Correlations were evident right after an event

boundary was set and lasted for ~400 ms after the event

boundary (i.e., the newly opened event segment).
4. Discussion

The current study examined how the human brain organizes

the continuous stream of information about “what is

happening now” into discrete segments with a focus on the

temporal aspect of the underlying neural processes and thus

on neural oscillatiory activity. The behavioral data replicated

previous work in showing the probability of segmentation

increased as the number of situational changes increased

(Zacks et al., 2009). The odds ratios indicated that for each type

of situational change, changes in characters, character in-

teractions and time were most predictive to mark a segment

in the movie. The finding that there was a significant rela-

tionship between the number of changes and segmentation

probability, and that previous findings were replicated (Zacks

et al., 2009) rule out that participants performed random key-

presses.

According to EST, important components of the event

segmentation process are the working event model, which

refers to the currently active representation of the situation,

and the event schema, which refers to the long-term repre-

sentation of how similar situations or events normally pro-

ceed (Zacks et al., 2007; Zacks& Sargent, 2010). Although there

is some agreement in the estimation of event boundaries be-

tween observers, it is particularly important, especially in a

measurement method with such a high temporal resolution

as EEG, to account for inter-individual variability and thus to

consider the individual responses of each subject (Niv, 2021;

Sasmita & Swallow, 2022). For this reason, the information

provided by the observers, i.e., the time of the key press, has

be used as an indicator of an event boundary. The data anal-

ysis (cf. section on the relevance of motor processes) also

revealed that there is no biasing effect of motor activity and

the processes can be interpreted in terms of event segmen-

tation unbiased of motor activity. Moreover, it is unlikely that

the observed differences are due to differences in decision-

making, as there is a constant decision process throughout

the conducted task as to whether an event boundary is pre-

sent or not.

Following EST, a segment boundary is set when a working

event model, provided by information from the environment

and long-lastingmemory representations (i.e., event schemata)

is no longer valid because the incoming information is too

different from the working event model's expectations. Alpha

band activity (ABA) has been shown to reflect the inhibitory

gatingmechanisms controlling access of information to a long-

term “knowledge system” and working memory (Klimesch,

2011, 2012; Klimesch et al., 2007; Roux & Uhlhaas, 2014). Espe-

cially the access to episodic memories is controlled by ABA

(Hanslmayr, Staresina, & Bowman, 2016) and such episodic

memories show conceptual similarities to event schemata

(Kurby & Zacks, 2008; Sargent et al., 2013; Zacks et al., 2009).
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Fig. 5 e Power time courses and their correlations on the source level.

(A) Results of the LCMV beamforming. The plots show the power differences of Boundary minus No-Boundary intervals in the

theta, alpha, and beta frequency bands in the clusters obtained by the DBSCAN algorithm. Time point zero denotes the time

point of the response or the virtual marker, respectively. (B) Upper panel: Results of the correlation analysis between the power

difference time courses in the parietal cluster in the alpha frequency band (y-axis) and the left superior frontal cluster in the beta

frequency band (x-axis). Lower panel: Results of the correlation analysis between the power difference time courses in the left-

hemispheric (y-axis) and the right-hemispheric (x-axis) frontal clusters in the alpha frequency band. In bothpanels, the left plot

displays the r-values, the center plot displays the q-valueswith analpha level of .01, and the right plot displays the q-valuewith

the corrected alpha level of .0023, (C) Results of the correlation analysis between the Fisher-Z-transformed coefficients of the

correlation between the parietal alpha and the left superior frontal beta frequency band (y-axis) and the power difference time

courses in the fronto-central cluster in the theta-frequency band (x-axis). In all figure parts regarding correlation analyses, time

point zero denotes the time point of the response or the virtual marker, respectively.
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Thus, the modulations observed in ABA likely reflect the

regulation of the access to the “event schema storage”.

Increased ABA might indicate a more restrictive access to the

episodicmemories (Hanslmayr et al., 2016) and event schemata

stored in it. The lower ABA in fronto-parietal structures was

evident when a boundary was set by the participants. At this

point the working event model needs updating (Zacks &

Sargent, 2010), which implies a reduction of ABA-linked

inhibitory gating. Corroborating this interpretation, these pro-

cesses were associated with inferior parietal structures, known

be involved in the updating of task sets by incoming sensory

information (Geng & Vossel, 2013). Furthermore, ABA in these

areaswas shown to reflect a gating ofmemory content retrieval

(Prochnow, Eggert, Münchau, Mückschel, & Beste, 2022; Riddle,

Scimeca, Cellier, Dhanani,& D’Esposito, 2020). Importantly, the

correlational analysis of ABAmodulations in parietal structures

and beta band activity (BBA) modulations in superior frontal

structures suggest that parietal ABA is a central mechanistic

element in how the brain partitions the continuous stream of

information into discrete segments.

The localization of BBA probably reflecting the mainte-

nance and updating of working event models in prefrontal

cortical areas is commensurable with the EST and its probable

functional neuroanatomical implementation (Zacks &

Sargent, 2010). A stronger modulation of parietal ABA was

related to a smaller modulation of superior frontal BBA.

Crucially, this correlation revealed a temporal pattern ac-

cording to which ABA modulation at the beginning of the

analyzed time intervals (i.e., the first 500 ms) was inversely

correlated with BBA modulation for more than 500 ms after

button press (indicating a segment boundary). BBA was also

stronger when no segment boundary was set by the partici-

pants. BBA is thought to reflect themaintenance of the “status

quo” and is stronger when the maintenance of the status quo

is predicted (Engel & Fries, 2010; Jenkinson & Brown, 2011;

Spitzer & Haegens, 2017). Since the current model of the

ongoing situation needs to maintained when no segment

boundary is set, the increased BBA in time periods without a

perceived event boundary corroborates the interpretation of

BBA reflecting the maintenance of the working event model.

However, increased BBA may also reflect an endogenously

controlled transfer of latent memory content into current

working memory (Spitzer & Haegens, 2017). From that

perspective the correlational results imply that whenever

parietal ABA-linked gating processes are strongly modulated,

it is less necessary to adapt status quo monitoring or the

transfer of latent memory content into working memory. The

temporal patterning of the correlation between parietal ABA

modulation and frontal BBA modulation indicates that parie-

tal ABA-linked gating processes of incoming information

affect frontal BBA-linked status quo monitoring. Taken

together, the inter-relation between parietal ABA and frontal

BBA reflects amechanistic element in how the brain organizes

and partitions the continuous stream of information into

discrete segments. This is further corroborated by the findings

in theta band activity (TBA).

Regarding TBA, there were activity modulations in middle

and superior frontal regions overlapping with regions

reflecting BBA effects. TBA activity in these regions was

stronger when a segment boundary was set by the
participants (i.e., button press). According to EST, an event

segment boundary are set when predictions based on the

current working event model fail (Zacks et al., 2007; Zacks &

Sargent, 2010). TBA reflects prediction error signaling and

the unexpectedness (surprise) of events (Cavanagh et al., 2010,

2012; Cavanagh & Frank, 2014). The observed superior and

medial frontal cortex TBA modulations may thus reflect the

neural signature of failures in the working event model's
predictions about how a situation has been supposed to

evolve necessitating the closure of the event segment and the

opening of a new one. Crucially, right after the indication of an

event boundary (i.e., at the beginning of the new event

segment), there was a strong correlation between frontal TBA

modulation and the interplay of parietal ABA and frontal BBA:

The stronger themodulation of TBA, the smaller the ABA-BBA

inter-relation in the first ~400 ms after the indicated event

boundary. Processes necessary to set event boundaries thus

might be directly linked to the dynamics of parietal ABA-

linked gating processes of incoming information that affect

frontal BBA-linked status quomonitoring at the beginning of a

new segment. However, when an event boundary was set and

stronger TBA was evident in superior and medial frontal cor-

tex, there was also reduced TBA in occipital regions. TBA in

sensory regions may reflect “attentional sampling” processes

necessary to detect changes relevant to behavior (Kienitz

et al., 2018; Landau & Fries, 2012; VanRullen & Dubois, 2011;

VanRullen et al., 2007). Thus, whenever an event boundary

was set, it seems that TBA-related attentional sampling pro-

cesses in occipital regions are weaker. Considering the tem-

poral pattern of modulations, this implies that when a new

event segment is opened, the attentional focus is selectively

put on specific, relevant information in the environment,

presumably in order to be able to establish a new eventmodel.

4.1. Limitations and future directions

Although it was ensured in the current study that the obtained

effects on the neurophysiological level are not due to pure

motor activity, it needs to be kept in mind that the time of the

key press by the participant is only the motor reflection and

thus an estimation of the time of the actual event boundary.

However, as in all cognitive (neuroscience) studies, particu-

larly if they are relying on such a subjective assessment by the

participant as event segmentation studies, there is an inevi-

table delay between the cognitive process of interest and the

response given by the participant (Niv, 2021). Thus, since the

investigation of event segmentation heavily relies on the

subjective assessment of the participant, asking the partici-

pants for their response is the only way to assess their

assessment of event boundaries.

Future studies on the neurophysiological underpinnings of

event segmentation might also take into account established

frameworks regarding the operating principles of the brain,

e.g., intrinsic neural time scales (INT) and the related concepts

of temporal receptive windows (TRW) and integration and

segregation (Golesorkhi et al., 2021; Hasson, Yang, Vallines,

Heeger, & Rubin, 2008; Lerner, Honey, Silbert, & Hasson,

2011; Wolff et al., 2022). Both the EST and the INT approach

assume a hierarchical processing of information and consider

prediction errors to be important for segregating/partitioning
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different perceived elements (Golesorkhi et al., 2021; Hasson

et al., 2008; Lerner et al., 2011; Wolff et al., 2022). However,

while the EST is a cognitive theory the elements of which have

been related to activity in different brain regions, the INT

approach considers rather basic neurophysiological pro-

cesses. Thus, future studies might aim to find a connection of

both concepts in order to link cognitive and neuroscientific

theories.
5. Conclusions

In summary, the study reveals a mechanistic chain of pro-

cesses at the level of oscillatory activity during the segmen-

tation of the continuous stream of information into

meaningful segments. The close interconnection of event

schemata from long-term memory and the working event

model is represented by an interplay between ABA and BBA in

frontal and parietal areas. This interplay is in turn related to

frontal TBA modulations, which likely reflect the detection of

prediction errors of the current working event model,

revealing the highly significant role of matching prediction

and environmental information for event segmentation. This

study thus integrates neurophysiology and cognitive theory to

better understand how the human brain operates in rather

variable and unpredictable situations. Therefore, it represents

an important step towards the study of neurophysiological

dynamics in ecologically valid and naturalistic settings, aim-

ing to fill a critical gap in our knowledge of the temporal dy-

namics of how the brain structures natural scenes.
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