

LC HL CHEMISTRY

FOUNDAILON PROGRAM

+353 85 8457951 www.skjeducation.co steven@skjeducation.com

1 Overview of 8-week LC HL Chemistry Program

LC HL Chemistry - Foundation Program

Are chemical equations, mole calculations, and organic reactions causing confusion? This 8-week Chemistry Foundation Program is designed to demystify the subject and build unshakable confidence. We go beyond memorizing the periodic table to teach you how to think like a chemist. Through our proven metacognition approach, you'll learn to recognize patterns in bonding, master the logic behind chemical calculations, and understand the "why" behind every reaction. This isn't about passive learning; it's about becoming an active problem-solver. In just 8 weeks, you'll gain the conceptual understanding, mathematical skills, and exam techniques needed to excel in Leaving Cert Chemistry. Your transformation starts here.

Here is the timetable for this 8-week program. There are links to extra questions and resources on StudyClix, should you wish to use them.

Here are links to extra questions and resources on StudyClix for this 8-week program, should you wish to use them.

Links	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8
Topic 1	Periodic	Bonding	Stoi-	Titrations	Rates of	Organic I	Organic II	Equilibrium
	Table		chiometry		Reaction			
Topic 2	Electron	Atomic	Gas Laws	Redox	Chromat-	Thermo-	Thermo-	Radio-
	Arrange-	Structure			ography	chemistry	chemistry	activity
	ment							
Experiment	YT Video	Exp. Q3	Exp. Q1	Exp. Q1	Exp. Q3	Exp. Q2	Exp. Q2	Exp. Q3
	"All of	(Other)	(Titra-	(Titra-	(Other)	(Organic)	(Organic)	(Other)
	Chem-		tion)	tion)				
	istry"							

The program is structured in two 4-week blocks, designed to install the "language system" needed for chemistry.

- Block 1 (Weeks 1-4): The Language of Chemistry. Establish the absolute fundamentals—atomic structure, bonding, and the mole concept—that form the non-negotiable foundation for all chemical understanding.
- Block 2 (Weeks 5-8): The Application of Chemistry. Apply these core principles to organic chemistry, reaction rates, and equilibrium, mastering the calculations and patterns that are high-yield for exam marks.
- Interleaved Revision: From Week 2, worksheets and assessments will integrate calculations from previous topics. This deliberate design ensures you can't forget the mole and must build the flexible problem-solving skills essential for the exam.

2 Sample Study Plan

Monday Tuesday		Wednesday	Thursday	Friday	Saturday	Sunday
Review Key	Finish Ex.	Rest and Re-	Experiment	Error Anal-	Exam Q As-	Self-Correct
Terms & LO's. Work sheet +		flect, Correct	Exercise	ysis Exercise	sessment (60	& Prep Day
Watch video	Online Lesson	Work sheet.	Work sheet	(40 mins)	mins)	(30 mins)
(30 mins)	(90 mins)	(20 mins)	(50 mins)			

3 Weekly Study Resources

- 1. **Key Terms:** Key vocabulary, definitions and formulae required for the worksheets (i.e., a cheat sheet/quick guide to this topic).
- 2. Learning Objectives & Indicative Content (aligned LC HL Chemistry curriculum & specification): Clear, quantifiable, achievable goals for the coming week.
- 3. Exercise Worksheet: Your main learning tool. It contains clear notes, worked examples, and key questions to solidify your understanding. This can be used for 1-4 study sessions in a given week (takes 90-120 minutes to complete).
- 4. *Students have an online lesson after the exercise worksheet is completed*
- 5. Error-Based Analysis Exercise: A unique exercise where you'll find and fix common mistakes, training yourself to think like an examiner.
- **6. Exam Question Assessment:** A short exam-style test to check your progress and get comfortable with the format of the real thing.
- 7. Self-Correction & Progress Tracking Protocol: see below.

4 Self-Correction & Progress Tracking Protocol

(This is the MOST IMPORTANT task of the week – complete this on Sunday, then immediately plan the following week's study to guarantee consistency).

- 1. Mark your work. Use a different colour pen.
- 2. For each question, categorise your result:
 - Fluent: I got it right and knew why.
 - Lucky: I got it right but was guessing/doubtful. I could not fully explain why this is the answer/how I got it.
 - Error: I got it wrong.
- 3. For each Error, complete this sentence:

```
"The root cause of this was: I ______."
(e.g., "I confused the formula for displacement with distance," or "I forgot to convert units.")
```

- 4. For each Lucky answer, mark with a highlighter for later revision tests.
- 5. Action Plan: Based on your analysis, what is one specific thing you will do before next week's lesson? (e.g., "Create a flashcards for function properties," "Redo the error-analysis exercise," "Watch a video on integration steps").
- 6. Confidence Rating: On a scale of 1-5, how confident do you now feel with this week's core concepts? (1 = Not at all, 5 = Rock Solid). Go through every Learning Objective and rank them. Continue this at the end of every week.

5 Why This System Works

- Smarter Learning, Not More Learning: My materials are designed using proven learning science to help you understand and retain information more effectively.
- Build Confidence Through Mastery: Start with the absolute essentials, ensuring you have a rock-solid foundation before moving on. No gaps, no confusion. Ask as many questions as you can.
- You Learn How to Learn: This program will teach you how to review your work, spot your own mistakes, and identify what you need to focus on. This is a skill that helps you in every walk of life.
- Focus on Weaknesses: By directing most of your time to analysing mistakes and revising difficult topics, you are forcing your brain to grow rapidly.

6 Weekly Learning Objectives

Week 1: Introduction to Chemistry

- 1.1: Describe the structure of the atom (protons, neutrons, electrons) and define atomic number and mass number.
- 1.2: Explain what isotopes are and calculate relative atomic mass.
- 1.3: Write electron configurations (e.g., 2-8-2) for the first 20 elements.
- 1.4: Identify and explain trends in the Periodic Table (Group I, VII, & Period 3).

Week 2: Bonding & Shapes

- 2.1: Predict the type of bonding between elements based on their position in the Periodic Table.
- 2.2: Draw Lewis structures for simple molecules and ions.
- 2.3: Use VSEPR theory to predict the shapes of molecules (linear, bent, trigonal planar, tetrahedral).
- 2.4: Relate physical properties (MP/BP, conductivity, solubility) to bond type.

Week 3: Stoichiometry & The Mole

- **3.1:** Write and balance chemical equations.
- 3.2: Define the mole and use the formula $n = \frac{m}{M}$ to convert between mass and moles.
- 3.3: Perform calculations involving reacting masses.
- 3.4: Calculate percentage composition by mass of an element in a compound.

Week 4: Volumetric Analysis

- 4.1: Define acids and bases according to the Bronsted-Lowry theory.
- 4.2: Describe the titration experiment, including equipment and indicators.
- 4.3: Perform titration calculations using the formula $\frac{M_a V_a}{n_a} = \frac{M_b V_b}{n_b}$.
- 4.4: Explain the concept of pH and the pH scale.

Students will have a "Reading Week" between Weeks 4 and 5.

Week 5: Rates of Reaction

- 5.1: Describe the effect of concentration, pressure, temperature, surface area, and catalyst on reaction rate.
- **5.2:** Explain these effects using collision theory.
- 5.3: Sketch and interpret reaction rate graphs.
- 5.4: Define a catalyst and explain its action on a reaction pathway.

Week 6: Organic Chemistry I

- 6.1: Explain the unique bonding properties of the carbon atom.
- 6.2: Define a homologous series and state the general formulas for alkanes and alkenes.
- 6.3: Apply IUPAC rules to name straight-chain alkanes and alkenes.
- 6.4: Describe the reactions of alkanes (combustion) and alkenes (addition reactions with H_2 , Br_2 , H_2O).

Week 7: Organic Chemistry II

- 7.1: Name and draw the structures of alcohols, carboxylic acids, and esters.
- 7.2: Describe the preparation of ethanol by fermentation and hydration.
- 7.3: Explain the oxidation of ethanol to ethanoic acid.
- 7.4: Describe the formation of esters (esterification) and state one use.

Week 8: Chemical Equilibrium

- 8.1: Explain what is meant by a dynamic equilibrium.
- 8.2: State Le Chatelier's Principle.
- 8.3: Predict the effect of changing concentration, pressure, and temperature on the position of equilibrium.
- 8.4: Apply these principles to the Haber Process and the Contact Process.