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Polycystic ovary syndrome (PCOS) is now recognized as an important metabolic as well as reproductive
disorder conferring substantially increased risk for type 2 diabetes. Affected women have marked insulin
resistance, independent of obesity. This article summarizes the state of the science since we last reviewed
the field in the Endocrine Reviews in 1997. There is general agreement that obese women with PCOS are
insulin resistant, but some groups of lean affected women may have normal insulin sensitivity. There is a
post-binding defect in receptor signaling likely due to increased receptor and insulin receptor substrate-1
serine phosphorylation that selectively affects metabolic but not mitogenic pathways in classic insulin
target tissues and in the ovary. Constitutive activation of serine kinases in the MAPK-ERK pathway may
contribute to resistance to insulin’s metabolic actions in skeletal muscle. Insulin functions as a co-gonad-
otropin through its cognate receptor to modulate ovarian steroidogenesis. Genetic disruption of insulin
signaling in the brain has indicated that this pathway is important for ovulation and body weight regu-
lation. These insights have been directly translated into a novel therapy for PCOS with insulin-sensitizing
drugs. Furthermore, androgens contribute to insulin resistance in PCOS. PCOS may also have developmental
origins due to androgen exposure at critical periods or to intrauterine growth restriction. PCOS is a complex
genetic disease, and first-degree relatives have reproductive and metabolic phenotypes. Several PCOS
genetic susceptibility loci have been mapped and replicated. Some of the same susceptibility genes con-
tribute to disease risk in Chinese and European PCOS populations, suggesting that PCOS is an ancient trait.

(Endocrine Reviews 33: 981-1030, 2012)
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I. Background and Historical Perspective

A. Reproduction and metabolism

he pathways linking reproductive function with met-
T abolic cues are evolutionarily conserved traits that
are present in Caenorhabditis elegans and Drosophila (1,
2). The reproductive features of polycystic ovary syn-
drome (PCOS) were noted by Hippocrates in the fifth cen-
tury B.C. (3). The observation that signs of androgen ex-
cess were coupled with metabolic abnormalities, such as
increased visceral fat, dates back to at least the 18th cen-
tury. In 1765, Morgagni (4) reported detailed anatomic
investigations in various conditions. He described a 74-
yr-old woman with severe obesity and android aspect
(valde obesa et virili aspectu). In 1921, Achard and Thiers
(5) reported the coexistence of diabetes mellitus with clin-
ical signs of androgen excess in a postmenopausal wom-
an—the so-called “Achard-Thiers syndrome” or “diabe-
tes of the bearded women” (diabéte des femmes a barbe).
Jean Vague (6) from the University of Marseille intro-
duced the term “android obesity” to define the abdominal
fataccumulation, which is the typical male pattern of body
fat distribution, and started to explore the concept that
this type of body adiposity was associated with increased
diabetes and cardiovascular disease risk. Elegant studies
by Kissebah et al. (7) documented that women with upper
body obesity were insulin resistant. These women also had
increased androgen production rates (8).

B. Experiments of nature—rare syndromes of extreme
insulin resistance and hyperandrogenism

In the 1970s, several rare syndromes of extreme insulin
resistance, acanthosis nigricans, and hyperandrogenism
were described (9). The molecular mechanisms of insulin
resistance in these syndromes involved reduced insulin
binding to its receptor or defective receptor autophos-
phorylation due to insulin receptor mutations (Type A
syndrome, Rabson-Mendenhall syndrome, Donohue
syndrome, or leprechaunism) or insulin receptor auto-
antibodies (type B syndrome) (10-12). The phenotyp-
ically distinct disorders of familial lipodystrophy and
extreme insulin resistance were also noted to be asso-
ciated with signs and symptoms of hyperandrogenism
(12-15). The common feature of these syndromes was
profound hyperinsulinemia, which suggested for the
first time that insulin might directly stimulate testos-
terone (T) production (9, 11).

C. Insulin resistance and PCOS

The original description of enlarged, smooth polycystic
ovaries (PCO) is credited to Chereau in 1844 (16). In the
19th century, ovarian wedge resection became a recom-
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mended therapy (17), although Stein and Leventhal (18)
first reported that the clinical features of menstrual regu-
larity and infertility could be improved by removal of por-
tions of both ovaries. As a result, the constellation of en-
larged, sclerocystic ovaries frequently associated with
hirsutism, menstrual irregularity, obesity, and infertility
became known as the Stein-Leventhal syndrome (17, 19).
In recent decades, PCOS has become the preferred termi-
nology (17, 20). Until the 1980s, PCOS remained a poorly
understood reproductive disorder (17, 19). In 1980, Bur-
ghen et al. (21) reported that women with PCOS had in-
creased insulin responses during oral glucose tolerance
testing that were not accounted for by obesity. Further-
more, women with typical PCOS had acanthosis nigri-
cans, raising the possibility that they were insulin resistant,
similar to women with the rare syndromes of extreme in-
sulin resistance (22, 23). These observations launched a
new field of study on the mechanisms for the association
between insulin resistance and PCOS (Fig. 1).

Il. PCOS Reproductive Phenotype (Fig. 2)

A. Clinical features

Approximately 60% of women with PCOS are hirsute,
the most common clinical sign of hyperandrogenemia
(24). Acne and androgenic alopecia are other clinical signs
of hyperandrogenemia (25-32). Acanthosis nigricans is a
skin lesion characterized clinically by velvety, papilloma-
tous, brownish-black, hyperkeratotic plaques, typically
on the intertriginous surfaces and neck. However, acan-
thosis nigricans is diagnosed definitively by histological
examination of the skin showing hyperkeratosis and pap-
illomatosis, frequently with hyperpigmentation (33). It is
evident on clinical examination in a substantial percentage
of obese women with PCOS as well asin some lean affected
women. However, it is present in the majority of obese
women with PCOS and in obese control women by his-
tological examination (33). Many lean women with PCOS
also show histological evidence of acanthosis nigricans
(33). Its severity is directly correlated with the degree of
insulin resistance (33, 34).

Oligomenorrhea is defined as menstrual cycles that are
longer than 35 d (usually fewer than eight cycles per year)
and is a sign of anovulatory cycles (35). However, regular
menstrual cycles do not exclude chronic anovulation, es-
pecially in women with clinical signs of androgen excess
(24). Twenty to 50% of women with clinical hyperandro-
genism and apparent eumenorrhea may have anovulation
as documented by consecutive luteal serum progesterone
levels in the follicular range (24). Therefore, ovulation
should be assessed by measuring serum progesterone con-
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Figure 1. A new field—PCOS and insulin resistance. The first article reporting an
association between PCOS and hyperinsulinemia was published in 1980 (21). There are
approximately 103,000 citations in a Web of Science (Thomson Reuters, New York, NY)
Citation Report for 1980-2011 on the topics of PCOS or hyperandrogenism and
hyperinsulinemia, insulin resistance, glucose intolerance, or diabetes mellitus. The annual
citations have increased steadily from 1 in 1980 to approximately 12,000 in 2011. This

figure was created from the Web of Science Citation Report.

centration during the luteal phase of the menstrual cycle in
women with regular menses and androgenic signs or
symptoms (24).

B. Biochemical profile

1. Sex hormones

Hyperandrogenemia is the biochemical hallmark of
PCOS (24). Elevated circulating androgen levels are ob-
served in 80-90% of women with oligomenorrhea (24,
36). Elevated levels of free T account for the vast majority
of abnormal findings in the laboratory examination (24,
37). This finding reflects the fact that SHBG levels are
typically decreased in PCOS due to the effects of T (38) and
insulin (39) to decrease hepatic production of SHBG.

The measurement of total and free T levels is con-
strained by the available assay methods. Assays for total T
lack precision and sensitivity in the female T range, in-
cluding T levels typical of PCOS (40, 41). The accurate
measurement of free T by equilibrium dialysis is techni-
cally challenging and costly, whereas direct measurement
of free T is inaccurate (41, 42). Measurements of total T by
RIA or liquid chromatography-mass spectrometry in a spe-
cialized endocrine laboratory are currently the best available
methodologies (43). Free and biologically available T can be
calculated from the concentrations of total T, SHBG, and
albumin by using the affinity constants of T for these mole-
cules (42). In practice, albumin is often not measured, and an
assumed normal value is used in the calculation.

Whether the concurrent measurement of androstene-
dione increases the diagnosis of hyperandrogenemia is un-
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clear (24, 37). Approximately 25% of women
with PCOS will have elevated levels of dehy-
droepiandrosterone sulfate (DHEAS) (24),
which may be the sole abnormality in circulat-
ing androgens in approximately 10% of these
women (24).

Although the ovaries are the main source
of increased androgens in PCOS (44), adre-
nal androgen excess is a common feature of
the syndrome (24, 45). The prevalence of ad-
renal androgen excess is approximately
20% among white women and 30% among
black women with PCOS using age- and race-
adjusted normative values for circulating
DHEAS levels (24,45). Women with PCOS dem-
onstrate increased secretion of adrenocortical
precursor steroids basally and in response to
ACTH stimulation including pregnenolone, 17-
hydroxypregnenolone, dehydroepiandrosterone
(DHEA), androstenedione, 11-deoxycortisol,
and possibly cortisol (45, 46).

Estradiol levels are constantly in the early to
midfollicular range without the normal midcycle increases
(47, 48). Estrone levels are increased (47) because of ex-
traglandular aromatization of increased circulating an-
drostenedione levels (49). The decreased SHBG levels typ-
ical of PCOS result in increased non-SHBG bound or
bioavailable estradiol as well as T levels (38, 50, 51).

2. Gonadotropins

Although PCOS is considered a part of the spectrum of
normogonadotropic normoestrogenic anovulation (35),
serum LH concentrations and the LH to FSH ratio are
frequently elevated in affected women (52). FSH levels are
normal to slightly suppressed and do not increase to
threshold levels required during the early follicular phase
of the menstrual cycle to stimulate normal follicular mat-
uration (53). However, gonadotropin levels have never
been included in any of the diagnostic criteria for PCOS
because the characteristic derangements can escape detec-
tion on random blood samples because of the pulsatile
nature of LH release (24, 54-56). Furthermore, LH levels
may be lower in obese women with PCOS and may de-
crease after an ovulatory cycle in oligo-ovulatory affected
women (56, 57).

C. Polycystic ovaries

PCO are characterized by an increase in antral follicles
and ovarian stroma as well as by theca cell hyperplasia and
ovarian cortical thickening (55, 58). Careful histological
examination of PCO has revealed an excess of growing
follicles, the number of which is 2- to 3-fold that of normal
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ogenic enzymes in these cells (64). Thus,
enhanced ovarian androgen production in
PCOS results from the combined effects of
intrinsically increased thecal androgen secre-
tion and increased responsiveness to trophic
hormone stimulation. Whereas the increases
in androgen production are found in theca
cells isolated from ovulatory as well as an-
ovulatory women with PCOS (63), granu-

Hair Loss losa cell steroidogenesis differs by ovulatory

status (62, 65). Granulosa cells from ovula-

I Unopposed tory women with PCO are similar in terms of

I LH Androgen T — Estrogen responses to FSH and estradiol production to

Figure 2. Pathophysiology of the PCOS reproductive phenotype. There is
increased frequency of pulsatile GnRH release that selectively increases LH
secretion. LH stimulates ovarian theca cell T production. T is incompletely
aromatized by the adjacent granulosa cells because of relative FSH deficiency.
There are also constitutive increases in the activity of multiple steroidogenic
enzymes in polycystic ovaries contributing to increased androgen production.
Increased adrenal androgen production may also be present in PCOS. T acts in
the periphery to produce signs of androgen excess, such as hirsutism, acne, and
alopecia. T and androstenedione can also be aromatized extragonadally to
estradiol and estrone, respectively, resulting in unopposed estrogen action on
the endometrium. T feeds back on the hypothalamus to decrease the sensitivity
to the normal feedback effects of estradiol and progesterone to slow GnRH pulse

frequency. This figure is used with the permission of Andrea Dunaif.

ovaries (58). A more recent study of ovarian cortical bi-
opsies from normal and PCOS women (59) confirmed this
observation, finding that the number of small, preantral
follicles, both primordial and primary follicles, was sub-
stantially increased in anovulatory PCO compared with
normal ovaries. In both ovulatory and anovulatory PCO,
the proportion of early growing (primary) follicles is sig-
nificantly increased, with a reciprocal decrease in the pro-
portion of primordial follicles compared with normal ova-
ries (59). These differences are particularly striking in
anovulatory PCO (59). There is decreased atresia of fol-
licles from PCO in culture compared with those from nor-
mal ovaries (60). Markers of cell proliferation are signif-
icantly increased in granulosa cells from anovulatory PCO
(61). Thus, it now appears that the gonadotropin-inde-
pendent development of preantral follicles is disordered in
PCOS (62). The excess of follicles could result from ac-
celerated follicle growth and/or prolonged survival of
small follicles in comparison to follicles from normal ova-
ries (59, 60, 62).

Theca cells from PCO secrete more androgens, ba-
sally and in response to LH and insulin (63), due to
constitutive increases in the activity of multiple steroid-

those from normal women (65, 66). In con-
trast, granulosa cells isolated from some
small-to-medium sized antral follicles ob-
tained from anovulatory women with PCO
showed increased estradiol production in re-
sponse to FSH and premature responsiveness
to LH (65, 66). These abnormalities may
contribute to the arrest of follicular develop-
ment. However, the arrest of antral follicle
development in the otherwise normal follicle
population is most likely accounted for by
lower circulating FSH levels because FSH ad-
ministration can produce normal follicular
maturation and ovulation (62, 67, 68).

Ill. Diagnostic Criteria for PCOS (Table 1)

A. Development of diagnostic criteria for PCOS

All of the diagnostic criteria for PCOS (24, 54, 69-71)
have been based on expert opinion, the lowest level of
evidence (72-75). None of these criteria were based on a
formal consensus process (75, 76). In the United States, the
National Institutes of Health (NIH) Consensus Develop-
ment Program, administered by the Office of Medical Ap-
plications of Research, which has recently become part of
the Office of Disease Prevention (http://consensus.nih.
gov/), is a widely accepted consensus process (77, 78).

TABLE 1. Diagnostic criteria for PCOS

Criteria

NICHD (54)
Rotterdam (69, 70)

Both hyperandrogenism and chronic anovulation

Two of the following: hyperandrogenism, chronic
anovulation, and PCO

Hyperandrogenism plus ovarian dysfunction
indicated by oligoanovulation
and/or PCO

Androgen Excess
Society (24, 71)

All criteria require exclusion of other disorders: hyperprolactinemia, nonclassic
congenital adrenal 21-hydroxylase deficiency, thyroid dysfunction, androgen-
secreting neoplasms, and Cushing'’s syndrome.
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These conferences have a “court” model where there is a
presentation of evidence to a panel that functions as a jury
(http://consensus.nih.gov/FAQs.htm#whatisthe CDP).
The panel is made up of individuals who are experts in
their own fields but are not closely aligned with the sub-
ject. Thus, these Consensus Development Conferences
permit an independent assessment of the issues in the field
by an unbiased panel. An NIH conference on PCOS using
this court model will be held in December 2012.

B. National Institutes of Child Health and Human
Development (NICHD)

After a series of landmark studies in the 1980s identi-
fying insulin resistance as a cardinal feature of the syn-
drome (21, 34, 79-81), the metabolic sequelae of the dis-
order began to be appreciated. This renaissance of interest
in PCOS created a need for a better working definition of
the syndrome; an issue of that was addressed at the 1990
NICHD Conference on PCOS (20). This conference was a
meeting of experts who discussed various features of the
syndrome. Participants were asked to vote on potential
diagnostic features (Table 2); those receiving the most
votes, hyperandrogenism and chronic anovulation, with
the exclusion of secondary causes, became what are
known as the NICHD or NIH criteria (54) and are often
and inaccurately referred to as consensus criteria. The
NICHD criteria did not include ovarian morphology be-
cause of the lack of specificity of this finding (54). It was
clear at that time that 20-30% of women with regular
menses and no androgenic symptoms had PCO on ovarian
ultrasound examination (82). Many of these women did
have elevated circulating T and/or LH levels (82). Fur-
thermore, almost 10% of women with PCOS defined by
NICHD criteria did not have PCO (83).

C. Rotterdam

In Europe, ovarian imaging was used for the diagnosis
PCOS (27, 84, 85). Moreover, with the widespread use of
assisted reproductive technologies, it became evident that
women with PCO, even those who were reproductively
normal, were hyperresponsive to exogenous gonadotro-

TABLE 2. Percentage of participants agreeing on
various criteria at 1990 NICHD PCOS conference (54)

Definite or probable Possible

Insulin resistance, 69%
Perimenarchal onset, 62%
Elevated LH/FSH, 55%

PCO by ultrasound, 52%
Clinical hyperandrogenism, 52 %
Menstrual dysfunction, 45%

Hyperandrogenemia, 64 %
Exclusion of other etiologies, 60%
Exclusion of CAH, 59%

Menstrual dysfunction, 52%
Clinical hyperandrogenism, 48%

CAH, Congenital adrenal hyperplasia.
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pin stimulation and thus at risk for ovarian hyperstimu-
lation syndrome (86—-88). Accordingly, defining ovarian
morphology became an essential component of infertility
management (88). In 2003, another conference on diag-
nostic criteria was convened in Rotterdam (70). Despite
being identified as a consensus conference, the recommen-
dations were also based on expert opinion rather than a
formal consensus process.

The result of the conference was that polycystic ovarian
morphology on ultrasound examination was added to the
NICHD diagnostic criteria (70). The Rotterdam criteria
(69, 70) for the diagnosis of PCOS required the presence
of two of the following findings, after the exclusion of
disorders of the pituitary, ovary, or adrenals that could
present in a manner similar to PCOS: 1) hyperandro-
genism (clinical or biochemical); 2) chronic anovulation;
and 3) PCO (Table 1). These criteria have extended the
diagnosis to include two new groups of affected women:
1) PCO and hyperandrogenism without chronic anovula-
tion; and 2) PCO and chronic anovulation without hy-
perandrogenism (71) (Fig. 3).

D. Androgen Excess Society (AES)

The Rotterdam Criteria do not discriminate between
the cardinal features of PCOS, placing equal diagnostic
importance on PCO, chronic anovulation, and hyperan-
drogenism (24, 71). In 2006, an expert panel of the AES
recommended criteria that hyperandrogenism be consid-
ered as an essential component of PCOS (71). These cri-
teria require the combination of biochemical or clinical
hyperandrogenism with chronic anovulation or PCO (24,
71) (Table 1). Nevertheless, these AES criteria included the
additional phenotype of hyperandrogenism, ovulatory cy-

cles and PCO (71) (Table 3).

E. Impact of diagnostic criteria on PCOS
phenotypes (Table 3)

Even before Rotterdam, studies (34, 89) had suggested
that these additional subgroups differed metabolically
from the group with classic PCOS identified by the
NICHD criteria (Fig. 4). Women with ovulatory cycles
and hyperandrogenemia (34) or PCO (89) had normal
insulin sensitivity. Furthermore, ovarian morphology did
not correlate with the severity of symptoms in PCOS (90,
91). The hyperandrogenic woman with PCO but docu-
mented normal ovulation was recognized as a distinct phe-
notype of PCOS by both the Rotterdam criteria and the
AES criteria (24, 70, 71) (Table 3). It has been suggested
that this ovulatory form of PCOS may represent a transi-
tional, intermediate stage between normality and the
classic anovulatory form of PCOS. Women with this phe-
notype are often leaner than those with classic PCOS (92~
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Figure 3.
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Figure 3. Features of PCOS. The diagnostic criteria for PCOS (Table 1) include two or
more of these features: hyperandrogenism (blue circle), anovulation (pink circle),

and PCO (green circle), resulting in several PCOS phenotypes depending on the
diagnostic criteria applied (Table 3). This figure is used with the permission of Andrea
Dunaif.

94).In addition, they have milder metabolic abnormalities
or may even be metabolically normal (92, 95-103). This
PCOS group may potentially convert to classic PCOS un-
der the influence of environmental factors like weight gain
(104). However, there have been no longitudinal studies to
follow the natural course of women with ovulatory PCOS.

The anovulatory woman with normal androgen levels
and PCO is a second distinct phenotype of PCOS accord-
ing to the Rotterdam criteria (24, 71) (Table 3). Women in
this group most often have normal insulin sensitivity (97—
100). Women with ovulatory cycles and PCO but no hy-
perandrogenism do not fulfill NICHD, Rotterdam, or AES
criteria for PCOS (Table 3). However, these groups of
nonhyperandrogenic women with PCO may have subtle
endocrine aberrations, like higher LH and lower SHBG
levels (82, 92,97, 99). Moreover, they may have hyperan-
drogenic responses to GnRH analog (GnRHa) testing, de-
spitenormal androgen levels at baseline (95, 105). Women

TABLE 3. PCOS phenotypes according to diagnostic
criteria applied

HA and HA and Anov and

Anov PCO PCO HA PCO Anov
NICHD + — — — — —
Rotterdam + + + - - -
AES + + — — - -

HA, Hyperandrogenism; Anov, chronic anovulation.
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with isolated PCO are at increased risk to de-
velop ovarian hyperstimulation during ovula-
tion induction, analogous to women with hy-
perandrogenic forms of PCOS (88). PCO from
ovulatory women do have abnormalities in fol-
liculogenesis (62) and constitutive increases in
theca cell androgen production (62, 63). Taken
together, these findings suggest that PCO have
constitutive increases in androgen biosynthesis
and responsiveness to gonadotropins in the ab-
sence of ovulatory disturbances (62, 106).
However, a follow-up study of eumenor-
rheic women with the isolated PCO has shown
that this ultrasound finding is unstable and ir-
reproducible across the reproductive period
(91). Women with PCO at baseline did not
demonstrate any tendency to develop PCOS
during the follow-up arguing against the hy-
pothesis that PCO could represent an early,
preclinical stage in the natural continuum of
PCOS (91). The prevalence of PCO is also age-
related and decreases in frequency with in-
creasing age (103). There appears to be a ge-
netic susceptibility to PCO because they are
highly heritable in affected sister pairs (107).

F. Epidemiology

PCOS is now recognized as one of the most common
endocrinopathies in women of reproductive age with a
prevalence of 4-10% for the NICHD defined form (108 -
111). These prevalence estimates for PCOS using the
NICHD criteria are remarkably consistent across racial
and ethnic groups (108, 109, 111-113). This observation
suggests that PCOS is an ancient evolutionary trait that
was present before humans migrated out of Africa. The
recent confirmation in European PCOS cohorts (114,
115) of two gene loci identified in a genome-wide associ-
ation of Han Chinese women with PCOS (116) supports
this hypothesis (the genetics of PCOS is discussed later in
Section V.C.). There is, however, variation in the pheno-
types of PCOS in many ethnic/racial groups, such as Lati-
nas(117,118), African-Americans (119), Icelanders (120)
SriLankans (93), Koreans (121), and Chinese (100). How-
ever, a recent study comparing Black and White women
with PCOS found no differences in reproductive features
and mild differences in metabolic features (119).

PCOS is the most common cause of normogonado-
tropic anovulation, accounting for 55-91% of the entire
World Health Organization-II (WHO-II) cohort (35). The
prevalence of PCOS is higher using the 2003 Rotterdam
criteria because it includes additional phenotypes (70)
(Table 3). The Rotterdam-PCOS group was 1.5 times
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Figure 4. Insulin responses basally and after a 40 g/m? oral glucose load in obese and lean
PCOS women (black circles), ovulatory hyperandrogenic (HA) women (gray circles), and age-
and weight-comparable ovulatory control women (white circles). Insulin responses are
significantly increased only in PCOS women (P < 0.001 obese PCOS vs. obese HA and obese
control; P < 0.01 lean PCOS vs. lean HA and control), suggesting that hyperinsulinemia is a
unique feature of PCOS and not hyperandrogenic states in general. [Adapted from A. Dunaif
et al.: Characterization of groups of hyperandrogenic women with acanthosis nigricans,
impaired glucose tolerance, and/or hyperinsulinemia. J Clin Endocrinol Metab 65:499-507,
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pared with age- and weight-comparable
reproductively normal control women.
This study also suggested that metabolic
features varied by PCOS phenotype, a
finding that has been confirmed with in-
vestigation of the Rotterdam PCOS phe-
notypes (discussed in Section I11.E. and
reviewed in Ref. 101): women with
NICHD PCOS are at the greatest meta-
bolic risk. Accordingly, differing diag-
nostic criteria for PCOS will affect the
results of metabolic investigations. The
majority of the studies assessing glucose
tolerance and insulin resistance have
used the NICHD criteria for the diagno-
sis of PCOS.

The prevalence of IGT and T2D in
U.S. women with PCOS has been as-
sessed in three large cross-sectional
studies in racially and ethnically di-
verse cohorts (123-125) (Fig. 5). The
prevalence was 23-35% for IGT and
4-10% for T2D in these studies. Fur-

1987 (34), with permission. © The Endocrine Society.]

larger than the group classified as NICHD PCOS among
women with normogonadotropic anovulation (35). Al-
though PCOS is commonly associated with obesity, there
is no evidence that the prevalence of PCOS is increasing
with the increasing prevalence of obesity (122).

IV. PCOS Metabolic Phenotype

A. Glucose tolerance (Fig. 5)

Despite the fact that hyperinsulinemia reflecting some
degree of peripheral insulin resistance was well recognized
in PCOS by the mid 1980s, glucose tolerance was not
systematically investigated until 1987 (49). This study re-
ported that obese women with PCOS had significantly
increased glucose levels during an oral glucose tolerance
test (OGTT) compared with age- and weight-comparable
reproductively normal control women. However, obese
ovulatory hyperandrogenemic women had OGTT-
glucose responses similar to control women, suggesting
that derangements in glucose homeostasis were a feature
of the anovulatory PCOS phenotype (i.e., NICHD criteria
PCOS) rather than hyperandrogenemia per se. Twenty
percent of the obese women with PCOS met criteria for
impaired glucose tolerance (IGT) or type 2 diabetes (T2D)
(34). Conversely, there were no significant differences in
OGTT- glucose responses in lean women with PCOS com-

thermore, prevalence rates of IGT and

T2D did not change in a subgroup

analysis limited to non-Hispanic white
women (123). The prevalence rate of IGT in PCOS was
3-fold higher than the population prevalence rate in
women of similar age from the National Health and Nu-
trition Survey (NHANES) IT and twice the prevalence rate
in age- and weight-comparable reproductively normal
control women (123). The prevalence rate of undiagnosed
T2D was 7.5- to 10-fold higher than the prevalence rate in
NHANES II women of similar age (123, 124); none of the
control women had T2D. Moreover, these studies likely un-
derestimated the prevalence of diabetes mellitus in PCOS
because they excluded women with diagnosed type 1 or type
2 diabetes (123-125).

Dysglycemia (fasting glucose = 100 mg/dl, and/or 2-h
postchallenge glucose = 140 mg/dl) was mainly evident in
post-glucose challenge glucose levels (Fig. 6), and the prev-
alence of dysglycemia increased with body mass index
(BMI), being highest in obese affected women (i.e., BMI =
30 kg/m?) (123, 125). However, even lean women with
PCOS had increased rates of IGT and T2D (123). A first-
degree relative with T2D increased risk for dysglycemia
(123, 125). The majority of women in these studies were
in their third and fourth decades of life; however, the prev-
alence rates of IGT and T2D were similarly increased in
U.S. adolescents with PCOS (126).

Prevalence rates of dysglycemia are elevated in non-
U.S. women with PCOS but not to the same magnitude as
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Figure 5. Prevalence of glucose intolerance and 72D in PCOS. The prevalence of IGT
and T2D in four large multiethnic PCOS cohorts is substantially increased. The true
prevalence of diabetes was likely underestimated in these studies because diagnosed
women with type 1 or type 2 diabetes were not included in the cohorts. NGT,
Normal glucose tolerance.* [The University of Chicago data were reported by D. A.
Ehrmann et al.: Prevalence of impaired glucose tolerance and diabetes in women
with polycystic ovary syndrome. Diabetes Care 22:141-146, 1999 (124), with
permission. © American Diabetes Association.** The Penn State University and Mt.
Sinai data were reported by R. S. Legro et al.: Prevalence and predictors of risk for
type 2 diabetes mellitus and impaired glucose tolerance in polycystic ovary
syndrome: a prospective, controlled study in 254 affected women. J Clin Endocrinol
Metab 84:165-169, 1999 (123), with permission. © The Endocrine Society.*** The
Rezulin (troglitazone) Collaborative Group data were reported by R. Azziz et al.:
Troglitazone improves ovulation and hirsutism in the polycystic ovary syndrome: a
multicenter, double blind, placebo-controlled trial. J Clin Endocrinol Metab 86:1626—
1632, 2001 (392), with permission. © The Endocrine Society.] The figure is used with
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increased prevalence of IGT and T2D in
women with PCOS compared with women
without PCOS, in both BMI- and non-BMI-
matched studies, was confirmed. In the meta-
analysis, the odds ratios (OR) and confidence
intervals (CI) were significantly increased:
IGT—OR, 2.48; 95% CI, 1.63-3.77; BMI-
matched studies, OR, 2.54; 95% CI, 1.44-
4.47; and T2D—OR, 4.43; 95% CI, 4.06-
4.82; BMI-matched studies, OR, 4.00; 95%
CIL, 1.97-8.10. This meta-analysis confirms
that the risk for IGT and T2D is increased in
PCOS. PCOS is now recognized as a diabetes
risk factor by the American Diabetes Associa-
tion (134). Nevertheless, the magnitude of risk
is unclear because most studies have been
cross-sectional, relatively small, and lacking
concurrently studied control women (135).
Furthermore, differences in diagnostic criteria
for PCOS, race/ethnicity, and BMI have led to
variable risk estimates among PCOS cohorts
(133, 1335).

Large cross-sectional and prospective pop-
ulation-based studies are needed to accurately
estimate the magnitude of T2D risk in PCOS.
A recent prospective study in an Italian PCOS
cohort confirmed an increased risk for T2D

the permission of David Ehrmann.

those in U.S. women with PCOS. The prevalence rates of
IGT and T2D were 15.7 and 2.5%, respectively, which
was higher than the estimated rates in the general popu-
lation in an Italian PCOS cohort (127). A telephone in-
terview study of Dutch women with PCOS found a sig-
nificant increase in diagnosed T2D compared with
population prevalence estimates (128). Another European
study (129) did not show increased prevalence rates of IGT
and T2D in women with NICHD PCOS from Spain com-
pared with age-, BMI-, and ethnicity-comparable control
women. The reasons for these discrepant findings, apart
for racial/ethnic differences, are unclear. Although the
prevalence of obesity is higher and its severity is greater in
U.S. PCOS populations (123, 124), such differences alone
cannot account for differing rates of dysglycemia, which
persist between European and U.S. PCOS cohorts in com-
parable BMI categories (123, 127, 129). Other factors,
such as diet (130, 131) and race/ethnicity (118, 132), may
contribute to higher prevalence rates of dysglycemia
among U.S. women with PCOS.

A recent meta-analysis (133) reviewed more than 2000
studies of glucose tolerance in PCOS from which only 30
full-text studies were assessed for the final analysis. The

(594). However, some insights can be provided

by prospective cohort studies that have used
self-reported menstrual irregularity (136, 137) and/or hir-
sutism (138) as surrogate markers for PCOS. Among re-
productive-age women with oligomenorrhea, as many as
90% may have PCOS, depending on the diagnostic criteria
applied (35, 36,139, 140). Furthermore, women with self-
reported oligomenorrhea and/or hirsutism have reproduc-
tive and metabolic features of PCOS (138, 141), particu-
larly those with both clinical findings (141). In Pima
Indians (136) and in the Nurses Health Study I (137), the
risk for T2D was significantly increased in women with
menstrual irregularity. In the Nurses Health Study (137),
a multivariate analysis adjusting for multiple confound-
ers, including BMI at age 18, race, physical activity, first-
degree relative with diabetes, smoking, and oral contra-
ceptive use, found the relative risk for diabetes was 1.82
(95% CI, 1.35-2.44) in women with long or irregular
menstrual cycles at ages 18-22 yr. The risk was increased
by obesity but remained significant in lean women with
irregular menses (137). This association was not con-
firmed in a relatively small U.S. prospective cohort study
(142), but it was supported in a more recent and larger
Dutch study (143). Several studies in postmenopausal
women with a history of PCOS and/or PCO are consistent
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Figure 6. Fasting and post-challenge dysglycemia in PCOS. The individual fasting and
2-h post-75 g oral glucose challenge glucose data from 254 women with PCOS are
shown. The dotted vertical line is the fasting glucose threshold for impaired fasting
glucose (100 mg/dl), the dashed vertical line is the fasting glucose threshold for
diabetes (T2D) (126 mg/dl), the dotted horizontal line is the post-challenge glucose
threshold for IGT (140 mg/dl), and the horizontal dashed line is the post-challenge
glucose threshold (200 mg/dl) for T2D, according to the American Diabetes
Association criteria (158). Most women with PCOS have post-challenge rather than
fasting dysglycemia. NGT, Normal glucose tolerance. [Adapted from R. S. Legro et
al.: Prevalence and predictors of risk for type 2 diabetes mellitus and impaired
glucose tolerance in polycystic ovary syndrome: a prospective, controlled study in
254 affected women. J Clin Endocrinol Metab 84:165-169, 1999 (123), with

responsive target tissues, adipocytes, and
skeletal and cardiac muscle, as well as by sup-
pressing hepatic glucose production (160,
161). Insulin also suppresses lipolysis, result-
ing in a decrease in circulating free fatty acid
levels (162), which may mediate the action of
insulin on hepatic glucose production (163-
165). Insulin resistance has traditionally
been defined as a decreased ability of insulin

permission. © The Endocrine Society.]

with an ongoing increased risk for T2D (144 -148). These
data suggest that PCOS increases the risk for T2D across
a woman’s lifespan.

There have been very few follow-up studies to assess
conversion rates from normal glucose tolerance to IGT
and from IGT to T2D. The conversion rate from normal
to IGT or from IGT to T2D in PCOS has been estimated
to range from 2.5 to 3.6% annually over a period of 3-8
yr (133, 149-152). These conversion rates are lower than
in the general population of individuals with IGT who
convert to T2D at rates of approximately 7% annually
(153-155). This discrepancy likely represents an under-
estimate in conversion rates in PCOS because the studies
have been limited by small sample size (133, 149-152).

Women with PCOS most commonly have postprandial
dysglycemia (123, 125), which reflects peripheral, primar-
ily skeletal muscle, insulin resistance (156) rather than
fasting dysglycemia (Fig. 6), which reflects increased en-
dogenous glucose production (156). Therefore, 2-h post-
challenge glucose values are optimal for the diagnosis of

to mediate these metabolic actions on glu-

cose uptake, glucose production, and/or li-

polysis, resulting in a requirement for increased
amounts of insulin to achieve a given metabolic action
(166). Accordingly, insulin resistance is characterized
by increased circulating insulin levels, basally and in
response to a glucose load, if pancreatic B-cell function
is intact (166, 167). Insulin has other metabolic as well
as mitogenic and reproductive actions (discussed in Sec-
tions IV.D.and V.A. and in Refs. 12,168, and 169), but
it is unknown whether isolated defects in these path-
ways would provoke compensatory hyperinsulinemia.
The “gold standard” for assessing metabolic insulin
resistance i vivo is the hyperinsulinemic, euglycemic glu-
cose clamp technique (167, 170). This technique quanti-
tatively assesses insulin action on whole-body glucose up-
take by infusing a desired dose of insulin and maintaining
euglycemia using a variable glucose infusion where the
rate is adjusted based on frequent arterialized blood glu-
cose determinations and a negative feedback principle
(167, 170). At steady state, the amount of glucose that is
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infused equals the amount of glucose taken up by the pe-
ripheral tissues, and it can be used as a measure of periph-
eral sensitivity to insulin, known as insulin-mediated glu-
cose disposal (IMGD) or M (167, 170). In lean, normal
individuals, skeletal muscle accounts for about 85% of
IMGD (160). As fat mass increases, it accounts for a larger
amount of IMGD (160). Endogenous glucose production,
which reflects both hepatic and renal glucose production
(167,170-172), can be determined by the infusion of iso-
topically labeled glucose at baseline and during the eugly-
cemic clamp (173, 174). The suppression of hepatic glu-
cose production can be assessed by determining the
decrease in endogenous glucose production in response to
insulin (173, 174).

Whole-body insulin sensitivity can also be accurately
measured in subjects without diabetes using the frequently
sampled iv glucose tolerance test (FSIGT) with minimal
model analysis (167). The minimal model determines insulin
sensitivity (sensitivity index), which reflects insulin action to
stimulate glucose uptake as well as to suppress glucose pro-
duction (167). The acute insulin response to glucose (AIRg)
is also determined from the FSIGT data. The disposition in-
dex (DI), the product of AIRg and insulin sensitivity, assesses
insulin secretion in the context of insulin sensitivity and is a
robust parameter of pancreatic B-cell function (161, 175)
that will be discussed in Section IV.E. It is possible to model
hepatic glucose production with the administration of iso-
topically labeled glucose during the FSIGT (176, 177), but
this measurement is rarely performed because the tracer is
expensive and the model is complex. The standard FSIGT is
substantially easier and less expensive to perform than the
clamp, although it is still an investigational procedure that
requires frequent blood sampling.

The FSIGT provides quantitative, reproducible mea-
surements of insulin sensitivity in individuals without
T2D; in patients with diabetes, it may not be possible to
differentiate between very low insulin sensitivity values
(178, 179). The FSIGT also provides a simultaneous as-
sessment of insulin secretion (161, 178). The euglycemic
clamp provides a quantitative, reproducible measurement
of insulin action across a spectrum of insulin sensitivities
and can be used in patients with T2D (167, 170). Endog-
enous, primarily hepatic, glucose production can also be
assessed during the clamp (170, 178). The measurement of
insulin secretion requires a separate, hyperglycemic clamp
study (170, 178, 180). The glucose clamp procedure re-
quires highly trained personnel and specialized equipment
(167, 170). It is also substantially more expensive to per-
form than the FSIGT (167).

Because of the complexity and expense of the clamp
and the FSIGT, there has been a desire to use fasting
parameters of glucose homeostasis as surrogate mea-
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sures of insulin resistance. These measures include ho-
meostatic model assessment (181), fasting glucose:in-
sulin ratio (182), and quantitative insulin sensitivity
check index (183). They are all based on fasting glucose
and insulin levels and essentially provide identical in-
formation (184). Fasting glucose levels reflect endoge-
nous glucose production (156), an index of hepatic
rather than peripheral insulin action (156). Fasting insulin
levels reflect not only insulin sensitivity but also insulin
secretion and clearance (184). Accordingly, fasting insu-
lin levels will not provide accurate information on insulin
sensitivity in individuals with B-cell dysfunction (184).
OGTT-derived parameters of insulin action have also
been shown to be insensitive to large changes in insulin
sensitivity (184). Although fasting measures (185) and
OGTT-derived parameters (186) may correlate with
clamp or FSIGT measures of insulin sensitivity, they lack
precision for quantitatively measuring insulin resistance in
the general population (184). These measures have been
found to be similarly imprecise for the assessment of in-
sulin sensitivity in women with PCOS (187).

PCOS women have an increased prevalence of obesity
(19, 122, 188), and women with upper as opposed to
lower body obesity have an increased frequency of hy-
perandrogenism (189). Androgens can also increase vis-
ceral fat mass in women (190). Muscle is the major site of
insulin-mediated glucose use (160), and androgens can
increase muscle mass (191). Thus, potential changes in
lean body (primarily muscle) and fat mass as well as in fat
distribution should be considered to accurately assess in-
sulin action in PCOS (81, 192).In 1989 (81), it was shown
that IMGD measured by euglycemic clamp was signifi-
cantly and substantially decreased (~35-40%) in women
with PCOS compared with age- and body composition-
comparable reproductively normal control women (81,
192) (Fig. 7). The decrease in IMGD in PCOS was of a
similar magnitude to that reported in T2D (160) (Fig. 7).
Furthermore, IMGD was significantly decreased per ki-
logram of fat free, primarily muscle, mass (160). IMGD
was also significantly decreased in lean PCOS women, all
of whom had normal glucose tolerance.

Body fat topography, upper compared with lower
body, can affect insulin sensitivity (7), with increases in
upper body and visceral fat being associated with de-
creased insulin sensitivity (7, 193). The study of Dunaif ez
al. (81) did not control for this parameter, and some sub-
sequent studies have suggested that increases in upper
body obesity, assessed by waist and hip measurements and
adipocyte size, are associated with insulin resistance in
PCOS (192, 194-197). However, visceral fat mass accu-
rately quantified by magnetic resonance imaging (MRI)
(197,198) or by computerized tomography (199) does not
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Figure 7. Decreased IMGD in PCOS. IMGD at steady-state insulin levels of 100 pU/ml is
significantly decreased by 35-40% in women with PCOS (gray bars), independent of obesity,
compared with age- and weight-matched control women (NL, open bars). This decrease is
similar in magnitude to that reported in T2D (open bars) (160). This figure is used with the

permission of Andrea Dunaif.

differ in women with PCOS compared with BMI-matched
control women. Thus, the study of PCOS and control
women of comparable BMI appears to be sufficient to
control for the confounding effects of obesity as well as of
fat distribution on insulin sensitivity.

Insulin has concentration-dependent saturable actions
that can be examined in vivo using sequential multiple
insulin dose euglycemic clamp studies (200). The concen-
tration required for a half-maximal (EDs,) response de-
fines insulin sensitivity and usually reflects insulin recep-
tor binding or phosphorylation, whereas the maximal
biological effect is defined as insulin responsiveness and
usually reflects postreceptor events, for example, translo-
cation of the GLUT4 glucose transporter for IMGD (166).
Dose-response studies have indicated that the ED 5 insulin
for glucose uptake was significantly increased and that
maximal rates of IMGD were significantly decreased in
lean and in obese women with PCOS women (192) (Fig.
8). It appears, however, that body fat has a more pro-
nounced negative effect on insulin sensitivity in women
with PCOS (201, 202). Basal endogenous glucose produc-
tion and the EDg,, insulin for suppression of endogenous
glucose production were significantly increased only in
obese PCOS women (81, 192) (Fig. 8). This synergistic
negative effect of obesity and PCOS on endogenous glu-
cose production is an important factor in the pathogenesis
of glucose intolerance (34, 81, 123, 192).

Many subsequent studies using euglycemic glucose
clamps or FSIGTs have confirmed that women with PCOS

PCOS T2D

Lean
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have profound resistance to the action
of insulin to stimulate glucose uptake
(for example, see Refs. 201 and 203-
209). There is general consensus that
obese women with PCOS are insulin
resistant (24). However, several stud-
ies have failed to demonstrate insulin
resistance in lean women with PCOS
(for example, see Refs. 205, 210, and
211) using the highly sensitive eugly-
cemic glucose clamp technique. Some
of these conflicting results can be ac-
counted for by differences in the diag-
nostic criteria for PCOS that resulted
in the inclusion of women with ovu-
latory cycles and hyperandrogenism
who have minimal to absent evidence
for insulin resistance (see discussion
in Section I11.E. of diagnostic criteria
and Refs. 34, 89, 96, 98, and 101).
However, it is also possible that racial/
ethnic differences in insulin action (118,
132) or environmental factors such as
diet (130, 131) contributed to these discrepant findings.

Attempts to quantitate the prevalence of insulin resis-
tance in PCOS are limited by the methods used to deter-
mine insulin sensitivity. Prevalence rates of insulin resis-
tance have been reported from 44 to 70% (187,212-216)
using surrogate markers, which lack sensitivity and spec-
ificity (184, 187). Even when insulin resistance is assessed
using the euglycemic glucose clamp, it is clear that some
women with PCOS have normal insulin sensitivity (81)
(Fig. 9). Thus, defects in insulin action on glucose metab-
olism are not a universal feature of the syndrome. Indeed,
two of the PCOS phenotypes identified with the Rotter-
dam criteria (Table 3) — hyperandrogenism and PCO with
ovulatory cycles, and anovulation and PCO without hy-
perandrogenism — have modest (217) or absent (99) evi-
dence for insulin resistance using surrogate markers. Nev-
ertheless, it remains possible that there is increased
sensitivity to the reproductive actions of insulin in PCOS
because hyperandrogenism and anovulation improve dur-
ing metformin treatment in women with PCOS without
evidence for insulin resistance (218). Alternatively, these
improvements may be related to a direct action of met-
formin on steroidogenesis (219).

2. Cellular and molecular mechanisms of insulin
resistance (Fig. 10)

a. Molecular mechanisms of insulin action. Insulin has multi-
ple cellular actions beyond the regulation of glucose up-
take (220). It has other anabolic effects to increase storage
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Figure 8. Insulin action in isolated sc adipocytes and in vivo. The dose-response of insulin-
stimulated glucose uptake was determined in isolated sc adipocytes in vitro and in vivo during
sequential multiple insulin dose euglycemic glucose clamp studies. Maximal rates of glucose
uptake (insulin responsiveness) in isolated sc adipocytes are depicted in vitro (A, left) and in
vivo, which reflects primarily skeletal muscle glucose uptake (B, /eft). Rates of postabsorptive
endogenous glucose production (EGP) (C, left) and its suppression by insulin were also
assessed during the euglycemic glucose clamp study. The EDs insulin (insulin sensitivity) for
stimulation of glucose uptake and suppression of EGP are depicted in the graphs on the right
(A, sc adipocytes in vitro; B, in vivo, C, EGP). Women with PCOS, gray bars; normal control
women (NL), open bars. A two-way ANOVA with PCOS and obesity as factors was applied:

*, P < 0.01 PCOS groups vs. NL groups; t, P < 0.05 obese groups vs. lean groups; T, P <
0.01 obese groups vs. lean groups; t11, P < 0.001 obese groups vs. lean groups; #, P < 0.05
interaction PCOS and obesity. [Adapted from data published in A. Dunaif et al.: Evidence for
distinctive and intrinsic defects in insulin action in polycystic ovary syndrome. Diabetes
41:1257-1266, 1992 (192), with permission. © American Diabetes Association.]
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ligand-mediated autophosphorylation
(226). The insulin receptor shares sub-
stantial structural homology the IGF-I
receptor and the insulin-related receptor
(220). The «,B dimer of the insulin re-
ceptor can assemble with similar dimers
of the IGF-I receptor or insulin-related
receptor to form hybrid receptors (227).
Ligand binding induces autophos-
phorylation of the insulin receptor on
specific tyrosine residues and further ac-
tivation of its intrinsic kinase activity
(228-230). The activated insulin recep-
tor then tyrosine-phosphorylates intra-
cellular substrates, such as insulin recep-
tor substrates (IRS) 1-4, src homolog
and collagen homolog (Shc), and APS
[adapter protein with a PH and homol-
ogy 2 (SH2) domain], to initiate signal
transduction (222, 231, 232). The IRS
are phosphorylated on specific motifs,
and these phosphorylated sites then bind
signaling molecules, such as the SH2 do-
main of phosphatidylinositol 3-kinase
(PI3-K) or the adaptor molecule, Nck
(220,222, 233), leading to activation of
downstream signaling pathways.
Insulin stimulates glucose uptake by in-
creasing the translocation of the insulin-
responsive glucose transporter, GLUT4,
from intracellular vesicles to the cell sur-
face (222,232). This pathway is mediated
by activation of PI3-K, which then phos-
phorylates membrane phospholipids and
phosphatidylinositol ~ 4,5-bisphosphate,
leading to activation of the 3-phosphoino-
sitide-dependent protein kinases (PDK-1
and PDK-2) (220, 232). These kinases
activate the serine/threonine kinases
Akt/protein kinase B (PKB) and atypical
protein kinase C A and &, (PKCM/¢). Akt/
PKB transmits the signal by phosphory-

of lipids and proteins as well as to promote cell growth and
differentiation (220). Insulin acts on cells by binding to its
cell surface receptor (221, 222). The insulin receptor is a
heterotetramer made up of two «,8 dimers linked by disul-
fide bonds (223). Each «, dimer is the product of one gene
(224, 225). The a-subunit is extracellular and contains the
ligand-binding domain; it also inhibits the intrinsic kinase
activity of the B-subunit (220, 222). The B-subunit spans the
membrane, and the cytoplasmic portion contains intrinsic
protein tyrosine kinase activity, which is activated further by

lation of its 160-kDa substrate, AS160 (220, 232). Both of
these pathways stimulate the translocation of GLUT4 to the
cell surface (220, 232). Glycogen synthase activity is consti-
tutively inhibited via phosphorylation by glycogen synthase
kinase-3 (GSK3) (220, 232). Activation of Akt/PKB also re-
sults in the serine phosphorylation and inactivation of GSK3,
allowing glycogen synthase activity to increase and resulting
in glycogen synthesis (220, 232, 234).

Insulin stimulates cell growth and differentiation through
the MAPK-ERK (220, 232) pathway (220, 235). This path-
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Figure 9. Fasting and dynamic measures of insulin resistance. Fasting measure of

insulin sensitivity, the glucose:insulin ratio (185) and insulin levels are shown in the
top graphs. Dynamic measures of insulin sensitivity, the euglycemic glucose clamp
determined IMGD, and sensitivity index (SI) assessed by minimal model analysis of
FSIGT are shown in the bottom graphs. For all measures of insulin action, there is
considerable overlap between control (open triangles) and PCOS (gray circles)
women. The data have been previously published (81, 185, 301) and were adapted
for use in this figure, which is used with the permission of Andrea Dunaif.

way is activated by insulin receptor-mediated phosphoryla-
tion of Shc or IRS, leading to association with Grb2 and
Son-of-sevenless resulting in Ras activation (220). This acti-
vation stimulates a cascade of serine/threonine kinase result-
ing in the stepwise stimulation of Raf, MAPK kinase (MEK)
and MAPK-ERK1/2. ERK1/2 translocates to the nucleus and
phosphorylates transcription factors to initiate cell growth
and differentiation (220). This so-called mitogenic pathway
can be disrupted without affecting the metabolic actions of
insulin and vice versa (220, 236-238). As a result, insulin
resistance can be selective and affect only metabolic but not
mitogenic pathways of insulin action (236,239, 240). Insulin
regulates protein synthesis and degradation via mammalian
target of rapamycin (mTOR) (220), which is activated via
PI3-K. The mTOR pathway is also important in nutrient
sensing (241). Insulin-stimulated inhibition of GSK3 via
PI3-K and Akt/PKB also results in dephosphorylation of eu-
karyotic initiation factor 2B (eIF2B) activating protein syn-
thesis (234).

The insulin signal can be terminated by dephosphor-
ylation of proximal signaling molecules. Multiple ty-

b. Molecular defects in PCOS (Fig. 11). The cellu-
lar and molecular mechanisms of insulin action
in PCOS have been characterized in cultured
skin fibroblasts, which are not classic insulin
target tissues (222). Defects in fibroblast insu-
lin action that persist in cells that have been
removed from the in vivo environment for
many passages suggest that the changes are the result of mu-
tations in genes regulating these pathways (10, 250). Con-
sistent with this hypothesis, decreases in insulin receptor
binding or autophosphorylation in cultured skin fibroblasts
have reflected mutations in the insulin receptor gene in patients
with the syndromes of extreme insulin resistance (10, 12).
Insulin action has also been examined in the classic
insulin target tissues for glucose uptake, adipocytes and
skeletal muscle (160, 222). The size of sc adipocytes
isolated from both lean and obese women with PCOS
was increased (192, 197). Insulin receptor number
and/or receptor affinity was similar to control women in
isolated sc adipocytes (192, 251). However, decreased
insulin receptor B-subunit abundance has been reported
in homogenates of omental adipose tissue from women
with PCOS (252). The most striking and consistent de-
fect in adipocyte insulin action in PCOS was a marked
increase in the EDs for insulin-mediated glucose up-
take (192, 206, 251), indicating a decrease in insulin
sensitivity, when compared with isolated adipocytes
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Figure 10. Insulin receptor signaling pathways. The insulin receptor is a heterotetramer consisting of two «, B dimers linked by disulfide bonds. The
a-subunit contains the ligand binding domain, and the B-subunit contains a ligand-activated tyrosine kinase. Tyrosine autophosphorylation
increases the receptor’s intrinsic tyrosine kinase activity, whereas serine phosphorylation inhibits it. The tyrosine-phosphorylated insulin receptor
phosphorylates intracellular substrates, such as IRS 1-4, Shc, and APS, initiating signal transduction pathways mediating the pleiotropic actions of
insulin. The major pathway for the metabolic actions of insulin is mediated through activation of PI3-K and Akt/PKB, resulting in the translocation
for the insulin responsive glucose transporter, GLUT4, from intracellular vesicles to the plasma membrane. Insulin activation of PI3-K and Akt/PKB
also leads to serine phosphorylation of GSK3, resulting in inhibition of its kinase activity. The inhibition of GSK3 results in dephosphorylation of
glycogen synthase increasing glycogen synthesis. The Ras-ERK/MAPK pathway regulates gene expression. Insulin modulates protein synthesis and
degradation via mTOR, which is activated via PI3-K and Akt/PKB. The mTOR pathway is also important in nutrient sensing. Insulin-stimulated
inhibition of GSK3 via PI3-K and Akt/PKB also results in dephosphorylation of elF2B increasing protein synthesis. Insulin signaling can be
terminated by dephosphorylation of the receptor by tyrosine phosphatases, such as PTP1B, or dephosphorylation of PI3-K by PTEN. Serine
phosphorylation of the insulin receptor and IRSs can also decrease insulin signaling and may be mediated by serine kinases in the insulin signaling
pathway providing a feedback mechanism to terminate insulin action. There is a post-binding defect in insulin signaling in PCOS affecting
metabolic but not mitogenic pathways (see Fig. 11 for details). The signaling steps that are compromised in PCOS are circled with a dotted line.
Signaling steps downstream of these abnormalities may also be compromised. SOS, Son-of-sevenless. This figure is used with the permission of

Andrea Dunaif.

from appropriately weight-comparable reproductively
normal control women (Fig. 8). The decrease in insulin
sensitivity suggested that there was a defect in insulin
receptor binding or phosphorylation (166).

Most studies have also found less striking, but significant,
decreases in maximal rates of insulin-stimulated glucose
transport (192,253), insulin responsiveness, suggesting a de-
crease in post-receptor events (192, 251) (Fig. 8). Significant
decreases in the abundance of GLUT4 glucose transporters
in sc adipocytes from women with PCOS most likely ac-
counted for the decrease in insulin responsiveness (252,254).
However, a recent study (206) failed to find decreases in
insulin responsiveness or GLUT4 abundance in scadipocytes
isolated from women with PCOS, despite the fact the eugly-

cemic clamp studies in these PCOS subjects showed de-
creased insulin responsiveness for IMGD consistent with a
postbinding defect in insulin action. The reasons for these
discrepant results in isolated sc adipocytes are unclear because
both studies used the same diagnostic criteria (NICHD) for
PCOS and contained control women of comparable BMI (206,
254). Similar defects in adipocyte insulin action have been re-
ported in T2D and in obesity but are ameliorated by control of
hyperglycemia and hyperinsulinemia as well as by weight-
reduction, suggesting acquired rather than intrinsic defects
(255-257).In contrast, in PCOS such defects can occur in the
absence of obesity and glucose intolerance (192, 254). More-
over, these abnormalities are not significantly correlated
with sex hormone levels (55, 117).
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Figure 11. Insulin signaling defects in PCOS. There is a post-binding defect in insulin signaling
in PCOS resulting in marked decreases in insulin sensitivity (see Fig. 8). There is a more modest
defect in insulin responsiveness. The signaling defect is due to serine phosphorylation of the
insulin receptor and IRS-1 secondary to intracellular serine kinases. This results in decreased
insulin-mediated activation of PI3-K and resistance to the metabolic actions of insulin. There is
constitutive activation of kinases in the ERK/MAPK mitogenic pathway in PCOS, and these
kinases contribute to inhibitory serine phosphorylation of IRS-1 in PCOS skeletal muscle. Serine
phosphorylation of P450c17 increases its activity, and it has been postulated that the same
kinase may inhibit insulin signaling and increase androgen production in PCOS. S-S, Disulfide
bond; Y, tyrosine; S, serine; P, phosphate. This figure is used with the permission of Andrea
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receptor tyrosine autophosphoryla-
tion was significantly decreased (259,
260). Insulin-independent receptor ser-
ine phosphorylation was markedly in-
creased (259), and these receptors had re-
duced intrinsic kinase
activity, suggesting that serine phos-
phorylation inhibited normal recep-
tor signaling (259). Although fibro-
blasts are not a classic insulin target
tissue for glucose uptake, insulin re-
ceptors isolated from skeletal muscle
biopsies from women with PCOS had
similar abnormalities in phosphoryla-
tion, suggesting that this defect was
physiologically relevant (259).
Isolating insulin receptors from ly-
sates of PCOS skin fibroblasts by im-
munopurification before insulin-stim-
ulated autophosphorylation corrected
constitutive increases in receptor ser-
ine phosphorylation (259). Further-
more, mixing lysates from PCOS skin
fibroblasts with purified human insu-
lin receptors resulted in increased re-

tyrosine

Dunaif.

There have been no differences in abundance of down-
stream signaling proteins, IRS-1, Akt/PKB 1/2, PKC{, c-
Cbl-associated protein, or cbl or in activation of Akt/PKB
at maximal insulin doses in PCOS adipocytes (206). How-
ever, one study suggested abnormalities in the phosphor-
ylation of GSK3p, which is a substrate for Akt/PKB, in
PCOS adipocytes (253). These studies are constrained by
the fact that signaling protein abundance and basal phos-
phorylation may be unaltered, but insulin-stimulated ac-
tivation may still be defective in insulin-resistant states
(220). Studies using maximally stimulating doses of insu-
lin may fail to detect alterations in insulin sensitivity (232).
Akt/PKB activation may be normal despite substantial in-
sulin resistance (232, 258). Furthermore, downstream sig-
naling events may be decreased if there are defects in sig-
naling at the level of the insulin receptor (220).

Insulin receptor function in PCOS was investigated in
receptors isolated from cultured skin fibroblasts. Con-
sistent with findings in isolated adipocytes (192, 251),
there was no change in insulin binding or receptor af-
finity compared with control women (69). However,
insulin receptor basal autophosphorylation was mark-
edly increased with minimal further insulin-stimulated au-
tophosphorylation in receptors isolated from approxi-
mately 50% of PCOS fibroblasts (259). Insulin-dependent

ceptor serine phosphorylation (259).

Taken together, these findings sug-

gested that a serine kinase extrinsic to the insulin receptor
was responsible for the abnormal pattern of receptor
phosphorylation (259). These findings were supported by
an independent group of investigators (260) who con-
firmed significant decreases in PCOS skin fibroblast insu-
lin receptor autophosphorylation. Furthermore, they
demonstrated that decreased receptor autophosphoryla-
tion could be corrected immunocapture of the insulin re-
ceptor before insulin stimulation, consistent with the pres-
ence of a factor extrinsic to the receptor as the cause of the
defect (260). Most importantly, serine kinase inhibitors
corrected the phosphorylation defect, supporting the role
of a serine kinase extrinsic to the insulin receptor as the
cause of decreased receptor autophosphorylation (260).
This defect in the early steps of the insulin signaling
pathway may cause the insulin resistance in a subpopula-
tion of women with PCOS (Fig. 11). Increased insulin-
independent serine phosphorylation in PCOS insulin re-
ceptors appears to be a unique disorder of insulin action
because other insulin-resistant states, such as obesity,
T2D, Type A syndrome, and leprechaunism, do not ex-
hibit this abnormality (222, 255, 259). In approximately
50% of PCOS women, insulin receptor phosphorylation
in receptors isolated from skin fibroblasts was similar to
control women (259), despite the fact that these women
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had comparable severity of insulin resistance as that found
in affected women with abnormal insulin receptor phos-
phorylation. This observation suggests that a defect
downstream of insulin receptor phosphorylation, such as
phosphorylation of IRS-1 or activation of PI3-K, was re-
sponsible for insulin resistance in some PCOS women
(220, 222, 259).

Studies of insulin signaling iz vivo have shown a sig-
nificant decrease in insulin-mediated IRS-1-associated
PI3-K activation in serial skeletal muscle biopsies obtained
during a euglycemic clamp study in association with de-
creased IMGD in women with PCOS (261). The abun-
dance of the insulin receptor, IRS-1, and the p85 subunit
of PI3-K was unchanged, consistent with an abnormality
in insulin receptor and/or post-receptor phosphorylation
events (261). The abundance of IRS-2 was increased, sug-
gesting a change to compensate for decreased signaling via
IRS-1 (261). Analogous to in vitro studies, the signaling
changes occurred rapidly and were evident in biopsies at
15- and 30-min time points during each insulin dose, but
the changes had returned to baseline by 90 min of each
infusion (261). This study confirmed that there is a phys-
iologically relevant defect in rapid insulin receptor-medi-
ated signaling in the major insulin target tissue for IMGD,
skeletal muscle.

Hejlund et al. (262), however, did not find differences in
insulin-stimulated IRS-1-associated PI3-K activity in skeletal
muscle biopsies taken after 3 h of insulin infusion, despite
significant decreases in IMGD in women with PCOS. Nev-
ertheless, this finding is consistent with the time course of
these signaling changes determined in the previous study of
Dunaif et al. (261). These authors did find signaling abnor-
malities in the activation of Akt/PKB and its downstream
target for GLUTH4 translocation, AS160 (262) (Fig. 10). The
decrease in insulin receptor-mediated IRS-1 phosphoryla-
tion and PI3-K activation identified in PCOS skeletal muscle
(263) could account for these changes because these signaling
events are downstream in the pathway of insulin-stimulated
glucose uptake (232) (Fig. 10). In contrast, Ciaraldi et al.
(206) failed to find changes in Akt/PKB activation in skeletal
muscle biopsies from PCOS women taken after 3 h of insulin
infusion, despite significant decreases in IMGD in affected
women. However, they used maximally stimulating doses of
insulin, whereas Heojlund et al. (262) used physiological
doses of insulin. Accordingly, changes in the sensitivity of
Akt/PKB activation to insulin could have escaped detection
in the Ciaraldi study (206).

It is possible to isolate myoblasts from human skeletal
muscle biopsies, culture these cells i vitro, and differen-
tiate them into myotubes (264 -266). This culture system
has been used to investigate whether the defects in in-
sulin action in PCOS skeletal muscle are the result of the
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in vivo hormonal environment or reflect intrinsic ab-
normalities (206, 267-269). Cultured myotubes from
women with PCOS had a distinctive phenotype: despite
similar population doublings, they had an increase in
markers of differentiation compared with myotubes
from control women (267). Insulin action findings in
PCOS myotubes have been conflicting. Corbould et al.
(267) found that basal and insulin-stimulated glucose
transport was increased in PCOS compared with con-
trol myotubes, but the increments in glucose transport
were similar in both groups. GLUT1 abundance was
increased in PCOS myotubes and correlated with the
increases in basal, non-insulin-mediated glucose trans-
port, whereas GLUT4 abundance was unchanged in
PCOS compared with control myotubes (267). In con-
trast, Ciaraldi et al. (206) found that both basal and max-
imal insulin-stimulated glucose transport were decreased
in another study of PCOS myotubes. PCOS myotube
GLUT4 abundance did not differ in PCOS and control
myotubes in this study (206). Eriksen et al. (269, 270)
found no significant changes in glucose transport in PCOS
myotubes, although there was a trend toward higher basal
rates of glucose transport in PCOS myotubes. Insulin ac-
tion on other metabolic parameters, such as glycogen syn-
thesis and lipid uptake, also did not differ in PCOS com-
pared with control myotubes (270).

The most comprehensive study of insulin signaling in
PCOS myotubes by Corbould et al. (267) found no dif-
ferences in insulin receptor B-subunit abundance or ty-
rosine phosphorylation. However, the abundance of
IRS-1 was increased in PCOS myotubes. When normal-
ized for IRS-1 abundance, PI3-K activity was decreased
in PCOS myotubes. Furthermore, phosphorylation of
the IRS-1 inhibitory serine 312 was increased in PCOS
myotubes. IRS-2-associated PI3-K activity was also de-
creased in PCOS myotubes. These findings suggest that
there are intrinsic abnormalities in insulin signaling in
PCOS myotubes, despite the fact that glucose transport
is not compromised (267). It is possible that these ab-
normalities confer increased susceptibility to circulat-
ing factors that induce insulin resistance, such as free
fatty acids or TNF-a (267).

Ciaraldi et al. (206) found no changes in IRS-1, Akt/
PKB 1/2, PKC¢, c-Cbl-associated protein, or cbl protein
expression in PCOS myotubes, analogous to their find-
ings in skeletal muscle biopsies. They only examined
activation of Akt/PKB at maximal insulin doses and did
not detect any changes in PCOS compared with control
myotubes, despite the fact that this group reported de-
creased basal and insulin-stimulated glucose transport
in these PCOS myotubes (206). Activation of PI3-K was
not examined, and as discussed in this Section, de-
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creases in the sensitivity of Akt/PKB activation by in-
sulin could have escaped detection by the use of only
maximally stimulating doses of insulin (232).

In addition to insulin signaling defects, it has also been
suggested that mitochondrial dysfunction may contribute
to insulin resistance in PCOS skeletal muscle. In T2D,
decreased numbers of skeletal muscle mitochondria have
been reported (271). Skeletal muscle biopsies from women
with PCOS have shown decreased expression of genes in-
volved in mitochondrial oxidative metabolism (272). Fur-
thermore, pioglitazone-mediated improvements in insulin
sensitivity were associated with increased expression of
genes involved in mitochondrial phosphorylation path-
ways in these affected women (273). However, there were
no differences in mitochondrial number or function in
cultured myotubes from women with PCOS (269). These
findings suggest that changes in mitochondrial oxidative
gene expression in PCOS skeletal muscle are not a primary
defect.

C. Other metabolic actions of insulin in PCOS

There have been limited studies of insulin action lipid
homeostasis in PCOS. Fasting free fatty acid levels have
been increased (274) or unchanged (262) in obese women
with PCOS compared with control women of similar
weight. There has been decreased insulin-mediated sup-
pression of lipid oxidation during euglycemic clamp stud-
ies in obese women with PCOS (262). However, lipid up-
take and oxidation did not differ from control in PCOS
myotubes (270).

Alterations in catecholamine regulation of lipolysis
have been reported in PCOS. There was decreased sensi-
tivity to catecholamine-stimulated lipolysis in adipocytes
isolated from the sc fat depot of lean women with PCOS,
which may favor increased fat cell size (275). In contrast,
adipocytes isolated from the visceral fat depot of lean
women with PCOS had increased catecholamine-stimu-
lated lipolysis (276). The cellular mechanisms of this de-
fect, alterations in protein kinase A subunit expression and
decreases in hormone sensitive lipase, differed from those
in visceral adipocytes in subjects with the metabolic syn-
drome (276). This increase in catecholamine-stimulated
lipolysis may contribute to hepatic insulin resistance by
increasing portal free fatty acid delivery to the liver (163).
Insulin action to suppress lipolysis was similar in visceral
adipocytes from lean women with PCOS and control
women (276). There are no reports of insulin action on
protein turnover in PCOS.

D. Mitogenic actions of insulin in PCOS
Insulin’s mitogenic actions on cell growth and differ-
entiation can be regulated by the MAPK-ERK 1/2 path-
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way independently of insulin’s metabolic action (220)
(Fig. 10). The metabolic pathway can be disrupted with-
out altering the mitogenic pathway (220). Such so-called
selective insulin resistance has been found in cultured skin
fibroblasts from patients with extreme insulin resistance
(236). A similar selective defect in insulin action was found
in cultured skin fibroblasts from women with PCOS (277).
Both insulin- and IGF-I-stimulated glycogen synthesis
were significantly decreased in PCOS fibroblasts, whereas
thymidine incorporation was similar to that in control
fibroblasts (277).

Euglycemic clamp studies in subjects with T2D have
demonstrated decreased metabolic signaling via PI3-K
with preserved mitogenic signaling via MAPK-ERK1/2 in
skeletal muscle biopsies (240). In skeletal muscle biopsies
from women with PCOS, MAPK-ERK1/2 was constitu-
tively activated (268). This alteration persisted in cultured
PCOS myotubes where MAPK-ERK1/2 was activated ba-
sally and in response to insulin, whereas MEK activation
was increased only in response to insulin (268). The ac-
tivity of p21 Ras was significantly decreased, and the
abundance of Raf-1 was increased, suggesting that the
alteration of signaling began at this molecule. Pharmaco-
logical inhibition of MEK1/2 inhibited MAPK-ERK1/2
activation, reduced IRS-1 serine 312 phosphorylation,
and enhanced IRS-1-associated PI3-K activation (268).
These findings suggested that activation of MAPK-
ERK1/2 contributed to serine phosphorylation of IRS-1
and diminished metabolic signaling in PCOS myotubes.
MAPK-ERK1/2 may be a serine kinase contributing to the
increased serine phosphorylation of IRS-1 and, perhaps,
the insulin receptor in PCOS (55, 259, 268), although
myotube insulin receptor serine phosphorylation was not
directly examined. Furthermore, these findings suggest
that a primary activation of mitogenic signaling pathways
produces metabolic insulin resistance by serine phosphor-
ylating proximal metabolic signaling molecules, such as
IRS-1 (268) (Fig. 11).

A recent study in skeletal muscle biopsies from
women with PCOS confirmed the constitutive activa-
tion of MAPK-ERK1/2 (278). This study also reported
that insulin-stimulated activation of MAPK-ERK1/2
was decreased in PCOS skeletal muscle biopsies. How-
ever, the biopsies were performed 15-20 min after a
bolus dose of insulin, which is cleared rapidly (279), as
part of an insulin tolerance test rather than during the
continuous infusion of insulin as part of a euglycemic
clamp study. The clearance of insulin is also altered in
insulin-resistant states (279, 280). Therefore, differ-
ences in the kinetics of the insulin bolus in PCOS com-
pared with control women could have confounded the
results. Moreover, a counterregulatory hormone re-
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sponse due to insulin-induced hypoglycemia could also
confound the results (281). Nevertheless, the findings
are consistent with the hypothesis that constitutive ac-
tivation of MAPK-ERK1/2 impairs metabolic signaling
in PCOS via serine phosphorylation of IRS-1.

In summary, the major defect in insulin action in
PCOS is a post-binding defect in the early steps of in-
sulin signal transduction (Figs. 10 and 11). This defect
is present in the two main target tissues for insulin-
stimulated glucose uptake: adipocytes (192, 251) and
skeletal muscle (259, 263). Furthermore, in at least
some tissues, such as skin fibroblasts (277) and ovarian
granulosa-lutein cells (see in Section V.A. and Ref. 282),
insulin resistance in PCOS is selective, affecting meta-
bolic but not other actions of insulin (Figs. 10 and 11).
However, both metabolic and mitogenic pathways may
be compromised in PCOS skeletal muscle (278).

The post-binding defect in insulin signaling appears to
be secondary to increased inhibitory serine phosphoryla-
tion of the insulin receptor and IRS-1. Our group (259)
and Li ez al. (260) have provided evidence that autophos-
phorylation can be normalized after immunopurification
of the insulin receptor. This observation suggests that a
kinase extrinsic to the insulin receptor causes the increased
receptor serine phosphorylation. This hypothesis is sup-
ported by the finding of Liet al. (260) that decreased PCOS
skin fibroblast insulin receptor autophosphorylation can
be ameliorated by serine kinase inhibitors. In skeletal mus-
cle, two groups (268, 278) have shown that kinases in the
MAPK-ERK1/2 mitogenic pathway are constitutively ac-
tivated. The activation of these kinases contributes to ser-
ine phosphorylation of IRS-1 and inhibition of metabolic
signaling (268). Two studies suggest that metabolic insu-
lin resistance does not persist in cultured myotubes from
women with PCOS (267, 270), whereas another (206) has
found persistent defects in glucose uptake. However, some
of the abnormalities in insulin signaling are present in pas-
saged myotubes, suggesting the interaction of the iz vivo
environment with intrinsic defects to produce insulin re-
sistance in vivo (267).

In 1995, Miller and colleagues (283) reported that ser-
ine phosphorylation of human cytochrome P450c17, a
key regulatory enzyme for ovarian and adrenal androgen
biosynthesis with both 17a-hydroxylase and C17, 20
lyase activities, increases its C17,20 lyase activity (283).
Thus, this posttranslational modification could result in
increased androgen production (283). This observation
led to the hypothesis that the same factor that serine-phos-
phorylates the insulin receptor causing insulin resistance
also serine-phosphorylates P450c17 causing hyperandro-
genism. Accordingly, some cases of PCOS could be caused
by an activating mutation in a serine kinase (283-285)
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resulting in both hyperandrogenism and insulin resistance
(Fig. 11).

There has been considerable interest in identifying a
common kinase that could cause serine phosphorylation
affecting insulin signaling and steroidogenesis. A screen of
serine kinases in an adrenal cell line did not find evidence
that MAPK-ERK1/2 increases P450c17 activity (286).
Conversely, this pathway may inhibit P450c17 in theca
cells (see in Section V.A. and Ref. 287). In adrenal cells, a
Rho-associated, coiled-coil containing protein kinase 1
was identified as a potential factor regulating the phos-
phorylation of P450c17 (286). This kinase can also serine-
phosphorylate IRS-1 and inhibit insulin signaling (288).
However, attempts to prove that the same kinase can ser-
ine-phosphorylate P450c17 and the insulin receptor by
transfecting P450c17 into skin fibroblasts from women
with PCOS with high insulin receptor serine phosphory-
lation have failed (289). However, because fibroblasts are
not steroidogenic cells, they may have lacked essential co-
factors for serine phosphorylation of P450c17 (289).

E. Insulin secretion in PCOS

It is now generally accepted that pancreatic B-cell dys-
function is required for the development of T2D (290,
291). The high prevalence of dysglycemia in PCOS sug-
gests the presence of defects in insulin secretion as well as
action. Pancreatic B-cell insulin secretion increases to
compensate for peripheral insulin resistance (290). Dys-
glycemia develops when the B-cell is no longer able to
secrete sufficient amounts of insulin to meet the increased
requirements (161, 175). Accordingly, insulin secretion
must be examined in the context of peripheral insulin sen-
sitivity rather than in isolation (292). Under normal cir-
cumstances, this relationship is a constant, hyperbolic
function (175, 292) (Fig. 12). It can be quantitated by the
DI, the product of insulin sensitivity and insulin secretion
(175). DIis highly heritable (293), associated with specific
genetic loci (294, 295) and the most powerful predictor of
diabetes risk (296).

There is no “gold standard” method for assessing in-
sulin secretion as there is for insulin resistance (178). How-
ever, DI with insulin secretion assessed by AIRg after an iv
glucose bolus and insulin sensitivity assessed by euglyce-
mic clamp (297) or FSIGT (296) have been shown to pre-
dict the future development of T2D, indicating the phys-
iological relevance of DI as an assessment of B-cell
function. Evidence for B-cell dysfunction in PCOS was
first provided by the elegant studies of Ehrmann, Polonsky
and colleagues (298), who demonstrated defects in B-cell
entrainment to an oscillatory glucose infusion and de-
creased meal-related insulin secretory responses (299).
These defects were more pronounced in PCOS women
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Correlations between circulating T
levels and parameters of insulin secre-
tion in women with PCOS have led to
the suggestion that androgens play a
role in B-cell dysfunction (307). Andro-
gen administration to female mice pro-
duces evidence for oxidative stress and
increased susceptibility to streptozoto-
cin-induced B-cell failure (308). Short-
term methyltestosterone administra-
tion to normal women significantly
reduced IMGD without changing insu-

lin secretion, suggesting that there may

Figure 12. B-Cell dysfunction in PCOS. Under normal circumstances, there is a compensatory
increase in insulin secretion when insulin sensitivity decreases. This hyperbolic relationship is
known as the DI. The majority of women with PCOS fall below the normal curve determined
in concurrently studied age- and weight-comparable control women as well as normative
data in the literature (292), which places them at increased risk for T2D. DI is decreased
independent of obesity. Insulin secretion was determined as AIRg and insulin sensitivity by
minimal model analysis of FSIGT glucose and insulin data. Circles, Obese PCOS; triangles, lean
PCOS. [Adapted from A. Dunaif and D. T. Finegood: B-Cell dysfunction independent of
obesity and glucose intolerance in the polycystic ovary syndrome. J Clin Endocrinol Metab 81:

942-947, 1996 (301) with permission. © The Endocrine Society.]

who have a first-degree relative with T2D, suggesting that
such women may be at particularly high risk to develop
glucose intolerance (300). Consistent with these findings,
DI was significantly decreased in both lean and obese
women with PCOS compared with weight-comparable
control women (301) (Fig. 12). Taken together, these ob-
servations suggest that there is a defect in glucose-stimu-
lated insulin secretion in PCOS, independent of obesity.
Furthermore, this abnormality is found as early as ado-
lescence in girls with PCOS and IGT (302). Increased basal
secretion rates of insulin (299) contribute to the fasting
hyperinsulinemia that is characteristic of obese women
with PCOS (21, 34).

There are reports of increased glucose-stimulated insu-
lin secretion in PCOS (201,205, 303, 304), but these stud-
ies have not examined insulin secretion in the context of
insulin sensitivity and/or have included women in whom
the diagnosis was made on the basis of ovarian morpho-
logical changes rather than endocrine criteria. Another
study (305) suggesting increased B-cell function in PCOS
was limited by the use of a fasting parameter of B-cell
function, homeostasis model assessment of B-cell function
(306), which reflects basal and not glucose-stimulated in-
sulin secretion and is also confounded by alterations in
insulin clearance (184). Furthermore, B-cell function was
not corrected for insulin sensitivity in this study (305).

150
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have been a lack of B-cell compensation
(309). The possibility that T playsarole
in B-cell dysfunction in women with
PCOS merits further investigation. A
family history of T2D is associated with
more pronounced defects in insulin se-
in PCOS (298). In PCOS
women with dysglycemia, a marker of
B-cell dysfunction, a fasting proinsulin:
insulin ratio, is associated with the T2D
susceptibility variants in the transcrip-
tion factor 7-like 2 (TCF7L2) gene
(310), suggesting that variation in T2D
susceptibility genes contributes to decreased insulin secre-
tion in PCOS as it does in the general population (294).
Furthermore, B-cell dysfunction is heritable in the families
of women with PCOS (311).
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F. Insulin clearance in PCOS

Hyperinsulinemia can result from decreases in insulin
clearance as well as from increases in insulin secretion
(184, 280). Indeed, because insulin clearance is receptor-
mediated, decreased insulin clearance is usually present in
insulin-resistant states because of intrinsic or acquired de-
creases in receptor number and/or function (280, 312).
Accordingly, women with PCOS would be expected to
have decreases in insulin clearance. Direct measurement of
posthepatic insulin clearance during euglycemic clamp
studies has been normal in PCOS (81, 132). However,
circulating insulin:C-peptide molar ratios were increased
in PCOS, suggesting decreased hepatic extraction of in-
sulin (313, 314). Furthermore, direct measurement of he-
patic insulin clearance in non-PCOS hyperandrogenic
women has found it to be decreased (315). Similarly,
women with PCOS have had decreased hepatic insulin
extraction by model analysis of C-peptide levels (299).
Therefore, in PCOS, fasting hyperinsulinemia is the result
of a combination of increased basal insulin secretion and
decreased hepatic insulin clearance.
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G. Obesity and PCOS

Obesity is a common feature of the PCOS. Indeed, in
the United States, the prevalence of obesity (BMI = 30
kg/m?) in women with PCOS is approximately 80% (108,
123, 124). Outside the United States, the prevalence of
obesity in affected women is approximately 50% in most
studies (84, 104). Differences in the diagnostic criteria for
PCOS account for some of this difference in prevalence
rates. However, even when comparable diagnostic criteria
are applied, both the prevalence and severity of obesity are
lower in women with PCOS outside the United States. This
observation suggests that environmental factors, such as
lifestyle, contribute to the presence of obesity in PCOS
(130, 316). PCOS is also common in women with obesity;
in a European series of overweight and obese women pre-
senting for weight management, 25% had PCOS (317).

Many studies have suggested that women with PCOS
have increased abdominal body fat distribution, regard-
less of BMI, a conclusion based on anthropometric mea-
surements such as waist circumference or waist:hip ra-
tios (reviewed in Refs. 318 and 319). This conclusion is
consistent with the observation that women with upper
body obesity defined by anthropometric assessments
have increased androgen production rates (8). How-
ever, when visceral adipose tissue has been accurately
assessed by MRI (197, 198) or computerized axial to-
mography (199), it has not differed in women with
PCOS compared with reproductively normal control
women of comparable BMI, even in the presence of
increased waist:hip ratios in affected women (197).
Nevertheless, sc adipocyte size is increased in both lean
and obese women with PCOS (192, 197).

There also appear to be functional abnormalities in
PCOS adipose tissue. Ek et al. (275, 276) reported that the
lipolytic effect of catecholamines was decreased in sc adi-
pocytes but increased in visceral adipocytes isolated from
nonobese women with PCOS. These changes could lead to
decreased fat mobilization from the sc depot enlarging fat
cell size (320) and enhanced free fatty acid release from the
visceral depot, increasing portal free fatty acid delivery to
the liver and thereby contributing to hepatic insulin resis-
tance (321). Furthermore, both a meta-analysis (322) and
the large study of Manneras-Holm et al. (197), which con-
trolled accurately for body fat distribution quantitated
by MRI, reported lower circulating levels of the insulin-
sensitizing adipokine, adiponectin (323), in women with
PCOS compared with reproductively normal women, af-
ter controlling for BMI. This observation suggests that
decreased adiponectin secretion by PCOS adipose tissue
contributes to insulin resistance.

It is now well accepted that obesity is associated with
chronic low-grade inflammation (324), which may con-
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tribute to insulin resistance by the actions of inflammatory
adipocytokines, such as TNF-a (325, 326). Increased cir-
culating levels of TNF-q, high-sensitivity C-reactive pro-
tein, and IL, which suggest the presence of inflammation,
have been reported in PCOS (327, 328). However, these
studies are constrained by small sample size and hetero-
geneity in diagnostic criteria (329). Furthermore, no in-
creases in adipose tissue macrophage content have been
reported in PCOS compared with control women of sim-
ilar weight and fat distribution (197). Recently, decreased
expression of genes involved in inflammatory pathways
was found in sc adipose tissue from nonobese women with
PCOS (330). Accordingly, the contribution of chronic in-
flammation to insulin resistance in PCOS remains contro-
versial (329).

By whatever mechanisms, it is clear that obesity plays
an important role in the expression of the metabolic fea-
tures of PCOS (284, 331, 332). Hepatic insulin resistance
is present only in obese women with PCOS (192). The
prevalence of dysglycemia increases with increasing BMI
(123,124). Nevertheless, obesity alone cannot account for
PCOS because there are many lean affected women (79,
81, 84). Furthermore, the majority of obese women are
reproductively normal (317, 333), and the current obesity
epidemic has not been accompanied by an increase in the
prevalence of PCOS (122). Finally, defects in insulin sen-
sitivity (81, 192) and secretion (301) are present in lean
women with PCOS.

Despite the magnitude of the problem, there are re-
markably few studies investigating the pathogenesis of
obesity in PCOS. Food intake has not been assessed in
women with PCOS. There are conflicting data on energy
expenditure, with one study finding a decrease (334) and
another reporting no change (335). Leptin levels do not
differ in PCOS (336). However, insulin resistance (55,
337) or decreased meal-stimulated glucagon-like peptide
(338) or cholecystokinin (339) could result in decreased
satiety in PCOS. Decreased subjective satiety has been re-
ported in one study of obese women with PCOS (340), but
not in another from the same investigators (341). Further-
more, significantly decreased meal-stimulated cholecysto-
kinin levels did not correlate with satiety ratings in obese
PCOS, whereas a significant positive correlation was pres-
ent in obese control women (339). There was also a trend
toward increased cravings for sweets in PCOS in this study
(339). Several studies have reported an association be-
tween bulimia and PCOS with positive correlations be-
tween binge eating and androgen levels (342-344). Thus,
there are very preliminary data to suggest alterations in
satiety in PCOS.
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V. Mechanisms for the Association of Insulin
Resistance and PCOS

A. Insulin as a reproductive hormone

Hyperandrogenemia and ovulatory disturbances are
commonly encountered in the syndromes of extreme in-
sulin resistance when they occur in premenopausal women
(12, 55). There are a number of distinct molecular mech-
anisms of insulin resistance in these disorders that result in
substantial hyperinsulinemia (10, 12, 55). This observa-
tion has led to the hypothesis that hyperinsulinemia causes
hyperandrogenemia and anovulation (9). Similarly, the
finding of significant positive correlations between insulin
and androgen levels in PCOS has suggested that insulin
also contributes to hyperandrogenism in affected women
(21). There is now an extensive body of evidence demon-
strating direct ovarian actions of insulin on steroidogen-
esis as well as the importance of the insulin signaling path-
way in the control of ovulation.

Insulin receptors are present in normal and polycystic
human ovaries (345-347). The IGF-I receptor is a tyrosine
kinase that shares considerable structural and functional
homology with the insulin receptor (348). The IGF-I re-
ceptor is also present in the ovary, and its ligand, IGF-L, is
synthesized by the ovary (346, 347). Insulin can bind to
and activate the IGF-I receptor, and IGF-I can bind to and
activate the insulin receptor (348, 349). The affinity of the
IGF-I receptor for insulin is considerably less than it is for
IGF-I and vice versa (349). However, «, 8 dimers of the
insulin and IGF-I receptor can assemble together to form
hybrid heterotetramers, which can bind insulin and IGF-I
with similar affinity (350, 351). Accordingly, some insulin
actions on the ovary may be mediated by the IGF-I or
hybrid insulin-IGF-Ireceptors (352). Nevertheless, studies
using specific anti-insulin receptor antibodies indicate that
insulin action on steroidogenesis in granulosa and theca
cells isolated from normal and polycystic ovaries is medi-
ated via the insulin receptor (353-355). In addition, in
granulosa cells from anovulatory PCO, increased insulin
levels in synergy with LH may trigger premature LH re-
ceptor expression in a subpopulation of small follicles
leading to premature granulosa terminal differentiation
and the arrest of follicular growth that may contribute to
anovulation in this subgroup (65, 282, 356, 357).

Ovarian insulin action on steroidogenesis is preserved,
despite resistance to insulin’s metabolic actions in PCOS
(282, 358). Indeed, in granulosa-lutein cells isolated from
ovaries of women with classic PCOS, insulin action on
glucose metabolism is significantly decreased, whereas in-
sulin action on steroidogenesis is unchanged compared
with granulosa-lutein cells from control women (282).
This observation suggests that in PCOS there is selective
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insulin resistance in the ovary as there is in skeletal muscle
and in skin fibroblasts (268, 277, 282).

Studies examining the insulin-signaling pathways mod-
ulating ovarian steroidogenesis have been conflicting. In
normal theca cells, insulin in synergy with LH activates
17a-hydroxylase activity of P450c17, a key enzyme in the
regulation of androgen biosynthesis encoded by CYP17,
via PI3-K signaling; inhibition of MAPK-ERK1/2 signal-
ing had no effect on 17a-hydroxylase activity (355). In
contrast, McAllister and colleagues (287) suggested that
MAPK-ERK1/2 signaling inhibits P450c17 mRNA ex-
pression and activity. Furthermore, they found decreased
phosphorylation of MEK1/2 and MAPK-ERK1/2 in
PCOS compared with control cultured theca cells in as-
sociation with increased P450c17 expression (287). These
findings are the opposite of those in PCOS skeletal muscle
where MEK1/2 and MAPK-ERK1/2 phosphorylation are
increased (268). Consistent with findings in PCOS skeletal
muscle, PCOS theca, but not granulosa, cells have in-
creased expression of IRS-1 and IRS-2 (359). In normal
human granulosa cells, GLUT4 translocation is regulated
by PI3-K activation of Akt/PKB (152), as it is in the classic
insulin target tissues, fat and skeletal muscle (232). There
are no published studies of the insulin-signaling pathways
regulating granulosa cell steroidogenesis in PCOS.

Insulin action on theca cell androgen production is ev-
ident only at supraphysiological insulin concentrations
(354). Furthermore, it appears that theca cells from
women with PCOS are more responsive to the androgen-
stimulating actions of insulin than those from control
women (354). Under physiological circumstances, insulin
most likely acts as a co-gonadotropin to increase LH-
induced androgen synthesis in theca cells (355, 360-362)
as well as to enhance FSH-induced estrogen production
and LH-induced luteinization in granulosa cells (362). In-
sulin can also enhance GnRH-mediated LH and FSH re-
lease from cultured rat pituitary cells (363). Furthermore,
female mice with hyperinsulinemia secondary to diet-
induced obesity have increased basal and GnRH-stimu-
lated LH release (364).

Human studies have confirmed that insulin can in-
crease circulating androgen levels in women with PCOS.
Insulin infusion during euglycemic clamp studies in-
creased androgen levels (81, 365), without altering go-
nadotropin secretion (366), suggesting a direct effect on
steroidogenesis. Consistent with these studies, prolonged
infusion of moderately supraphysiological levels of insulin
using euglycemic clamps during dexamethasone suppres-
sion of adrenal androgen secretion increased GnRH-stim-
ulated secretion of both androstenedione and progester-
one compared with saline infusions in the same PCOS
women (367). T levels were increased 24 h after the insulin
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infusion was stopped. There were no significant differ-
ences in gonadotropin levels between the insulin and saline
groups (367).

Suppressing insulin levels with diazoxide resulted in
a decrease in circulating T levels in women with PCOS,
independent of alterations in LH release (368). SHBG
levels also increased with suppression of insulin levels
by diazoxide (39), consistent with an important role for
insulin as a negative regulator of SHBG production (39,
369). Indeed, insulin rather than sex steroids appears to
be the major regulator of SHBG production (370).
These effects of altering insulin levels were seen only in
women with PCOS (366, 368, 371) and not in normal
women (366, 371). This observation suggests that poly-
cystic ovarian changes (e.g., theca cell hyperplasia)
and/or disordered gonadotropin secretion (e.g., in-
creased LH levels) are a prerequisite for these repro-
ductive actions of insulin, consistent with the studies in
isolated theca cells discussed in this Section where in-
sulin has a substantially greater effect on T production
in theca cells isolated from women with PCOS (354).

An extensive body of literature indicates that lowering
insulin levels with the insulin- sensitizing drugs (ISDs),
metformin (372) and the thiazolidinediones (TZDs)
(373), can reduce circulating androgen levels, increase
SHBG levels, and restore ovulatory menstrual cycles in
women with PCOS (reviewed in Refs. 374-378). Abnor-
malities in apparent 17,20-lyase activity have improved in
parallel with reduced circulating insulin levels, consistent
with insulin-mediated stimulation of this enzyme (379).
Estrogen levels have also been reported to decrease during
ISD therapy in PCOS (373, 378), suggesting that insulin
has direct stimulatory effects on multiple steroidogenic
pathways. Some of the effects of ISDs to lower circulating
androgen levels are most likely secondary to direct effects
of these agents on steroidogenesis. TZDs directly inhibit
theca cell steroidogenesis (380-382). The preponderance
of the data suggests that metformin also has direct effects
to inhibit theca cell steroidogenesis (219, 380, 383, 384).
ISD therapy ameliorates but does not completely normal-
ize circulating androgen levels in PCOS (374, 378).

The effects of insulin on adrenal androgen production
have been less clear. Acute insulin infusions decreased
DHEAS levels in men as well as in women (361, 385).
When insulin levels are chronically lowered, however, cir-
culating DHEA and DHEAS levels rise in normal men but
not in normal women (386), which appears to be second-
ary to insulin-mediated increases in DHEA and DHEAS
clearance in men but not women (387). Lowering insulin
levels with ISDs has resulted in decreases in DHEAS levels
in PCOS women (373, 388). This insulin effect appears to
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be a direct action of insulin to increase adrenal sensitivity
to ACTH in hyperandrogenic women (389, 390).

Human studies of insulin effects of gonadotropin se-
cretion are conflicting. Dunaif and Graf (366) reported
that high-dose insulin infusion did not acutely alter LH
pulses or GnRH sensitivity in women with PCOS or in
control women, but mean gonadotropin levels were lower
on the day after the infusion in affected women. Tosi et al.
(367) found no differences in GnRH-stimulated gonado-
tropin levels during prolonged infusion (17 h) of moder-
ately high doses of insulin in women with PCOS. How-
ever, Lawson et al. (391) reported that acute infusion of a
range of insulin doses, including doses similar to those
used by Dunaif and Graf (366), decreased pituitary re-
sponsiveness to GnRH in women with PCOS but not in
control women. Chronic lowering of insulin levels with
the ISDs, troglitazone (373) and metformin (379), de-
creased circulating LH levels. However, a much larger trial
with troglitazone (392) reported no changes in circulating
LH levels or LH:FSH ratios over a range of troglitazone
doses. Eagleson et al. (393) found that LH pulse amplitude
and mean LH levels increased after approximately 1
month on metformin in women with PCOS, but not in
control women. These latter findings could be accounted
for by the amelioration of insulin-mediated suppression of
pituitary responsiveness to GnRH (391). Furthermore, it
is possible that the more severe hyperinsulinemia seen in
obese PCOS women contributes to the inverse relationship
between BMI and LH levels in PCOS (56). Lawson et al.
(391) confirmed the inverse relationship between BMI and
LH levels and found that the addition of insulin to the
model improved the prediction of LH levels in PCOS. In
normal women in the latter study, insulin levels (but not
BMI) were significantly inversely correlated with LH
levels.

Despite the disparate effects of insulin and ISDs on go-
nadotropin secretion, improving insulin sensitivity with
ISDs consistently restores ovulatory menstrual cycles in
women with PCOS (55, 375, 394). There is a dose-
response effect of TZDs on ovulatory function in PCOS
(392), whereas such an effect has not been investigated for
metformin. These observations suggest that insulin resis-
tance contributes to anovulation in PCOS. Some of the
human studies discussed in this Section (391, 393) suggest
that hyperinsulinemia/insulin resistance-mediated reduc-
tions in pituitary sensitivity to GnRH contribute to an-
ovulation in PCOS.

Genetic manipulation of the insulin receptor and IRS-2
in mice has confirmed the importance of insulin action in
the control of reproduction. Deletion of IRS-2 results in
anovulation and obesity in female mice (395). Tissue-
specific disruption of the neuronal insulin receptor results
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in diet-sensitive obesity, disrupted LH release, and im-
paired ovarian follicle maturation, suggesting that central
nervous system (CNS) insulin signaling is important for
normal reproduction (396). Consistent with this hypoth-
esis, disruption of both the insulin and leptin receptors in
hypothalamic proopiomelanocortin neurons results in de-
creased fertility and increased circulating T levels in female
mice (397). In contrast, disruption of the pituitary insulin
receptor is protective against the effects of diet-induced
obesity to increase LH release and produce infertility in
female mice (364). This observation suggests that insulin
signaling in the pituitary is necessary for obesity-mediated
disruption of reproduction. Female mice with less profound
genetic disruption of the insulin receptor that was not asso-
ciated with obesity had normal fertility despite subtle alter-
ations in hypothalamic-pituitary-gonadal function as well as
increased pregnancy loss (398).

In summary, investigation of the association between
insulin resistance and PCOS has revealed that insulin is a
reproductive as well as a metabolic hormone. It functions
as a co-gonadotropin through its cognate receptor to mod-
ulate ovarian steroidogenesis. This action is preserved de-
spite resistance to the metabolic actions of insulin in the
periphery as well as in the ovary, an example of selective
insulin resistance. Insulin signaling in the CNS also ap-
pears to be critical for ovulation. Human studies have
confirmed that hyperinsulinemia augments androgen pro-
duction in PCOS. Intrinsic abnormalities in steroidogen-
esis appear to be necessary for this insulin action to be
manifested because lowering insulin levels does not affect
circulating androgen levels in normal women. Insulin is
also a major regulator of SHBG production. Reducing
insulin resistance can also restore ovulatory menstrual cy-
cles. These insights have led to an important therapeutic
modality for PCOS with ISDs (374, 375).

B. Metabolic actions of androgens

Men are more insulin resistant than premenopausal
women when glucose utilization is expressed as a function
of muscle mass rather than total body mass (399, 400).
Male adipocytes are less sensitive than female adipocytes
to insulin-stimulated glucose uptake (401). These differ-
ences appear to be mediated by sex steroids because pro-
longed T administration to female-to-male transsexuals
has resulted in significant decreases in IMGD in euglyce-
mic clamp studies, particularly at lower insulin doses
(402). However, a subsequent report (403) in female-to-
male transsexuals did not find a decrease in insulin sensi-
tivity during T administration. Administration of supra-
physiological amounts of DHEA, which also results in T
elevations because DHEA is a T prehormone, has pro-
duced mild hyperinsulinemia in women, but it had no ef-
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fect on insulin sensitivity in men (404, 405). These differ-
ences in insulin action are modest, however, and do not
approach the degree of impairment in insulin sensitivity
observed in PCOS (81, 192).

Androgens can produce insulin resistance by direct effects
on skeletal muscle and adipose tissue insulin action, by al-
tering adipokine secretion, and by increasing visceral adi-
posity. T-treated castrated female rats had an increase in the
number of less insulin-sensitive type I b skeletal muscle fibers
(406) and an inhibition of muscle glycogen synthase activity
(407). In cultured rat myotubes, T increased serine phos-
phorylation of Akt/PKB, mTOR ribosomal S6-kinase and
IRS-1, which may contribute to insulin resistance (408). Ad-
ministration of the nonaromatizable androgen, dihydrotes-
tosterone, to peripubertal rats increased visceral fat accumu-
lation and reduced insulin sensitivity (409). In human
preadipocytes, T treatment, acting via the androgen receptor,
resulted in decreased metabolic but not mitogenic actions of
insulin (410). This effect was mediated by impaired insulin-
mediated phosphorylation of PKC{, independent of PI3-K
activation (410). T had depot-specific effects on catechol-
amine-stimulated lipolysis, decreasing sensitivity in human
sc butnotvisceral adipocytes (411,412). Circulating levels of
the insulin-sensitizing adipokine, high molecular weight adi-
ponectin, are higher in women than in men (413). T treat-
ment directly decreased secretion of high molecular weight
adiponectin in rat adipocytes (413).

In human studies, administration of a nonaromatizable
synthetic androgen to normal postmenopausal women in-
creased visceral adiposity (190). There is a sex difference
in this androgen action because androgen reduces visceral
adiposity in men (414, 415) but increases it in female-to-
male transsexuals (416). However, some of this sex dif-
ference may be dose-related because low-dose T admin-
istration after suppression of endogenous T secretion with
GnRHa increases visceral fat in men (417).

There are conflicting data regarding the impact of de-
creasing circulating androgen levels or antagonizing an-
drogen action in women with PCOS. In studies where
ovarian androgen production was suppressed with a Gn-
RHa (418) or with laparoscopic ovarian cautery (419), or
where androgen action was blocked with an antiandrogen
(420), there were no improvements in peripheral or he-
patic insulin sensitivity assessed by euglycemic clamp. In
contrast, other investigators have reported modest im-
provements in insulin sensitivity in PCOS during andro-
gen suppression with GnRHa or during antiandrogen
therapy (421-423). Such changes were apparent in less
insulin-resistant, less obese, or lean PCOS women (421-
423). However, in obese women with PCOS, prolonged
treatment with the antiandrogen, flutamide, in combina-
tion with weight loss, decreased visceral adiposity and
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improved insulin sensitivity compared with diet alone
(424, 425). Weight loss accounted for the major improve-
ments in these endpoints, whereas antiandrogen treatment
had modest but significant effects. Another study in which
androgens were lowered by laparoscopic ovarian drilling
did show a partial reversal of insulin signaling defects in
visceral fat specimens (252).

In summary, androgens can produce insulin resistance
in women. Furthermore, decreasing circulating androgen
levels or blocking androgen action can improve insulin
sensitivity in women with PCOS. Androgens can directly
alter insulin action in the classic target tissues, skeletal
muscle, and adipocytes. Androgens can also increase vis-
ceral adiposity and reduce the secretion of the major
insulin-sensitizing adipokine, adiponectin. However, these
androgen effects on insulin action are modest. This ob-
servation suggests that additional factors contribute to
insulin resistance in PCOS.

C. Genetic susceptibility to PCOS

The possibility that there might be a genetic susceptibility
to PCOS and its associated insulin resistance has been sug-
gested by several observations. First, families with multiple
affected women have been reported (426—428). Second, the
phenotypic similarity between PCOS and the rare syndromes
of extreme insulin resistance and hyperandrogenism sug-
gested that insulin receptor mutations might also be present
inPCOS (117,429). Third, defects in insulin action persist in
cultured cells, suggesting that they are genetically determined
(259, 430). Fourth, the fact that insulin resistance could not
entirely account for reproductive dysfunction and vice versa
suggests that additional factors contributed to the pathogen-
esis of PCOS (55).

Figure 13.
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Familial clustering of PCOS (431, 432) suggesting a
genetic susceptibility to the disorder is now well docu-
mented in PCOS (reviewed in Refs. 433 and 434). Twin
studies have shown heritability of 79% for PCOS with a
correlation of 0.71 between monozygotic twins and 0.38
between dizygotic twins (435), consistent with a major
influence of genetic factors in PCOS. Although some stud-
ies have suggested that there is an autosomal dominant
mode of inheritance (436), these studies have been limited
by a lack of prospective design, a failure to examine all
first-degree relatives, and the fact that only reproductive-
age women can be phenotyped for PCOS (432, 437).
PCOS is more likely a complex genetic disease with at least
several susceptibility genes (433, 434, 438, 439).

The intermediate reproductive phenotype of hyperandro-
genemia aggregates in PCOS families (432). About 40% of
reproductive-age sisters are affected, but there is phenotypic
heterogeneity. Some sisters have classic NICHD PCOS with
hyperandrogenemia and oligomenorrhea, whereas others
have hyperandrogenemia with regular menses. Brothers of
women with PCOS have elevations in the adrenal androgen,
DHEAS (440), a marker of male androgen excess because
testicular androgen production is tightly regulated by T feed-
back on the hypothalamus (441). This observation suggests
that they have the same defect in androgen biosynthesis as
their proband sisters with PCOS (440).

Hyperandrogenemia is the major underlying reproduc-
tive phenotype in PCOS families, and this finding has been
replicated in other populations (437, 442) (Fig. 13). Af-
fected sisters with either of these hyperandrogenemia phe-
notypes have insulin resistance (443) (Fig. 13), metabolic
syndrome, and elevated low-density lipoprotein levels

e 1 t
g +
i 7
/ 2
201 0

Figure 13. Two affected phenotypes in sisters of women with PCOS. Approximately 40% of the sisters of women with PCOS have
hyperandrogenemia with similar T elevations (middle graph). About half of these affected women fulfill NICHD criteria for PCOS; the remaining
hyperandrogenemic (HA) sisters have regular menses and normal fertility, suggesting that their menstrual cycles are ovulatory. Sisters with the
PCOS phenotype are heavier (left graph) and more insulin resistant [significantly increased homeostasis model assessment of insulin resistance

(HOMA IR), right graph] than sisters with the HA phenotype and sisters with normal androgen levels and regular menses (unaffected, UA). Black
bars, PCOS; gray bars, HA; hatched bars, UA; open bars, reproductively normal control women. One-way ANOVA was applied, *, P < 0.05 vs. HA
and UA; **, P < 0.05 vs. PCOS and HA; ***, P < 0.05 vs. PCOS, HA, and UA; t, P < 0.05 vs. UA and control; t1, P < 0.05 vs. control. [Adapted
from R. S. Legro et al.: Insulin resistance in the sisters of women with polycystic ovary syndrome: association with hyperandrogenemia rather than
menstrual irregularity. J Clin Endocrinol Metab 87:2128-2133, 2002 (443), with permission. © The Endocrine Society.]
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Figure 14.
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PCOS and insulin resistance did not show any
mutations (117, 448, 449). Several studies

(450-452) have reported that polymorphisms
in exon 17 of the insulin receptor gene, which
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Figure 14. Determinants of PCOS phenotypes. The affected sisters of women with
PCOS have either highly irregular menstrual cycles characteristic of chronic
anovulation or regular cycles consistent with ovulation. Circulating T levels are similar
in both affected phenotypes, PCOS and hyperandrogenemia. Both affected groups
also have PCO. Possible factors that determine the ovulatory status of affected sisters
are obesity, insulin resistance, additional modifier genes, and environmental factors
such as lifestyle or diet. This figure is used with the permission of Andrea Dunaif.

(444). Furthermore, mothers (445) and brothers (446)
also have defects in glucose homeostasis and circulating
lipid levels. Therefore, reproductive and metabolic abnor-
malities are tightly associated in PCOS families, suggesting
that they are causally related, have a common pathogen-
esis, or reflect closely linked genetic traits. Franks et al.
(107) have confirmed that hyperandrogenemia and hy-
perinsulinemia are heritable traits in the sisters of women
with PCOS. In addition, several reproductive phenotypes
can occur in reproductive-age sisters (107, 432), suggest-
ing that some of the phenotypic heterogeneity of PCOS
reflects variable expression of the same gene because sis-
ters would be expected to share the same genetic basis for
the disorder. Factors that may contribute to phenotypic
variation within families include obesity and insulin re-
sistance (432) (Fig. 14). There may also be additional en-
vironmental factors or genes that modify the phenotypic
expression of PCOS.

Because hyperandrogenemia and markers of insulin re-
sistance are tightly associated in PCOS families (107,432,
437,443, 445, 447), mapping genes for the reproductive
phenotype may also identify susceptibility genes for insu-
lin resistance. There have been a number of attempts to
find susceptibility genes for PCOS (434). Early studies
focused on screening the insulin receptor gene for muta-
tions because of the phenotypic similarities between PCOS
and the Type A syndrome. Analysis of the exons of the
insulin receptor gene in a limited number of women with

0VU|at0|"y AnOVU|at0ry encodes part of the tyrosine kinase domain,
were associated with PCOS.

There have been numerous case-control

Hyperandrogenemia studies investigating other PCOS candidate

genes. Most studies have been limited by
small sample size (434). Furthermore, they
assume that the cases and controls are per-
fectly matched, which is rarely true because
of racial and ethnic population stratification
(434). In addition, in most studies, a limited
number of candidate gene variants have been
investigated, and variants associated with
PCOS may have escaped detection. This was
the case in studies of the T2D susceptibility
gene, TCF7L2 (453, 454). There was no as-
sociation between the TCF7L2 T2D suscepti-
bility single nucleotide polymorphisms (SNPs),
rs7903146 and rs12255372, and PCOS (453).
However, when SNPs spanning the entire gene
were investigated (310), a novel region associ-
ated with the PCOS reproductive phenotype, rs11196236
and rs11196229, was mapped that was not in linkage
disequilibrium with the T2D susceptibility region. Finally,
few findings have been replicated in separate cohorts,
which has now become an accepted standard for valida-
tion of genetic analyses of complex traits (434, 455). A
meta-analysis of small case-control studies (456) sug-
gested that a variant in IRS-1 was associated with PCOS.
A recent case-control study of candidate genes in the in-
sulin metabolic signaling pathway (457) did replicate an
association between PCOS and a SNP in the insulin re-
ceptor gene.

Linkage studies to identify novel genetic susceptibility
loci have been constrained by the shortage of large mul-
tiplex families and the fact that PCOS-affected status can
only be determined in reproductive-age women; non-
reproductive-age women and men cannot be assigned a
PCOS phenotype (434, 458). In a linkage analysis where
postmenopausal-affected status was assigned based on re-
productive history and male-affected status was assigned
based on premature balding (459, 460), associations were
found with CYP11a and with the insulin gene VNTR.
However, these findings were not replicated in subsequent
analyses (461, 462). Moreover, it has become clear that,
despite a number of analytical modifications, linkage
mapping studies simply have not been as successful for
complex diseases as they were for Mendelian disorders

(438, 455).




1006 Diamanti-Kandarakis and Dunaif

The transmission disequilibrium test (TDT), a type of
family-based association testing, has been successfully
used with a candidate gene approach to map PCOS sus-
ceptibility genes (434). The TDT examines association in
the presence of linkage by assessing transmission of alleles
from parents to affected offspring (458). This approach
obviates the need for multiplex families and controls for
population stratification because analyses are performed
within the family unit (434, 463). Using the TDT ap-
proach, an allele of a dinucleotide repeat D195884 on
chromosome 19p13.2 was linked and associated with the
PCOS reproductive phenotype (464, 465). These findings
were replicated in an independent sample of PCOS fam-
ilies (466). In a case-control study, Tucci et al. (467) also
found evidence for association between PCOS and
D19S884. However, two other case-control studies (468,
469), which tested for association between PCOS and
D19S884 in Caucasian women of European ancestry, did
not find evidence for association between D195884 and
PCOS. It should be noted that all of these case-control
studies were limited by relatively small sample sizes.

D19S884 is a microsatellite marker that had been se-
lected for mapping the insulin receptor but mapped to
intron 535 of the fibrillin-3 (FBN3) gene located approxi-
mately 1 Mb centromeric to the insulin receptor gene on
chromosome 19p13.2 (464,466,470). The allele was also
associated with evidence for insulin resistance in women
with PCOS and for pancreatic 8-cell dysfunction in broth-
ers, suggesting a sex difference in the associated metabolic
phenotypes (470). Fibrillins are extracellular matrix mac-
romolecules important in connective tissue architecture
(471). FBN3 is homologous to FBN1, which encodes
fibrillin-1 and is mutated in Marfan syndrome (472), and
FBN2, which encodes fibrillin-2 and is mutated in con-
genital contractural arachnodactyly (473). FBN3 expres-
sion levels are highest in fetal tissues, specifically in the
brain, lung, kidney, and aorta (474). FBN3 is transcribed
in cows, pigs, and chickens but not in mice and rats, mak-
ing traditional knockout experiments uninformative for
FBN3 (474). Fibrillins bind TGFB and modulate signaling
via this pathway (473, 475-478). The gene-specific func-
tions of the fibrillins may be determined by their temporal
and spatial expression pattern rather than an inherent dif-
ference in protein function (473, 479).

Linkage studies (464) in PCOS-affected sib pairs have
implicated follistatin as another PCOS susceptibility gene.
Follistatin also functions as an extracellular modulator of
the bioavailability of members of the TGF 3 signaling fam-
ily (464, 480). Moreover, follistatin and fibrillins share
unique homology in the tertiary structure of their TGFB
binding domains (481). It has not been possible to repli-
cate the association between follistatin and PCOS in small
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studies, which have also been constrained by failure to
comprehensively examine the entire gene for variation
(482, 483).

Nevertheless, these observations suggest that genes in
the TGFf signaling family are intriguing candidate genes
for PCOS (Fig. 15). The family includes ligands, extracel-
lular antagonists, receptors, and signaling molecules (Ta-
ble 4) (476, 477,480, 484—-488). Many of the pathways
modulated by this signaling family are important in the
control of folliculogenesis, including follistatin-activin
(480, 489, 490). Members of this family also play a role
in pathways regulating metabolism. Follistatin and activin
are important in pancreatic islet development (491-493).
Myostatin is a key negative regulator of skeletal muscle
mass (494, 495) and may also play a role in adipogenesis
(496-499). Follistatin can antagonize myostatin as well
as activin action (500-502). Furthermore, genetic dele-
tion of follistatin-like 3 gene, whose product also antag-
onizes activin and myostatin action, in mice produces a
metabolic phenotype (503). Accordingly, genetic varia-
tion in genes in the TGF signaling family is a common
pathway that could account for reproductive and meta-
bolic phenotypes in PCOS (470) (Fig. 15).

Recent studies supporta role for fibrillin-3 in the patho-
genesis of PCOS. Examination of fibrillin expression in
normal and polycystic ovaries from adult women (504)
found significantly decreased fibrillin-3 expression in the
perifollicular stroma of follicles in morphological transi-
tion from primordial to primary follicles in PCO, a stage
at which folliculogenesis is disrupted in PCOS (see Section
II.C.and Refs. 61,62,and 107). There were no differences
in fibrillin-1 or -2 expression in PCO compared with nor-
mal ovaries (504). Studies of human fetal ovaries found
that fibrillin-3 as well as components of the TGFp signal-
ing pathway are expressed in ovarian stroma during de-
velopment (505).

Genome-wide association studies (GWAS) have been
extensively used since the publication of the human hap-
lotype map (HapMap) in 2005 to localize susceptibility
genes for complex traits, such as macular degeneration,
Crohn’s disease, obesity, and T2D (506-512). GWAS de-
pend fundamentally on the widely accepted notion that
gene regions containing variation affecting a phenotype
can be identified through the indirect relationship between
the contributing variation and nearby variation that is in
linkage disequilibrium with the contributing variation
(513-5135). Furthermore, GWAS permit an unbiased in-
terrogation of the entire genome for novel disease suscep-
tibility loci and are, unlike candidate gene approaches,
hypothesis generating (455). Population stratification can
be controlled for in GWAS by the use of ancestry-specific
markers (455, 516, 517).
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Figure 15.
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Figure 15. TGFB signaling family. The TGFB signaling family regulates cell proliferation and differentiation in diverse biological processes including
reproduction, cancer progression, extracellular matrix formation, inflammation, metabolism, and development of bone, skeletal muscle, and fat.
The family consists of extracellular antagonists that bind TGF ligands and modulate their biological availability. The receptors in this family are
serine/threonine kinases. Ligands bind to type Il receptors, which then recruit and phosphorylate the type | receptor, initiating signaling through
phosphorylation of intracellular Smads. Fibrillins and follistatin are extracellular antagonists of ligands in the TGFg signaling family. A variant within
an intron in the fibrillin-3 gene has been linked and associated with PCOS. The follistatin gene has been linked with PCOS in an affected sib pair
study. The fibrillin-3 variant is also associated with a metabolic phenotype in women with PCOS and their brothers. These observations suggest

that genes in the TGFB signaling family are candidate genes for PCOS.

However, it is now clear that the identification of dis-
ease susceptibility loci requires many thousands of indi-
viduals (counting GWAS and replication case-control co-
horts) and an increasing density of markers (512, 518,
519). Furthermore, many of the loci identified confer very
small increases in disease risk and, for traits such as T2D
and obesity, loci discovered thus far when taken together

TABLE 4. Members of TGFB signaling family

Ligands

Inhibins, activins, myostatin, BMPs, GDFs, AMH, TGFB1-3, nodal
Extracellular antagonists

Follistatin, follistatin-like 3, fibrillins, noggin, chordin, DAN/cereberus
Type | receptors

ACVR1, ACVR1B, ACVR1C, BMPRTA, BMPR1B, TGFBR1
Type Il receptors

ACVRL1, ACVR2A, ACVR2B, BMPR2, AMHR2, TGFBR2
Type Il receptors

TGFBR3, ENG, IgSF
Intracellular modulators of signaling

Smad1-8, Smurf1-2, SARA, TRAP1, BAMBI, Gsc

ACVRs, Activin receptors; ACVRL1, activin A receptor type Il-like 1; AMH, anti-
Mullerian hormone; BAMBI, BMP and activin membrane-bound inhibitor
homolog; BMPs, bone morphogenic proteins; DAN, differential screening-
selected gene aberrative in neuroblastoma; ENG, endoglin; Gsc, goosecoid;
GDFs, growth differentiation factors; IgSF, Ig superfamily; SARA, Smad anchor
for receptor activation; Smads, Mothers against decapentaplegic homolog; R,
receptor; TRAP-1, TGFB receptor associated protein-1.

do not account for the observed heritability (520, 521).
This so-called “missing heritability” (520) may reflect the
fact that rare rather than common variants contribute to
complex diseases (520, 522). Nevertheless, GWAS has
been important for implicating novel biological pathways
in disease pathogenesis (523).

The first GWAS of PCOS was published online in De-
cember 2010 (116). It was conducted in Han Chinese with
PCOS diagnosed by the Rotterdam criteria and contained a
discovery sample of 744 PCOS cases and 895 controls. The
replication study included two independent cohorts: 2840
PCOS cases and 5012 controls, and 498 PCOS and 780 con-
trols. There was strong evidence for association with meta-
analysis P values of 10! to 10~23; the proposed threshold
for genome-wide significanceis 5 X 108 (524, 525) between
PCOS and loci on chromosomes 2p16.3 (OR, 0.71), 2p21
(OR, 0.67), and 9933.3 (OR, 1.34).

Several known genes located nearby the most signifi-
cant SNP at 2p16.3 are GTF2A1L (TFIIA-« and B-like
factor) and LHCGR. GTF2A1L is highly expressed in
adult testis and may play a role in spermatogenesis (526).
LHCGR encodes the receptor for LH and human chori-
onic gonadotropin and is a highly plausible PCOS candi-
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date gene (434, 464). The strongest evidence for associa-
tion at 2p21 was with THADA, a gene originally
identified in thyroid adenomas (527). The region on chro-
mosome 9q33.3 associated with PCOS was located within
DENND1A, which encodes a domain differentially ex-
pressed in normal and neoplastic cells that can bind to and
negatively regulate endoplasmic reticulum aminopepti-
dase-1 (528). Nevertheless, confirmation that the signals
reflect variation in these genes and not other genes in link-
age disequilibrium with these loci requires further genetic
analyses.

GWAS are currently under way in PCOS cohorts of
European and of Korean ancestry. However, recent stud-
ies in European PCOS cohorts have replicated some of the
Han Chinese PCOS GWAS signals (114, 115). Both of
these studies had large sample sizes of carefully pheno-
typed women with PCOS as well as control women, used
appropriate statistical methods including adjustment of P
values for multiple testing, and included one or more rep-
lication populations of affected women, which is now a
required component for these types of genetic association
studies. In the first study, Goodarzi et al. (114) replicated
the association of the chromosome 2p21 THADA and
chromosome 9p33.3 DENND1A susceptibility loci. Welt
et al. (115) also replicated the association between vari-
ants in DENND1A and PCOS. This study found a signif-
icant association between one variant in DENND1A and
T levels, supporting the hypothesis of Legro et al. (432)
that hyperandrogenemia was the trait most likely to have
a genetic basis in PCOS. Furthermore, another variant in
DENND1A was significantly associated with hyperan-
drogenism and irregular menses but not with polycystic
ovarian morphology in the European populations studied
(115). This observation suggests that there is genetic sus-
ceptibility for PCOS diagnosed by the NICHD rather than
the Rotterdam criteria. The finding that the same suscep-
tibility genes contribute to disease risk in Chinese and Eu-
ropean PCOS populations suggests that PCOS is an an-
cient trait present in ancestral populations before their
migration out of Africa approximately 40,000 to 60,000
yr ago (529, 530), although genetic exchanges between
populations may have occurred until as recently as 20,000
yr ago (531).

D. Developmental origins of PCOS

1. Prenatal androgen excess

Another hypothesis for the pathogenesis of the repro-
ductive and metabolic features of PCOS is fetal program-
ming (532, 533). Prenatal exposure to androgens by T
administration to pregnant rhesus macaques, sheep, or
rodents can produce most of the phenotypic features of
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PCOS in the female offspring, including ovarian and ad-
renal hyperandrogenism, disordered gonadotropin secre-
tion, anovulation, obesity, insulin resistance, and pancre-
atic B-cell dysfunction (532, 534-537). Increased LH and
androstenedione levels can be detected in female prena-
tally androgenized rhesus offspring in late gestation and
early infancy (538). In addition, prenatally androgenized
male offspring have reproductive and metabolic pheno-
types (539-542) similar to the phenotypes that have been
described in the brothers of women with PCOS (427, 440,
442, 446, 447, 470, 543).

Human evidence supporting this hypothesis comes
from the observation that perinatal exposure to endoge-
nously elevated androgens secondary to androgen-secret-
ing neoplasms or congenital adrenal hyperplasia can per-
manently alter gonadotropin secretion in girls (44, 544).
Although maternal androgen levels are elevated in PCOS
pregnancies (545), itis unlikely that these androgens reach
the fetus because placental aromatase acts as a barrier to
maternal androgens (546, 547). Nevertheless, the finding
that hyperandrogenemia is the underlying reproductive
defect in PCOS families (432) suggests that genetic vari-
ation leading to fetal ovarian androgen production may
program features of PCOS. Consistent with this line of
reasoning, there is evidence that the fetal ovary is steroido-
genically active because it expresses P450c17 (548). How-
ever, there were no increases in umbilical cord androgen
levels in the female infants of women with PCOS com-
pared with infants of control women (547), although an-
other study using less sensitive and specific techniques for
measuring T levels did find elevated levels in the cord
blood of female infants of affected women (549).In a large
prospective study, neither maternal nor umbilical cord an-
drogen levels predicted the later development of PCOS
(550). Nevertheless, umbilical cord androgen levels reflect
fetal exposure in late gestation, and it is possible that there
are androgen elevations earlier in gestation that contribute
to the pathogenesis of PCOS.

2. Intrauterine growth restriction

The fetal origins or Barker hypothesis (551, 552) pro-
poses that intrauterine growth restriction as evidenced by
low birth weight causes insulin resistance, cardiovascular
disease, and other features of the insulin resistance syn-
drome (553-555). According to this hypothesis, decreased
fetal nutrition results in decreased fetal insulin secretion
and growth (552, 556). Insulin resistance is a compensa-
tory mechanism that further decreases fetal nutrient use:
the “thrifty” phenotype (551, 556-558). Extensive ani-
mal studies support the long-term impact of the fetal en-
vironment on the adult animal, known as fetal program-
ming (555, 556). Many epidemiological studies in humans
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support the association between low birth weight and met-
abolic diseases (554, 555, 559, 560). Fetal overnutrition,
as occurs in gestational diabetes resulting in large for ges-
tational age infants, can also program adverse metabolic
consequences later in life (561-5635).

Intrauterine growth restriction leading to low birth
weight has been hypothesized to initiate developmental
pathways leading to PCOS (566, 567). Increased maternal
T levels during gestation were associated with lower birth
weights in a random sample of parous women followed
prospectively through pregnancy (568). Women with
PCOS have higher androgen levels during pregnancy than
control women (545) and may have an increased preva-
lence of small for gestational age infants (569). Girls to
premature pubarche, considered to be a precursor of
PCOS (570-572), have been reported to have an increased
risk of being small for gestational age (567, 573). Young
women with a history of low birth weight had an increased
prevalence of symptoms of PCOS, evidence for insulin
resistance, and higher androgen levels (574, 575) com-
pared with control women with normal birth weights.

Arguing against an influence of intrauterine growth
restriction on the later development of PCOS, young
women with a history of low birth weight had no dif-
ference in symptoms of PCOS (576) or in circulating
androgen levels (577) when compared with control
women with normal birth weights. Neither women
with PCOS (578, 579) nor their first-degree relatives
(579) had lower birth weights or an increased preva-
lence of being small for gestational age compared to
concurrently studied control women or to population
normative data. Furthermore, there was no association
between reproductive or metabolic phenotypes and
birth weight in women with PCOS or in their first-
degree male or female relatives (579). In a small pro-
spective study, the infants of women with PCOS were
not smaller for gestational age than those of control
women (547). However, the infants of affected women
had an increased prevalence of being large for gesta-
tional age compared with those of control women
(547).In a large prospective cohort study, there was no
association between birth weight and the later devel-
opment of PCOS (550).

3. Childhood precursors of PCOS

The daughters of women with PCOS have elevations in
T levels compared with the daughters of normal women
beginning with the onset of puberty (580, 581). The PCOS
daughters also had higher anti-Mullerian hormone levels,
a marker of follicle number (582), and increased ovarian
volume (583). A subset of PCOS daughters had evidence
for early adrenarche (584). Furthermore, girls with pre-
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mature adrenarche have an increased risk for PCOS (571).
Leptin, but not insulin, levels were increased in the cord
blood of PCOS compared with control offspring (585).
Hyperinsulinemia and lower adiponectin levels were pres-
ent before puberty in daughters of women with PCOS
(580, 581). The sons of women with PCOS were heavier
than the sons of control women during infancy and child-
hood (~6 yr old) (543). PCOS sons had higher urinary T
levels than control sons in early puberty (586). These data
suggest that PCOS begins early in life and that metabolic
changes precede reproductive abnormalities.

4. Summary

In summary, although animal studies provide compel-
ling evidence that prenatal androgen exposure can pro-
gram the reproductive and metabolic features of PCOS in
adult offspring, human data to suggest that prenatal an-
drogen excess plays a role in the development of PCOS are
lacking. There are studies to suggest an association be-
tween low birth weight and PCOS. However, several large
studies, including prospective analyses, do not find an as-
sociation between birth weight and the development of
PCOS. Studies of the daughters of women with PCOS
suggest that hyperinsulinemia and hypoadiponectinemia
occur before the onset of puberty (580, 581). These ob-
servations suggest that PCOS does have its origins very
early in life.

VI. Implications and Future Directions

PCOS is a major metabolic as well as reproductive disor-
der that is associated with increased diabetes risk across a
woman’s life span. Affected women have a unique disor-
der of insulin action secondary to decreased insulin recep-
tor signaling likely caused by serine hyperphosphorylation
of the receptor and IRS-1. Enhanced intracellular serine
kinase activity produces this phosphorylation. The insulin
resistance in PCOS is selective, affecting metabolic but not
mitogenic pathways both in classic insulin target tissues
and in the ovary. Indeed, there is constitutive activation of
mitogenic pathways in skeletal muscle in PCOS, and serine
kinases in this pathway contribute to increased phosphor-
ylation of IRS-1 and inhibition of metabolic signaling.
The expansion of the diagnostic criteria for PCOS has
added additional phenotypes to the diagnosis. Careful study
of these phenotypes has indicated that the affected women at
high risk for insulin resistance are those who fulfill the orig-
inal NICHD diagnostic criteria. This insight is particularly
important with respect to metabolic disease risk, which is
substantially higher in the NICHD subgroup. Although not
reviewed here (reviewed in 587), these women with PCOS
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are at increased risk for the spectrum of disorders associated
with insulin resistance, including metabolic syndrome (588,
589), endothelial dysfunction (590), nonalcoholic fatty liver
disease (591), gestational diabetes (592, 593), and pregnan-
cy-induced hypertension (592, 593).

The association between insulin resistance and PCOS
has led to the discovery that insulin is an important
reproductive hormone and that insulin signaling in the
CNS is critical for ovulation. This insight was directly
translated into a novel therapy for PCOS with ISDs.
Androgens also have important effects on insulin sen-
sitivity and secretion. Furthermore, the possibility that
developmental exposure to androgens could contribute
to PCOS has received considerable attention because
striking phenocopies of the syndrome can be produced
by prenatal androgen administration to nonhuman pri-
mates, sheep, and rodents.

The most exciting advance in the field since it was last
reviewed in 1997 is the recognition that PCOS is a highly
heritable complex genetic trait. Metabolic as well as re-
productive phenotypes have now been described in male,
postmenopausal female, and prepubertal first-degree rel-
atives. Several intriguing susceptibility loci have been
mapped for the PCOS reproductive phenotype. The loci
have implicated novel biological pathways in the patho-
genesis of the disorder, such as the TGF 3 signaling family.
Further analysis of these loci as well as additional loci
discovered in GWAS should continue to provide novel
biological insights into the pathogenesis of PCOS and the
mechanisms of its phenotypic heterogeneity.
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