
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import cvxpy as cp
import scipy.stats as ss
import seaborn as sns
import warnings
from scipy.optimize import Bounds, LinearConstraint, minimize
from IPython.display import display
from FMNM.portfolio_optimization import optimal_weights

filename = "data/stocks_data.csv"
investment_horizon = 252 / 12 # 252 days / 12 months = 1 month
Rf = 0.01 / 12 # annual rate / 12 months

data = pd.read_csv(filename, index_col="Date", parse_dates=True)
stocks = data.columns
N = len(stocks)
print("There are NaNs") if data.isna().any(axis=1).any(axis=0) else
print("There are NO NaNs")
pd.DataFrame(columns=stocks)

There are NO NaNs

Empty DataFrame
Columns: [AAPL, AMZN, GOOGL, JPM, GLD, DIS, VNO, FB, UBS, KO, MCD,
^GSPC, GM]
Index: []

Since the number of stocks is small, it could be useful to plot the normalized time series and the
correlation matrix of the log-returns.

log_ret = np.log(data / data.shift())[1:] # compute log-returns

plots
fig = plt.figure(figsize=(16, 6))
ax1 = fig.add_subplot(121)
ax2 = fig.add_subplot(122)
for stk in stocks:
 ax1.plot(data[stk] / data[stk][0], label=stk)
ax1.legend()
ax1.xaxis.set_tick_params(rotation=45)
sns.heatmap(log_ret.corr(), annot=True, cmap="YlGnBu", ax=ax2)
plt.show()

Some mathematics
Let us indicate the stock price at time t with St.
We can now recall some important definitions:

Log returns

Lt :=log
St
S t−1

Linear returns

Rt :=
S t−St −1

S t− 1

=
St

S t−1

−1

There are two important properties to remember:

1) Thanks to the properties of logarithms, for t 0=0< t1<. . .< tn=T we can write:

LT ¿ log
ST

S0

¿ ¿ log
S t1

S0

+ log
St 2

St 1

+. . .+ log
ST

St n− 1

¿ ¿

2) If we have a portfolio Pt with N stocks, we can prove that the linear return of the portfolio at
time t before rebalancing (with weights selected at time t −1) is:

Rt
P=∑

i=1

N

wt− 1
i Rt

i

Let us consider an investor with a total capital C in cash at time t=0.
At time t ≥0 he decides to buy α t

i shares of the stock St
i. Of course the conditions

Pt=∑
i=1

N

α t
iS t

i and P0=C

must hold. It convenient to define the relative weights of the portfolio:

w t
i :=

αt
i St

i

Pt

such that for each t ≥0

∑
i=1

N

wt
i=1 .

At this point it is easy to prove the initial expression:

∑
i=1

N

wt −1
i R t

i ¿∑
i=1

N

wt −1
i (St

i

S t−1
i −1)=∑

i=1

N αt −1
i S t−1

i

P t−1

S t
i

St− 1
i −1

¿ ¿
Pt

Pt −1

−1=Rt
P

where in ∑
i=1

N

αt −1
i S t

i=Pt the values α t− 1
i are the number of shares selected at time t −1 i.e. before

the rebalancing.

Why did I recall these formulas?

Simply because

Lt
P≠∑

i=1

N

w t− 1
i Lt

i andRT ≠∑
i=1

n

R ti

therefore DO NOT USE THEM with the equal sign!!

Ok... if the time interval is short...we can use the first order Taylor approximation of the
logarithmic function log (1+x)≈x such that:

Lt=log (1+Rt)=log(1+
S t−S0

S0
) ≈
t→0

R t

and linear returns are not so different from the log-returns.
But if we consider monthly or annual returns, the difference becomes significant!

1) We use log-returns to estimate the monthly mean and covariance matrix.

We can assume that the daily log-returns of Si are i.i.d. with mean μi and standard deviation σ i.
Later, we will also assume that the log-returns are normally distributed, but the reality is that
this assumption is wrong! If we try to test for normality using Shapiro-Wilk (here below), we can
see that for each time series this assumption is rejacted.
Well, this is a well known fact. I didn't waste time writing my Lévy processes notebooks :)

We can calculate the monthly mean and covariance matrix from the daily mean and covariance
matrix:

E [LT
j)=E [∑

i=1

n

Lt i

j)=∑
i=1

n

E [Lti

j)=n μ j

COV [LT
j , LT

k) ¿COV [∑
i=1

n

Lti

j ,∑
i=1

n

Lt i

k)
¿ ¿

where I used the i.i.d. property of log-returns such that $\text{COV} \biggl[L^j_{t_i}, L^k_{t_h} \
biggr] = 0 $ for i≠ h.
The term ρ j ,k is the correlation coefficient between the daily log-returns L j and Lk, and Σ j , k the
daily covariance.

pvalues = []
for stk in stocks:
 pvalues.append(ss.shapiro(log_ret[stk]).pvalue)
print("Normality test fails with log-returns. Pvalues:\n", pvalues)

Normality test fails with log-returns. Pvalues:
 [4.249113268271071e-13, 1.0231917002556656e-07, 1.1263771626567401e-
13, 4.623055004137136e-16, 2.722110210851003e-11, 1.9630867349301187e-
16, 4.913086496815297e-16, 4.408671778338702e-12, 7.546176293023567e-
16, 8.741717134777387e-15, 8.642707697237299e-23, 5.612456645324092e-
20, 3.866022695660394e-14]

2) We use monthly linear returns to compute the monthly portfolio linear return.

Once we obtained the monthly log-returns, we need to convert them into linear returns. For this
purpose, we can assume that log-returns are normally distributed. It follows that the prices are
log-normally distributed and linear returns as well:

Rt=eL t−1∼ lognormal

The formulas for the mean and covariance of the multivariate distribution can be found on wiki.
Let us call μT and ΣT the mean and covariance of the monthly log-returns. The monthly linear
returns have:

E [LT
j)=e

μT +
1
2
ΣT

j, j

−1

https://en.wikipedia.org/wiki/Log-normal_distribution#Multivariate_log-normal

COV [LT
j , LT

k)=e
μT

j +μT
k +1

2 (ΣT
j , j+ΣT

k,k)(eΣT
j,k

−1)

This topic is also discussed in detail in [1] (see equation 6.162).

log-return monthly mean and covariance
mu_log = investment_horizon * log_ret.mean().values
cov_log = investment_horizon * log_ret.cov().values

linear return monthly mean and covariance
MU = np.exp((mu_log + 0.5 * np.diag(cov_log))) - 1
COV = np.diag(MU + 1) @ (np.exp(cov_log) - 1) @ np.diag(MU + 1) # COV
written in matrix form

Variance of the portfolio

The expected return of the portfolio is simply the weighted sum of the expected returns of each
stock (here I use the subscript i to simplify the notation)

E [RP)=∑
i=1

N

wi E [R i) .

But the variance involves all the covariance terms:

$$ \text{VAR}[R^P] = \text{VAR}\biggl[\sum_{i=1}^N w_i \,R_i \biggr] = \sum_{i=1}^N w_i^2 \, \
text{VAR}[R_i] + \sum_{i,j=1\\ \, i\not=j}^N w_i w_j \, \text{COV}[R_i, R_j] . $$

There are N variance terms and
N (N −1)

2
 covariance terms.

Optimization with scipy.optimize
Let us write the optimization problem in matrix form.
Let μ and Σ be the expected returns vector and the covariance matrix. Let w be the vector of
weights. With μP I indicate the target portfolio return.
Then the optimization problem can be written as:

min
w

wT Σw subject to μT w=μP ,wT 1=1 andw≥0 .

Here I use scipy.optimize.minimize to solve the optimization problem.
It can be useful to read the doc for the Linear constraint. It is convenient to write the two linear
equality constraints in a compact form:

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.LinearConstraint.html

(1 1 . . . 1
μ1 μ2 . . . μN

)⋅(
w1

w2

⋮
wN

)=(1
μP)

The condition w≥0 is for an investor that is not allowed to take short positions.

def optimizer(MU, COV, target_mu, OnlyLong=True):
 """Finds optimal weights for a fixed target portfolio return"""

 N = len(MU)
 if OnlyLong == True:
 bounds = Bounds(0, 1)
 A = np.vstack((np.ones(N), MU))
 B = np.array([1, target_mu])
 linear_constraint = LinearConstraint(A, B, B)

 weights = np.ones(N)
 x0 = weights / np.sum(weights) # Create x0, the initial guess for
the weights

 # Define the objective function
 quadratic_form = lambda w: (w.T @ COV @ w)
 if OnlyLong:
 res = minimize(quadratic_form, x0=x0, method="trust-constr",
constraints=linear_constraint, bounds=bounds)
 else:
 res = minimize(quadratic_form, x0=x0, method="trust-constr",
constraints=linear_constraint)
 return res.x

Now I compute the optimal weights for several values of target expected return μP. With these
weights we can compute the standard deviation σ P of the corresponding portfolio.
The curve of all the points (σ P , μP) is called efficient frontier.

The Sharpe ratio is a performance measure defined as

S R= μP−R f
σ P

where R f is the risk free rate. The line with a slope equal to the maximum Sharpe ratio is called
capital market line (CML).
The point on the efficient frontier with maximum Sharpe ratio is called tangent portfolio.

samples = 200
means = np.linspace(0, np.max(MU), samples) # vector of target
expected returns
stds = np.zeros_like(means)

sharpe_ratio = np.zeros_like(means)

for i, mn in enumerate(means):
 w_opt = optimizer(MU, COV, mn) # optimal weights
 stds[i] = np.sqrt(w_opt @ COV @ w_opt)
 sharpe_ratio[i] = (mn - Rf) / stds[i]

ind_SR = np.argmax(sharpe_ratio) # index of the maximum Sharpe Ratio
max_SR = sharpe_ratio[ind_SR] # maximum Sharpe ratio

y = np.linspace(0, stds.max(), samples)
CML = Rf + max_SR * y # capital market line

Plot
fig = plt.figure(figsize=(15, 5))
plt.scatter(stds, means, linewidths=0.01, color="green",
label="Efficient Frontier")
for i in range(N):
 plt.plot(cp.sqrt(COV[i, i]).value, MU[i], "o", color="goldenrod")
 plt.annotate(f"{data.columns[i]}", (cp.sqrt(COV[i, i]).value,
MU[i]))
plt.plot(y, CML, label=f"Capital Market Line, sharpe ratio =
{max_SR.round(4)}")
plt.plot(stds[ind_SR], means[ind_SR], "rs", label="tangent portfolio")
plt.legend(loc="upper left")
plt.xlabel("Standard deviation")
plt.ylabel("Return")
plt.show()

Weights for the tangent portfolio:
display(pd.DataFrame([dict(zip(data.columns, optimizer(MU, COV,
means[ind_SR]).round(4)))]))

 AAPL AMZN GOOGL JPM GLD DIS VNO FB UBS
KO \
0 0.4856 0.0494 0.0002 0.0001 0.464 0.0002 0.0 0.0001 0.0003
0.0

 MCD ^GSPC GM
0 0.0 0.0 0.0001

Optimize the Sharpe ratio
Most of the time, we are not interested in the efficient frontier, but we just want to find the
tangent portfolio. An alternative is to maximize the Sharpe ratio i.e. solve the following problem:

max
w

wT μ−R f

√wT Σw
subject towT 1=1andw≥0 .

weights = np.ones(N)
x0 = weights / np.sum(weights) # initial guess

Define the objective function (the negative Sharpe ratio)
sharpe_fun = lambda w: -(MU @ w - Rf) / np.sqrt(w.T @ COV @ w)
bounds = Bounds(0, 1)
linear_constraint = LinearConstraint(np.ones(N, dtype=int), 1, 1)
res = minimize(sharpe_fun, x0=x0, method="trust-constr",
constraints=linear_constraint, bounds=bounds)

w_sr = res.x
print("weights = ")
display(pd.DataFrame([dict(zip(data.columns, w_sr.round(4)))]))
print("Max Sharpe ratio = ", -sharpe_fun(w_sr))
print("optimal portfolio at sigma= {} and mean={}".format(np.sqrt(w_sr
@ COV @ w_sr), MU @ w_sr))

weights =

 AAPL AMZN GOOGL JPM GLD DIS VNO FB UBS KO MCD
^GSPC \
0 0.4879 0.0486 0.0 0.0 0.4635 0.0 0.0 0.0 0.0 0.0 0.0
0.0

 GM
0 0.0

Max Sharpe ratio = 0.5609210027002335
optimal portfolio at sigma= 0.07327567641496409 and
mean=0.04193519922155284

The weights are a bit different than before because here the maximum Sharpe ratio is more
accurate. Before it was computed by grid search.

Optimal weights between stocks and bond

Once we have computed the tangency portfolio, it is optimal to stay on the CML.
Let us call RP the return of a portfolio on the CML that allocates a fraction w of the initial capital
to the tangency portfolio (with return RT) and 1−w to the risk-free asset R f , i.e.

RP=wRT+(1−w)R f=R f+w (RT− Rf)
such that

E [RP)=R f+w (E [RT)− Rf) and VAR [RP)=w2 VAR [RT) .

From these equations, given a desired level of expected return or variance, it is possible to
calculate the optimal balance between the stocks portfolio (the tangency portfolio) and a risk
free (a bond) asset.

The following function does it. Let us give a value of expected return as input and see how it
works:

optimal_weights(MU, COV, Rf=Rf, w_max=1, desired_mean=0.02,
desired_std=None)

`gtol` termination condition is satisfied.

{'Sharpe Ratio': 0.5609210027002335,
 'stock weights': array([0.4879, 0.0486, 0. , 0. , 0.4635, 0.
, 0. , 0. ,
 0. , 0. , 0. , 0. , 0.]),
 'stock portfolio': {'std': 0.073276, 'mean': 0.041935},
 'Bond + Stock weights': {'Bond': 0.5337, 'Stock': 0.4663},
 'Total portfolio': {'std': 0.03417, 'mean': 0.02}}

print(optimal_weights.__doc__)

 Compute the optimal weights for a portfolio containing a risk free
asset and stocks.
 MU = vector of mean
 COV = covariance matrix
 Rf = risk free return
 w_max = maximum weight bound for the stock portfolio
 desired_mean = desired mean of the portfolio
 desired_std = desired standard deviation of the portfolio

In this function I also introduced the possibility to give an upperbound to the weights:

0≤w≤wmax

Let us try it. We can see that although there is more diversification, the introduction of this
bound reduced the Sharpe ratio.

bounded_porf = optimal_weights(MU, COV, Rf=Rf, w_max=0.2,
desired_mean=0.02, desired_std=None)
display(bounded_porf)

`gtol` termination condition is satisfied.

{'Sharpe Ratio': 0.46269725666071015,
 'stock weights': array([2.000e-01, 2.000e-01, 1.981e-01, 1.000e-04,
2.000e-01, 1.400e-03,
 0.000e+00, 4.000e-04, 1.997e-01, 1.000e-04, 0.000e+00, 1.000e-
04,
 1.000e-04]),
 'stock portfolio': {'std': 0.080421, 'mean': 0.038044},
 'Bond + Stock weights': {'Bond': 0.4849, 'Stock': 0.5151},
 'Total portfolio': {'std': 0.041424, 'mean': 0.02}}

print("Bounded Weights = ")
display(pd.DataFrame([dict(zip(data.columns, bounded_porf["stock
weights"].round(4)))]))

Bounded Weights =

 AAPL AMZN GOOGL JPM GLD DIS VNO FB UBS
KO MCD \
0 0.2 0.2 0.1981 0.0001 0.2 0.0014 0.0 0.0004 0.1997
0.0001 0.0

 ^GSPC GM
0 0.0001 0.0001

Optimization with cvxpy
The code of this section follows closely the example given in the cvxpy website.
CVXPY uses a better solver, which as we will see it is much faster. It is also very easy to use.

Here I also present an alternative and equivalent formulation of the problem:

max
w

μT w−λ wT Σw subject towT 1=1 andw≥0 .

where λ>0 represents the risk aversion coefficient of the investor. The choice of a positive
lambda follows the common requirement to describe a risk-averse investor.

https://colab.research.google.com/github/cvxgrp/cvx_short_course/blob/master/applications/portfolio_optimization.ipynb#scrollTo=--osR2je4bDI

For λ→0, the investor tends to be more risk-neutral. For λ→∞ the investor is very risk-averse
and the optimal portfolio converges to the minimum variance portfolio i.e. the portfolio with
the least variance.

From a mathematical point of view, this formulation corresponds to a problem where we want
to maximize the expected return $ \boldsymbol \mu^T \mathbf w$ for a fixed variance level
v=wTΣ w plus the other constraints. We can introduce the Lagrange multiplier λ such that the
objective function becomes μT w−λ (wT Σw−v), which is equivalent to the initial problem (since
v is just a constant and does not affect the weights).

w = cp.Variable(N) # weights
gamma = cp.Parameter(nonneg=True)
ret = MU @ w # portfolio return
risk = cp.quad_form(w, COV) # portfolio variance
objective = cp.Maximize(ret - gamma * risk) # objective function
constraints = [cp.sum(w) == 1, w >= 0]
prob = cp.Problem(objective, constraints)

Now I replicate the results of the previous section.

I run compute the optimal portfolio for seveal values of risk aversion γ , that is equivalent to
optimize for several values of portfolio standard deviations. The resulting curve is again the
efficient frontier, where each point corresponds to a value of γ .

Compute efficient frontier.
samples = 500
std_values = np.zeros(samples)
mean_values = np.zeros(samples)
sharpe_ratio = np.zeros(samples)
gamma_vals = np.logspace(0, 4, num=samples) # several levels of risk
aversion
portfolios = []
for i in range(samples):
 gamma.value = gamma_vals[i]
 prob.solve()
 std_values[i] = cp.sqrt(risk).value
 mean_values[i] = ret.value
 sharpe_ratio[i] = (mean_values[i] - Rf) / std_values[i]
 portfolios.append(w.value)

ind_SR = np.argmax(sharpe_ratio) # index of the maximum Sharpe Ratio
max_SR = sharpe_ratio[ind_SR] # maximum Sharpe ratio
y = np.linspace(0, std_values.max(), samples)
CML = Rf + max_SR * y # capital market line

Plot:
fig = plt.figure(figsize=(15, 5))
ax1 = fig.add_subplot(111)

ax1.plot(std_values, mean_values, "g-", label="Efficient Frontier")
ax1.plot(
 std_values[ind_SR],
 mean_values[ind_SR],
 "rs",
 label=r"Tangent portfolio, $\gamma = {:.2f}
$".format(gamma_vals[ind_SR]),
)
ax1.plot(y, CML, label=f"Capital Market Line, sharpe ratio =
{max_SR.round(4)}")
for i in range(N):
 ax1.plot(cp.sqrt(COV[i, i]).value, MU[i], "o", color="goldenrod")
 ax1.annotate(f"{data.columns[i]}", (cp.sqrt(COV[i, i]).value,
MU[i]))
ax1.legend(loc="upper left")
ax1.set_xlabel("Standard deviation")
ax1.set_ylabel("Return")
plt.show()

print("Weights:")
display(pd.DataFrame([dict(zip(data.columns,
portfolios[ind_SR].round(5)))]))
print("gamma=", gamma_vals[ind_SR])
print("Sharpe Ratio = ", max_SR)
print("Standard Deviation and mean of the portfolio",
std_values[ind_SR].round(6), mean_values[ind_SR].round(6))

Weights:

 AAPL AMZN GOOGL JPM GLD DIS VNO FB UBS KO MCD
^GSPC \
0 0.48551 0.04903 -0.0 -0.0 0.46546 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0
-0.0

 GM
0 -0.0

gamma= 3.8474265772585037
Sharpe Ratio = 0.5609197942924549
Standard Deviation and mean of the portfolio 0.073067 0.041818

Probability density of the tangency portfolio
What if we want to compute some probabilities? For instance the probability of losing money
e.g. P (RP< x) ?

Well, we do not have a closed form for the density of the portfolio. Since each Ri is log-normal,

then ∑
i

wi R
i
 is not a log-normal.

You can see here wiki-related distribution that the sum of independent LN random variables is
approximately log-normal, but not exactly log-normal. In our case the variables are correlated.

We can use Monte Carlo to simulate many LN linear returns and compute the empirical density
of the portfolio. It is convenient, in order to obtain a smooth density, to work with the Gaussian
Kernel density estimation KDE.

Let us generate some multivariate log-normal (LN) random variables RT=
S0 e

X T−S0

S0

, starting

from the knowledge of the multivariate normal random variables XT . We previously computed
the monthly mean and covariance of XT .

np.random.seed(seed=42)
LN_ret = np.exp(ss.multivariate_normal.rvs(mean=mu_log, cov=cov_log,
size=50000)) - 1

def plot_prob(LN_ret, w, lower_value):
 """Probability density of the optimal portfolio
 LN_ret = simulated log-returns. MxN matrix
 w = weights vector Nx1 vector
 lower_value = the maximum loss we are considering
 """
 if LN_ret.shape[1] != w.shape[0]:
 raise ValueError

 MU_simul = LN_ret.mean(axis=0) # mean of the linear returns
(equal to MU)
 COV_simul = np.cov(LN_ret, rowvar=False) # covariance matrix
(equal to COV)
 Opt_portfolios = LN_ret @ w # portfolio linear returns
 mu_port = MU_simul @ w # portfolio mean
 sig_port = np.sqrt(w @ COV_simul @ w) # portfolio standard

./Kernel%20density%20estimation
https://en.wikipedia.org/wiki/Log-normal_distribution#Related_distributions

deviation

 x = np.linspace(Opt_portfolios.min(), Opt_portfolios.max(), 500)
 kde = ss.gaussian_kde(Opt_portfolios)
 normal = ss.norm(loc=mu_port, scale=sig_port)

 fig = plt.figure(figsize=(15, 5))
 plt.plot(
 x,
 kde.evaluate(x),
 color="salmon",
 label="KDE, loss prob={:.4f}".format(kde.integrate_box_1d(-
np.inf, lower_value)),
)
 plt.plot(x, normal.pdf(x), label="Normal, loss
prob={:.4f}".format(normal.cdf(lower_value)))
 plt.axvline(x=lower_value, color="grey", linestyle="--", lw=2,
label="Maximum loss")
 plt.axvline(x=mu_port, color="green", linestyle="--", lw=1,
label="Portfolio mean return")
 plt.axvline(x=mu_port - sig_port, color="orange", linestyle="--",
lw=1, label=r"\pm standard deviation")
 plt.axvline(x=mu_port + sig_port, color="orange", linestyle="--",
lw=1)
 plt.title("Probability density of the portfolio returns")
 plt.xlabel("Return")
 plt.ylabel("Density")
 plt.legend(loc="upper right")
 plt.show()

plot_prob(LN_ret=LN_ret, w=w_sr, lower_value=-0.09)

Comment:
• We can see that the two curves are not so different. This is because 1 month is still a

small interval of time, and therefore the linear returns are approximately

distributed like the log-returns (Normally distributed) and the sum of Normal
distributed random variables is Normal. For a bigger time interval e.g. 1 year, the
two curves become very very different.

• The loss probability in the plot is the probability of losing more than the Maximum
loss value i.e. P (RP<−0.9)

Short positions - closed formula
If are allowed to take short positions, we can remove the bound w≥0 and the problem becomes:

min
w

wT Σw subject toμT w=μP ,wT 1=1 .

Following [3] we can compute the weights and the efficient frontier in closed form.

We can define the following new variables:

Ω=Σ−1 , A=1TΩ μ,B=μTΩμ ,C=1T Ω1 ,D=BC − A2 .

The weights have the following closed expression:

w=
μPΩ (C μ− A)+Ω (B− A μ)

D
.

The efficient frontier is a parabola with the following equation:

¿

It is good to check that the covariance matrix is full rank before the inversion.

print("The rank of the covariance matrix is:",
np.linalg.matrix_rank(COV))
print("The shape of the covariance matrix is:", COV.shape)

The rank of the covariance matrix is: 13
The shape of the covariance matrix is: (13, 13)

Omega = np.linalg.inv(COV)
A = np.ones(N) @ Omega @ MU
B = MU @ Omega @ MU
C = Omega.sum()
D = B * C - A**2

target_mu = 0.1
weights_th = (target_mu * Omega @ (C * MU - A) + Omega @ (B - MU * A))
/ D # theoretical weights

Theoretical weights:
display(pd.DataFrame([dict(zip(data.columns, weights_th.round(4)))]))

 AAPL AMZN GOOGL JPM GLD DIS VNO FB
UBS \
0 1.2458 0.3685 0.5282 0.5597 0.9733 0.1442 -0.2223 -0.272
0.4089

 KO MCD ^GSPC GM
0 0.1547 -0.1562 -2.9257 0.193

Numerical weights:
display(pd.DataFrame([dict(zip(data.columns, optimizer(MU, COV,
target_mu, False).round(4)))]))

 AAPL AMZN GOOGL JPM GLD DIS VNO FB
UBS \
0 1.2458 0.3685 0.5282 0.5597 0.9733 0.1442 -0.2223 -0.272
0.4089

 KO MCD ^GSPC GM
0 0.1547 -0.1562 -2.9257 0.193

Let us compute the efficient frontier
samples = 50
means = np.linspace(-0.1, 0.17, samples) # vector of target expected
returns
stds = np.zeros_like(means)

for i, mn in enumerate(means):
 w_opt = optimizer(MU, COV, mn, OnlyLong=False) # optimal weights
 stds[i] = np.sqrt(w_opt @ COV @ w_opt) # std of the portfolio

Plot
fig = plt.figure(figsize=(15, 6))
y = np.linspace(-0.1, 0.2, 400)
x = np.linspace(0, 0.23, samples)
y, x = np.meshgrid(x, y)
CS = plt.contour(y, x, y**2 - (C * x**2 - 2 * A * x + B) / D, [0],
colors="k", alpha=0.7)
plt.clabel(CS, inline=1, fontsize=10)
CS.collections[0].set_label("Theoretical efficient frontier")
plt.scatter(stds, means, linewidths=0.1, color="green",
label="Numerical efficient Frontier")
for i in range(N):
 plt.plot(cp.sqrt(COV[i, i]).value, MU[i], "o", color="goldenrod")
 plt.annotate(f"{data.columns[i]}", (cp.sqrt(COV[i, i]).value,
MU[i]))

plt.xlim([0.03, 0.19])
plt.legend(loc="upper left")
plt.title("Efficient frontier - Short positions allowed")
plt.xlabel("Standard deviation")
plt.ylabel("Return")
plt.show()

References
[1] Attilio Meucci (2005) Risk and asset allocation.

[2] D. Ruppert, D. Matteson (2015) Statistics and Data analysis for financial engineering

[3] Robert Merton (1970) An analytical derivation of the efficient portfolio frontier

	plots
	Some mathematics
	Log returns
	Linear returns
	Why did I recall these formulas?
	1) We use log-returns to estimate the monthly mean and covariance matrix.
	2) We use monthly linear returns to compute the monthly portfolio linear return.

	Variance of the portfolio

	Optimization with scipy.optimize
	Plot
	Weights for the tangent portfolio:
	Optimize the Sharpe ratio
	Optimal weights between stocks and bond

	Optimization with cvxpy
	Plot:

	Probability density of the tangency portfolio
	Comment:

	Short positions - closed formula
	Theoretical weights:
	Numerical weights:
	Let us compute the efficient frontier
	Plot

	References

