GÉNÉRALITÉS SUR LES FONCTIONS

(quelques indications et corrigés)

1

INDICATIONS

Exercice 2 (question 1.) Calculer les premières dérivées de la fonction. Émettre ensuite une conjecture à démontrer par récurrence.

Exercice 7

- 1. La fonction sh est dérivable en 0; dans la limite, le quotient est un taux d'accroissement en 0.
- 2. Il suffit de faire le calcul.
- 3. Cette question est difficile. On peut commencer par se débarrasser du cas x=0. Ensuite, pour $x\neq 0$:
 - ★ calculer les premiers termes de la suite $(u_0, u_1 \text{ voire } u_2 \text{ en utilisant la question}$ 2.) puis émettre une conjecture quant à la valeur de u_n ;
 - $\star\,$ démontrer la conjecture par récurrence ;
 - \star pour calculer la limite, utiliser la question 1. en remarquant que $\frac{x}{2^n} \xrightarrow[n \to +\infty]{} 0$.

Exercice 11

 \star Dériver la fonction f. Dans l'expression de f' apparaît celle de la fonction :

$$g: x \longmapsto a(1+bx)\ln(1+bx) - b(1+ax)\ln(1+ax)$$

- \star Étudier g et obtenir que g est positive sur \mathbb{R}_{+}^{*} .
- \star En déduire le sens de variation de f sur \mathbb{R}_{+}^{*} .
- * Il s'agit enfin de constater que l'inégalité à démontrer se réécrit $f(\alpha) \leq f(\beta)$ pour des valeurs de α et β judicieusement choisies.

Exercice 18

- \star Raisonner par l'absurde. Quelle est la négation de : « $\forall x \in \mathbb{R}, \ f(x) = x$ ».
- \star L'assertion $f(x) \neq x$ se réécrit f(x) < x ou f(x) > x. Traiter alors deux cas.

Corrigés

Exercice 2 (question 1.)

- 1. Pour tout $x \in \mathbb{R}_+^*$, on a:
 - $\star f'(x) = \frac{1}{x};$
 - $\star f''(x) = -\frac{1}{r^2} = -x^{-2};$
 - $\star f^{(3)}(x) = 2x^{-3};$
 - $\star f^{(4)}(x) = -6x^{-4}$;
 - $\star f^{(5)}(x) = 24x^{-5}.$

Notation : pour tout $n \in \mathbb{N}^*$, on pose :

$$n! = n \times (n-1) \times \cdots \times 2 \times 1$$
 (factorielle de n)

Par convention, on pose 0! = 1.

Avec cette notation, on conjecture que:

$$\forall n \in \mathbb{N}^*, \ \forall x \in \mathbb{R}_+^*, \qquad f^{(n)}(x) = (-1)^{n-1} \frac{(n-1)!}{x^n},$$

Nous allons le vérifier par récurrence.

 \star Pour n=1, on a:

$$\forall x \in \mathbb{R}_+^*, \qquad (-1)^{1-1} \frac{(1-1)!}{x^1} = \frac{1}{x} = f'(x)$$

donc l'égalité est vraie au rang n=1.

 \star Soit $n\in\mathbb{N}^*.$ On suppose que :

$$\forall x \in \mathbb{R}_+^*, \qquad f^{(n)}(x) = (-1)^{n-1} \frac{(n-1)!}{x^n} = (-1)^{n-1} (n-1)! x^{-n}$$

Par définition de la dérivée $(n+1)^e$, on a :

$$\forall x \in \mathbb{R}_{+}^{*}, \qquad f^{(n+1)}(x) = (f^{(n)})'(x) = (-1)^{n-1}(n-1)!(-n)x^{-n-1}$$
$$= (-1) \times (-1)^{n-1} \times (n-1)! \times nx^{-(n+1)}$$
$$= (-1)^{n}n!x^{-(n+1)}$$

donc l'égalité est vraie au rang n+1.

Par principe de récurrence simple, on peut conclure que :

$$\forall n \in \mathbb{N}^*, \ \forall x \in \mathbb{R}_+^*, \qquad f^{(n)}(x) = (-1)^{n-1} \frac{(n-1)!}{x^n} \qquad (\text{et } f^{(0)} = \ln)$$

Exercice 7

1. La fonction sh est dérivable sur \mathbb{R} ; elle est donc en particulier dérivable en 0. Par définition de la dérivabilité, on a :

$$sh'(0) = \lim_{x \to 0} \frac{sh(x) - sh(0)}{x - 0}$$

Or sh(0) = 0 et sh'(0) = ch(0) = 1 donc :

$$\lim_{x \to 0} \frac{\operatorname{sh}(x)}{x} = 1$$

2. Soit $x \in \mathbb{R}^*$. Alors $sh(x) \neq 0$ et:

$$\frac{\operatorname{sh}(2x)}{2\operatorname{sh}(x)} = \frac{\frac{e^{2x} - e^{-2x}}{2}}{2 \times \frac{e^{x} - e^{-x}}{2}} = \frac{e^{2x} - e^{-2x}}{2(e^{x} - e^{-x})}$$
$$= \frac{(e^{x} - e^{-x})(e^{x} + e^{-x})}{2(e^{x} - e^{-x})}$$
$$= \frac{e^{x} + e^{-x}}{2}$$

Ainsi:

$$\forall x \in \mathbb{R}^*, \qquad \operatorname{ch}(x) = \frac{\operatorname{sh}(2x)}{2\operatorname{sh}(x)}$$

3. Si x vaut 0, alors chaque terme dans le produit est égal à 1 (puisque ch(0) = 1). Pour tout $n \in \mathbb{N}$, on a alors $u_n = 1$.

Supposons maintenant que $x \in \mathbb{R}^*$ et commençons par calculer les premiers termes de la suite. On a $u_0 = \operatorname{ch}(x)$ puis (en utilisant la question 2. avec les nombres non nuls x et x/2):

$$u_1 = \operatorname{ch}(x) \operatorname{ch}\left(\frac{x}{2}\right) = \frac{\operatorname{sh}(2x)}{2\operatorname{sh}(x)} \times \frac{\operatorname{sh}(x)}{2\operatorname{sh}\left(\frac{x}{2}\right)} = \frac{\operatorname{sh}(2x)}{2^2\operatorname{sh}\left(\frac{x}{2}\right)}$$

On conjecture alors que :

$$\forall n \in \mathbb{N}, \qquad u_n = \frac{\operatorname{sh}(2x)}{2^{n+1}\operatorname{sh}(\frac{x}{2n})}$$

Démontrons ce résultat à l'aide d'un raisonnement par récurrence.

★ On sait que:

$$u_0 = \operatorname{ch}(x) = \frac{\operatorname{sh}(2x)}{2\operatorname{sh}(x)}$$

d'après la question 2. L'égalité est donc vraie au rang n = 0.

 \star Soit $n \in \mathbb{N}$. On suppose que :

$$u_n = \frac{\sinh(2x)}{2^{n+1} \sinh\left(\frac{x}{2^n}\right)}$$

Montrons que :

$$u_{n+1} = \frac{\operatorname{sh}(2x)}{2^{n+2}\operatorname{sh}\left(\frac{x}{2^{n+1}}\right)}$$

On a (en mettant le dernier terme de côté dans le produit définissant u_{n+1}):

$$u_{n+1} = \underbrace{\left(\prod_{k=0}^{n} \operatorname{ch}\left(\frac{x}{2^{k}}\right)\right)}_{=u_{n}} \times \operatorname{ch}\left(\frac{x}{2^{n+1}}\right)$$

Par hypothèse de récurrence, on a :

$$u_{n+1} = \frac{\operatorname{sh}(2x)}{2^{n+1}\operatorname{sh}\left(\frac{x}{2^n}\right)} \times \operatorname{ch}\left(\frac{x}{2^{n+1}}\right)$$

Comme $\frac{x}{2^{n+1}} \neq 0$ (puisque $x \neq 0$), la question 2. nous donne :

$$\operatorname{ch}\left(\frac{x}{2^{n+1}}\right) = \frac{\operatorname{sh}\left(2 \times \frac{x}{2^{n+1}}\right)}{2\operatorname{sh}\left(\frac{x}{2^{n+1}}\right)} = \frac{\operatorname{sh}\left(\frac{x}{2^{n}}\right)}{2\operatorname{sh}\left(\frac{x}{2^{n+1}}\right)}$$

Ainsi:

$$u_{n+1} = \frac{\operatorname{sh}(2x)}{2^{n+1}\operatorname{sh}(\frac{x}{2n})} \times \frac{\operatorname{sh}(\frac{x}{2^n})}{2\operatorname{sh}(\frac{x}{2n+1})} = \frac{\operatorname{sh}(2x)}{2^{n+2}\operatorname{sh}(\frac{x}{2n+1})}$$

L'égalité est donc vérifiée au rang n+1.

Par principe de récurrence simple, on peut conclure que :

$$\forall n \in \mathbb{N}, \qquad u_n = \frac{\operatorname{sh}(2x)}{2^{n+1}\operatorname{sh}\left(\frac{x}{2^n}\right)}$$

Il s'agit maintenant de trouver la limite de u_n quand n tend vers $+\infty$. Remarquons que :

$$\forall n \in \mathbb{N}, \qquad u_n = \frac{\sinh(2x)}{2x \times \frac{\sinh(\frac{x}{2^n})}{\frac{x}{2^n}}}$$

Or
$$\frac{x}{2^n} \xrightarrow[n \to +\infty]{} 0$$
 donc, d'après la question 1., on a $\frac{\operatorname{sh}\left(\frac{x}{2^n}\right)}{\frac{x}{2^n}} \xrightarrow[n \to +\infty]{} 1$. On en déduit donc que $u_n \xrightarrow[n \to +\infty]{} \frac{\operatorname{sh}(2x)}{2x}$. Finalement :

la suite
$$(u_n)_{n\in\mathbb{N}}$$
 converge de limite 1 si $x=0$, et de limite $\frac{\operatorname{sh}(2x)}{2x}$ si $x\neq 0$

Exercice 11 La fonction f est dérivable sur \mathbb{R}_+^* comme quotient de fonctions qui le sont et :

$$\forall x \in \mathbb{R}_+^*, \qquad f'(x) = \frac{\frac{a}{1+ax} \ln(1+bx) - \frac{b}{1+bx} \ln(1+ax)}{\ln(1+bx)^2}$$
$$= \frac{a(1+bx) \ln(1+bx) - b(1+ax) \ln(1+ax)}{(1+ax)(1+bx) \ln(1+bx)^2}$$

Considérons la fonction $g: x \longmapsto a(1+bx)\ln(1+bx) - b(1+ax)\ln(1+ax)$ sur \mathbb{R}_+^* . Celle-ci est dérivable sur \mathbb{R}_+^* et, pour tout $x \in \mathbb{R}_+^*$, on a :

$$g'(x) = a \left(b \ln(1 + bx) + (1 + bx) \times \frac{b}{1 + bx} \right) - b \left(a \ln(1 + ax) + (1 + ax) \times \frac{a}{1 + ax} \right)$$

$$= ab \ln(1 + bx) + ab - ab \ln(1 + ax) - ab$$

$$= ab \ln\left(\frac{1 + bx}{1 + ax}\right)$$

Comme $0 < a \le b$, on a $1 + bx \ge 1 + ax > 0$ pour tout $x \in \mathbb{R}_+^*$ et donc $\frac{1 + bx}{1 + ax} \ge 1$ puis $g'(x) \ge 0$. On en déduit le tableau de variations de g, ainsi que son signe sur \mathbb{R}_+^* :

x	0	+∞
g	0	
g(x)		+

Comme f' est du signe de g, la fonction f est croissante sur \mathbb{R}_{+}^{*} .

x	0	+∞
f'(x)		+
f		

On a $0 < a \le b$ donc $\frac{1}{b} \le \frac{1}{a}$. La croissance de f entraı̂ne que :

$$f\left(\frac{1}{b}\right) \leqslant f\left(\frac{1}{a}\right)$$
 i.e. $\frac{\ln\left(1+\frac{a}{b}\right)}{\ln(2)} \leqslant \frac{\ln(2)}{\ln\left(1+\frac{b}{a}\right)}$

En multipliant des deux côtés par $\ln(2)\ln\left(1+\frac{b}{a}\right)\geqslant 0$, on obtient bien :

$$\ln\left(1 + \frac{a}{b}\right) \ln\left(1 + \frac{b}{a}\right) \leqslant 2$$

Exercice 16

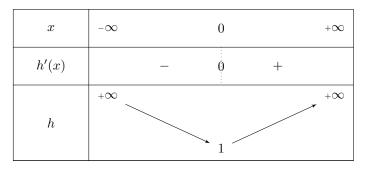
3

1. Il s'agit ici de donner un contre-exemple.

Considérons les fonctions $f: x \longmapsto e^x$ et $g: x \longmapsto -x$ sur \mathbb{R} qui sont respectivement croissante et décroissante sur \mathbb{R} . On pose h=f+g. La fonction h est dérivable sur \mathbb{R} (comme somme de fonctions qui le sont) et :

$$\forall x \in \mathbb{R}, \quad h'(x) = e^x - 1 \ge 0 \iff e^x \ge 1 \iff x \ge 0$$

par croissance stricte de la fonction ln sur \mathbb{R}_{+}^{*} .



La fonction h n'est ni croissante sur \mathbb{R} , ni décroissante sur \mathbb{R} . Ainsi :

la somme d'une fonction croissante et d'une fonction décroissante peut être ni croissante, ni décroissante

2. Soient f et g deux fonctions bornées sur un intervalle I. Il existe alors des nombres réels a,A,b et B tels que :

$$\forall x \in I, \quad a \leqslant f(x) \leqslant A \quad \text{et} \quad b \leqslant g(x) \leqslant B$$

En sommant les inégalités, on obtient :

$$\forall x \in I, \qquad a+b \leqslant \underbrace{f(x)+g(x)}_{=(f+g)(x)} \leqslant A+B$$

La fonction f + g est donc bornée sur I. Ainsi :

la somme de deux fonctions bornées est une fonction bornée

3. Soient f et g deux fonctions bornées sur un intervalle I. Il existe alors des nombres réels a,A,b et B tels que :

$$\forall x \in I, \quad a \leqslant f(x) \leqslant A \quad \text{et} \quad b \leqslant g(x) \leqslant B$$

et, quitte à diminuer les valeurs de a et b, on peut supposer que $a, b \in \mathbb{R}_-$. Soit $x \in I$. Les inégalités ci-dessus impliquent que :

$$0 \leqslant f(x) - a \leqslant A - a$$
 et $0 \leqslant g(x) - b \leqslant B - b$

Les nombres mis en jeu étant positifs, on obtient en multipliant membre à membre :

$$0 \leqslant (f(x) - a)(g(x) - b) \leqslant (A - a)(B - b)$$

i.e.:

$$0 \leqslant f(x)g(x) - bf(x) - ag(x) + ab \leqslant (A - a)(B - b)$$

soit encore:

$$bf(x) + ag(x) - ab \leqslant f(x)g(x) \leqslant (A - a)(B - b) + bf(x) + ag(x) - ab$$

Or $a\leqslant f(x)\leqslant A$ et $b\leqslant 0$ donc $Ab\leqslant bf(x)\leqslant ab.$ De même, $aB\leqslant ag(x)\leqslant ab.$ On en déduit donc que :

$$Ab + aB - ab \leqslant \underbrace{f(x)g(x)}_{=(fg)(x)} \leqslant (A - a)(B - b) + ab$$

La fonction fg est donc bornée sur I. Ainsi :

le produit de deux fonctions bornées est une fonction bornée

Exercice 18 On raisonne par l'absurde. Supposons qu'il existe $x \in \mathbb{R}$ tel que $f(x) \neq x$. Alors ou bien f(x) < x, ou bien f(x) > x. On traite les deux cas séparément.

* Premier cas : f(x) < xLa fonction f étant croissante sur \mathbb{R} , le fait que f(x) < x implique que $f(f(x)) \le x$

La fonction f etant croissante sur \mathbb{R} , le fait que f(x) < x implique que $f(f(x)) \le f(x)$, c'est-à-dire $(f \circ f)(x) \le f(x)$. Or $(f \circ f)(x) = x$ donc $x \le f(x)$. Ceci est en contradiction avec le fait que f(x) < x.

 \star Le deuxième cas se traite de manière analogue.

On peut donc conclure que :

$$\forall x \in \mathbb{R}, \qquad f(x) = x$$