Programme de Colle 16

Chapitre 16: Fonctions convexes

Dans tout ce qui suit, I désigne un intervalle non vide et non réduit à un point et $f: I \longrightarrow \mathbb{R}$ est une fonction.

- notion de fonction convexe/concave
- la fonction f est convexe sur I si et seulement si, pour tous x_1, x_2 de I tels que $x_1 \leqslant x_2$, la courbe représentative de $f|_{[x_1,x_2]}$ est en-dessous de la corde joignant les points de la courbe d'abscisses x_1 et x_2
- inégalité de Jensen : si f est convexe sur I alors pour tout $p \in \mathbb{N}^*$, pour tous $\lambda_1, \dots, \lambda_p \in \mathbb{R}_+$ tels que $\sum_{i=1}^p \lambda_i = 1$ et pour tous $x_1, \dots, x_p \in I$, on a l'inégalité

$$f\left(\sum_{i=1}^{p} \lambda_i x_i\right) \leqslant \sum_{i=1}^{p} \lambda_i f(x_i)$$

- convexité et croissance des pentes :
 - la fonction f est convexe sur I si et seulement pour tous $x, y, z \in I$ tels que x < y < z, on a

$$\frac{f(y) - f(x)}{y - x} \leqslant \frac{f(z) - f(x)}{z - x} \leqslant \frac{f(z) - f(y)}{z - y}$$

— la fonction f est convexe sur I si et seulement si pour tout $a \in I$ la fonction ci-dessous est croissante sur $I \setminus \{a\}$:

$$\tau_a: \left\{ \begin{array}{ccc} I \setminus \{a\} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \frac{f(x) - f(a)}{x - a} \end{array} \right.$$

- si f est dérivable sur l'intervalle I, alors f est convexe sur I si et seulement si f' est croissante sur I (si et seulement si $f'' \ge 0$ sur I si f est deux fois dérivable sur I)
- \bullet application : convexité de exp sur $\mathbb{R},$ concavité de ln sur \mathbb{R}_+^*
- position de la courbe d'une fonction convexe dérivable par rapport aux tangentes : si f est une fonction dérivable et convexe sur I, alors

$$\forall a, x \in I, \qquad f(x) \geqslant f'(a)(x-a) + f(a)$$

• application (inégalités de convexité classiques) :

$$(\forall x \in \mathbb{R}, e^x \geqslant 1+x),$$
 et $(\forall x \in]-1, +\infty[, \ln(1+x) \leqslant x)$

Chapitre 17 : Calcul matriciel et systèmes linéaires

- notions de matrices à n lignes et p colonnes (ensemble $\mathcal{M}_{n,p}(\mathbb{K})$), matrice nulle $0_{n,p}$, matrice colonne, matrice ligne, matrice carrée (notations $\mathcal{M}_n(\mathbb{K})$, 0_n), matrice identité I_n , matrice scalaire, matrice diagonale, triangulaire supérieure/inférieure (ensembles $\mathcal{D}_n(\mathbb{K})$, $\mathcal{T}_n^+(\mathbb{K})$ et $\mathcal{T}_n^-(\mathbb{K})$)
- somme de deux matrices de même taille, $(\mathcal{M}_{n,p}(\mathbb{K}),+)$ est un groupe abélien, multiplication d'une matrice par un scalaire, notion de combinaison linéaire de matrices de mêmes tailles

- matrice élémentaire $E_{i,j} \in \mathcal{M}_{n,p}(\mathbb{K})$, symbole de Kronecker et égalité $E_{i,k} = (\delta_{i,k}\delta_{j,\ell})_{\substack{1 \leq k \leq n \\ 1 \leq \ell \leq p}}$ tout élément de $\mathcal{M}_{n,p}(\mathbb{K})$ se décompose comme une somme de matrices élémentaires
- produit matriciel de deux matrices de tailles compatibles, associativité du produit matriciel, bilinéarité, la matrice identité est l'élément neutre
- si $A \in \mathcal{M}_{n,p}(\mathbb{K})$ et $X \in \mathcal{M}_{p,1}(\mathbb{K})$, alors $AX = \sum_{k=1}^{p} x_k C_k$ où C_1, \dots, C_k sont les colonnes de A (et x_1, \dots, x_k les composantes de X)
- transposée de $A \in \mathcal{M}_{n,p}(\mathbb{K})$, notation A^{T} , linéarité de la transposition, involution, transposée d'un produit
- matrice carrée symétrique, antisymétriques
- $(\mathcal{M}_n(\mathbb{K}), +, \times)$ est un anneau non commutatif et non intègre (si $n \ge 2$), formule du binôme de Newton, factorisation (de $A^p B^p$) lorsque les matrices mises en jeu commutent
- les ensembles $\mathcal{D}_n(\mathbb{K})$, $\mathcal{T}_n^+(\mathbb{K})$ et $\mathcal{T}_n^-(\mathbb{K})$ sont stables par produit
- notion de matrice (carrée) inversible, groupe linéaire $GL_n(\mathbb{K}) = \mathcal{M}_n(\mathbb{K})^{\times}$ (groupe des inversibles de l'anneau $\mathcal{M}_n(\mathbb{K})$), rappel des propriétés de l'inverse : unicité en cas d'existence, inversibilité et inverse de A^{-1} , AB, A^k ($k \in \mathbb{N}$) et A^T si A et B le sont
- déterminant d'une matrice de taille 2×2 , description de $GL_2(\mathbb{K})$
- système linéaire, système homogène associé, système compatible, ensemble des solutions du système
- dans le plan, l'ensemble des solutions d'un système à n équations et 2 inconnues correspond géométriquement aux points d'intersections de droites (analogie pour des plans dans l'espace)

Questions de cours

• Soit $f: I \longrightarrow \mathbb{R}$ une fonction convexe. Alors pour tous $x, y, z \in I$ tels que x < y < z, on a :

$$\frac{f(y) - f(x)}{y - x} \leqslant \frac{f(z) - f(x)}{z - x}$$

- On suppose que f est dérivable et convexe sur l'intervalle I. Montrer que la fonction f' est croissante sur I.
- \bullet Soit f une fonction convexe et dérivable sur I. Alors :

$$\forall a, x \in I, \qquad f(x) \geqslant f'(a)(x-a) + f(a)$$

• Le produit matriciel est associatif.

Remarques aux colleurs

• Merci d'être très exigeants sur la rédaction.