Nombres réels

(quelques corrigés)

1

Exercice 7

1. Soit $x \in \mathbb{R}$. Posons :

$$\mathscr{A}_x = \{ |x - a| \mid a \in A \}$$

Il est clair que \mathscr{A}_x est une partie de \mathbb{R} .

- ★ Cette partie est non vide puisque A est non vide (en effet, si a est un élément de A, alors |x a| appartient à \mathcal{A}_x).
- \star De plus, \mathscr{A}_x est minorée par 0 car :

$$\forall a \in A, \qquad |x - a| \geqslant 0$$

D'après la propriété de la borne inférieure, l'ensemble \mathscr{A}_x admet une borne inférieure. Ainsi :

pour tout $x \in A$, la quantité d(x, A) est bien définie

2. Soit $x \in A$. On remarque que (en choisissant $a = x \in A$), le nombre |x - x| = 0 appartient à \mathscr{A}_x (introduit à la question précédente). Par ailleurs, 0 minore \mathscr{A}_x (vu à la question précédente). Donc \mathscr{A}_x possède un minimum qui vaut 0. Ceci implique que $\inf(\mathscr{A}_x) = \min(\mathscr{A}_x) = 0$. Autrement dit, d(x, A) = 0. Finalement :

$$\forall x \in A, \qquad d(x, A) = 0$$

3. Soient $x, y \in \mathbb{R}$ et $a \in A$. Alors $d(x, A) \leq |x - a|$ (puisque $|x - a| \in \mathscr{A}_x$ et car d(x, A) est un minorant de \mathscr{A}_x). Ensuite, d'après l'inégalité triangulaire :

$$d(x, A) \le |(x - y) + (y - a)| \le |x - y| + |y - a|$$

On en déduit que :

$$d(x,A) - |x - y| \le |y - a|$$

On a donc montré que :

$$\forall a \in A, \quad d(x,A) - |x-y| \le |y-a|$$

Ainsi, d(x, A) - |x - y| minore l'ensemble \mathscr{A}_y . Comme $d(y, A) = \inf(\mathscr{A}_y)$ est le plus grand majorant de \mathscr{A}_y , on a l'inégalité :

$$d(x,A) - |x-y| \le d(y,A)$$
 i.e. $d(x,A) - d(y,A) \le |x-y|$

En échangeant les rôles de x et y, on a aussi $d(y,A)-d(x,A)\leqslant |y-x|=|x-y|$. On a donc bien :

$$\forall x, y \in \mathbb{R}, \qquad |d(x, A) - d(y, A)| \le |x - y|$$

Exercice 10

3. \star Commençons par justifier que A+B admet une borne supérieure. Tout d'abord, A+B est une partie de \mathbb{R} (puisque A et B sont des parties de \mathbb{R}). Par ailleurs, $A \neq \emptyset$ et $B \neq \emptyset$ donc il existe $a_0 \in A$ et $b_0 \in B$. Alors $a_0 + b_0 \in A + B$ et donc A+B est non vide.

Montrons maintenant que A+B est majorée. Soit $c \in A+B$. Il existe $(a,b) \in A \times B$ tel que c=a+b (par définition de A+B). Or $\sup(A)$ majore A et $a \in A$ donc $a \leq \sup(A)$. De la même manière, $b \leq \sup(B)$. Par conséquent, $c \leq \sup(A) + \sup(B)$. On a donc montré que :

$$\forall c \in A + B, \qquad c \leqslant \sup(A) + \sup(B)$$

Ainsi, l'ensemble A+B est majoré (par $\sup(A+B)$). La propriété de la borne supérieure assure donc l'existence de la borne supérieure de A+B. Par ailleurs, comme $\sup(A+B)$ est le plus petit des majorants de A+B, on a l'inégalité :

$$\sup(A+B) \leqslant \sup(A) + \sup(B)$$

 \star Il reste à montrer l'inégalité inverse, à savoir que :

$$\sup(A) + \sup(B) \leqslant \sup(A + B)$$

Pour tous $a \in A$ et $b \in B$, comme $a + b \in A + B$, on a $a + b \leq \sup(A + B)$. Fixons $b \in B$. Alors:

$$\forall a \in A, \quad a \leq \sup(A+B) - b$$

Ainsi, $\sup(A+B)-b$ est un majorant de A. Or $\sup(A)$ est le plus petit des majorants de A donc $\sup(A) \leq \sup(A+B)-b$. Ainsi :

$$\forall b \in B$$
, $\sup(A) \leqslant \sup(A+B) - b$,

ce que l'on peut réécrire :

$$\forall b \in B, \quad b \leq \sup(A+B) - \sup(A)$$

Donc $\sup(A+B)-\sup(A)$ majore B et comme $\sup(B)$ est le plus petit majorant de B, on a l'inégalité :

$$\sup(B) \leqslant \sup(A+B) - \sup(A) \qquad \text{c'est-\`a-dire} \qquad \sup(A) + \sup(B) \leqslant \sup(A+B)$$

Finalement:

$$\sup(A+B) = \sup(A) + \sup(B)$$

4. Soit $(x,y) \in [a,b]^2$. On a $0 < a \le x \le b$ et $0 < \frac{1}{b} \le \frac{1}{y} \le \frac{1}{a}$. En multipliant les inégalités (tous les nombres mis en jeu sont positifs), on obtient :

$$\frac{a}{b} \leqslant \frac{x}{y} \leqslant \frac{b}{a}$$

Ainsi:

$$\forall x \in A, \qquad \frac{a}{b} \leqslant x \leqslant \frac{b}{a}$$

Par ailleurs, comme $a,b\in[a,b]$, on a $\frac{a}{b},\frac{b}{a}\in A$. Donc $\frac{a}{b}\in A$ et ce nombre minore A. On en déduit que :

Aadmet un minimum, et donc une borne inférieure, qui valent $\min(A)=\inf(A)=\frac{a}{b}$

De même :

Aadmet un maximum, et donc une borne supérieure, qui valent $\max(A) = \sup(A) = \frac{b}{a}$

Exercice 14

- 2. On propose deux méthodes.
 - *** Méthode 1 :** en introduisant de la périodicité Soit $p \in \mathbb{N}^*$. Considérons la fonction :

$$f: \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \left| \frac{\lfloor px \rfloor}{p} \right| - \lfloor x \rfloor \end{array} \right.$$

On veut démontrer que f est la fonction nulle (sur \mathbb{R}).

La fonction f est 1-périodique car, pour tout nombre réel x, on a (puisque p est un entier) :

$$f(x+1) = \left\lfloor \frac{\lfloor px + p \rfloor}{p} \right\rfloor - \lfloor x + 1 \rfloor = \left\lfloor \frac{\lfloor px \rfloor + p}{p} \right\rfloor - \lfloor x \rfloor - 1$$
$$= \left\lfloor \frac{\lfloor px \rfloor}{p} + 1 \right\rfloor - \lfloor x \rfloor - 1$$
$$= \left\lfloor \frac{\lfloor px \rfloor}{p} \right\rfloor + 1 - \lfloor x \rfloor - 1$$
$$= f(x)$$

On en déduit que f est la fonction nulle si et seulement si :

$$\forall x \in [0, 1[, f(x) = 0]$$

Soit $x \in [0,1[$. On a $\lfloor x \rfloor = 0$. De plus, $0 \le px < p$ donc $0 \le \lfloor px \rfloor \le p-1$ (puisque $\lfloor px \rfloor$ est un entier) puis, en divisant par p > 0,

$$0 \leqslant \frac{\lfloor px \rfloor}{p} \leqslant 1 - \frac{1}{p} < 1$$

Ainsi, $\left\lfloor \frac{\lfloor px \rfloor}{p} \right\rfloor = 0$. On peut donc conclure que f(x) = 0, ce qu'il fallait démontrer.

* Méthode 2 : en utilisant les inégalités liées à la partie entière

Soient $x \in \mathbb{R}$ et $p \in \mathbb{N}^*$. Alors $\lfloor px \rfloor \leqslant px$ puis $\frac{\lfloor px \rfloor}{p} \leqslant x$ car p > 0. Par croissance de la fonction partie entière sur \mathbb{R} , on obtient l'inégalité :

$$\left\lfloor \frac{\lfloor px \rfloor}{p} \right\rfloor \leqslant \lfloor x \rfloor$$

Ensuite, on a $\lfloor x \rfloor \leqslant x$ donc, en multipliant par $p \geqslant 0$, il vient :

$$p\lfloor x\rfloor \leqslant px$$
 puis $\lfloor p\lfloor x\rfloor \rfloor \leqslant \lfloor px\rfloor$

par croissance de la fonction partie entière sur \mathbb{R} . Comme $p\lfloor x\rfloor$ est un entier relatif (puisque $p\in\mathbb{N}^*$ et $\lfloor x\rfloor\in\mathbb{Z}$), on a $\lfloor p\lfloor x\rfloor\rfloor=p\lfloor x\rfloor$ et la dernière inégalité se réécrit :

$$p|x| \leqslant |px|$$

En divisant par p > 0, il vient :

2

$$\lfloor x \rfloor \leqslant \frac{\lfloor px \rfloor}{p}$$

On utilise encore la croissance de la fonction partie entière sur $\mathbb R$:

$$\left\lfloor \lfloor x \rfloor \right\rfloor \leqslant \left\lfloor \frac{\lfloor px \rfloor}{p} \right\rfloor$$

Or $\lfloor \lfloor x \rfloor \rfloor = \lfloor x \rfloor$ car $\lfloor x \rfloor \in \mathbb{Z}$. On a donc l'inégalité :

$$\lfloor x \rfloor \leqslant \left\lfloor \frac{\lfloor px \rfloor}{p} \right\rfloor$$

On en déduit que $\left\lfloor \frac{\lfloor px \rfloor}{p} \right\rfloor = \lfloor x \rfloor$.

Finalement:

$$\forall p \in \mathbb{N}^*, \ \forall x \in \mathbb{R}, \qquad \left\lfloor \frac{\lfloor px \rfloor}{p} \right\rfloor = \lfloor x \rfloor$$

3. On peut (par exemple) remarquer que la fonction $f: \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \lfloor 2x \rfloor - 2 \lfloor x \rfloor \end{array} \right.$ est 1-périodique (il suffit de l'écrire). Ainsi, montrer que :

$$\forall x \in \mathbb{R}, \qquad f(x) \leqslant 1$$

revient à montrer que :

$$\forall x \in [0, 1[, f(x) \le 1]$$

Soit $x \in \mathbb{R}$. On distingue deux cas.

* Premier cas : $x \in \left[0, \frac{1}{2}\right[$

On a $\lfloor x \rfloor = 0$ et, comme $2x \in [0, 1[$, on a aussi $\lfloor 2x \rfloor = 0$. Ainsi, f(x) = 0.

* Deuxième cas : $x \in \left[\frac{1}{2}, 1\right[$

Ici, on a toujours $\lfloor x \rfloor = 0$ mais $1 \leq 2x < 1$ donc $\lfloor 2x \rfloor = 1$. Ainsi, $f(x) = 1 \leq 1$. Dans les deux cas, $f(x) \leq 1$. On peut donc conclure que :

$$\forall x \in \mathbb{R}, \qquad \lfloor 2x \rfloor - 2\lfloor x \rfloor \leqslant 1$$

Exercice 16

1. Soit $n \in \mathbb{N}^*$. Par définition de la partie entière, on a :

$$\left[\sqrt{n^4 + 2n^3 + 3n^2 + 1}\right] = n^2 + n$$

$$\iff n^2 + n \leqslant \sqrt{n^4 + 2n^3 + 3n^2 + 1} < n^2 + n + 1$$

$$\iff (n^2 + n)^2 \leqslant n^4 + 2n^3 + 3n^2 + 1 < (n^2 + n + 1)^2 \quad (1)$$

par stricte croissance de la fonction carrée sur \mathbb{R}_+ . Or :

$$(n^2 + n)^2 = n^4 + 2n^3 + n^2$$
 et $(n^2 + n + 1)^2 = n^4 + 2n^3 + 3n^2 + 2n + 1$

On remarque donc que les inégalités (1) sont satisfaites. Ainsi :

$$\forall n \in \mathbb{N}^*, \qquad \left\lfloor \sqrt{n^4 + 2n^3 + 3n^2 + 1} \right\rfloor = n^2 + n$$

2. Soit $n \in \mathbb{N}^*$. Alors (on utilise l'injectivité de la fonction racine carrée sur \mathbb{R}_+ à la deuxième équivalence) :

$$n^4 + 2n^3 + 3n^2 + 1 \text{ est le carr\'e d'un entier}$$

$$\iff \exists \, k \in \mathbb{N}, \, \, n^4 + 2n^3 + 3n^2 + 1 = k^2$$

$$\iff \exists \, k \in \mathbb{N}, \, \, \sqrt{n^4 + 2n^3 + 3n^2 + 1} = k$$

$$\iff \sqrt{n^4 + 2n^3 + 3n^2 + 1} \in \mathbb{N}$$

$$\iff \left\lfloor \sqrt{n^4 + 2n^3 + 3n^2 + 1} \right\rfloor = \sqrt{n^4 + 2n^3 + 3n^2 + 1}$$

$$\iff \sqrt{n^4 + 2n^3 + 3n^2 + 1} = n^2 + n$$

d'après la question 1. En utilisant l'injectivité de la fonction carrée sur \mathbb{R}_+ , il vient :

$$\sqrt{n^4 + 2n^3 + 3n^2 + 1} = n^2 + n \iff n^4 + 2n^3 + 3n^2 + 1 = (n^2 + n)^2$$
$$\iff n^4 + 2n^3 + 3n^2 + 1 = n^4 + 2n^3 + n^2$$
$$\iff n^2 = -\frac{1}{2}$$

Il n'existe pas d'entiers naturels non nuls n tels que $n^2=-\frac{1}{2}$ (en effet, $n^2\geqslant 0$ tandis que $-\frac{1}{2}<0$) donc :

il n'existe pas d'entier $n \in \mathbb{N}^*$ tels $n^4 + 2n^3 + 3n^2 + 1$ soit le carré d'un entier