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Introduction

In these notes, we are interested in the number of prime factors of two
sequences of integers and more precisely, we aim at giving an upper bound
of this number by using the weighted sieve. In the first example, we will
consider the integers p+2 when p is a prime number; as of today, the problem
of prime twins (”there is infinitely many primes p such that p+ 2 is prime”)
remains a mystery. Nevertheless, we have some ideas about the quantity of
prime twins: they are, in some sense, rare: Viggo Brun (1882-1978) proved
that the sum of the reciprocals of twin primes is convergent or finite which
is in contrast with the fact that the sum of the reciprocals over all prime
numbers is divergent.

Let {an}n≥1 be a sequence of (positive) integers. We look at the set
E(x) := {n ≤ x|ω(an) ≤ r0} (x positive real number) of integers an such
that an has at most r0 prime factors for some positive integer r0 (and n ≤ x).
The general problem is to determine an admissible value of r0 such that
#{n ≥ 2|ω(an) ≤ r0} = +∞. The best result in this direction for the
sequence {p + 2}p≥2 is due to J.-R. Chen (Sci. Sinica, 1973) with r0 =
2. For the sequence {n(n + 2)}n≥1 (which is our second application of
the weighted sieve) the best result is attributed to Rényi with the integer
r0 = 5. We will further prove a lower bound of the cardinality of E(x); the
boundedness of the weights in the weighted sieve will allow us to obtain such
a result. Moreover, we refine our results by showing that we can assume p+2
(respectively n(n+ 2)) to have no prime factor less than a small power of p
(respectively n), which we explicitly determine.
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Chapter 1

Sieve method/principle of
the proof

1.1 Method

We define first the object that we are going to study:

Definition 1. A sieve is by definition given by the datas (N ,P,{Ωp}p),
where:
(a) N is a set of integers,
(b) P is a set of prime numbers,
(c) for all p ∈ P, Ωp is a set of residue modulo p.

The set we want to study is

N0 = {n ∈ N|n mod p /∈ Ωp, ∀p ∈ P}.

In many cases, we take N to be {M < n ≤M +N} an interval of length
N , or {p ≤ N} the set of prime numbers less than N , or {f(n)|n ≤ N},
where f is a polynomial. For instance, in the case N = [1, N ], P = {p ≤√
N + 2} and Ωp = {−2, 0}, N0 is the set of prime twins in ]

√
N + 2, N ].

The fundamental problem is to obtain an estimation of |N0|. Let λ1 = 1
and λd (d ≥ 2) be arbitrary real numbers. The first form of the Selberg sieve,
called the simplest Selberg upper bound sieve method (see for instance [2]),
derives from the inequality∑

n∈N0

1 ≤
∑
n∈N

( ∑
ν|n

ν|P (y)

λν

)2
,

where P (y) =
∏
p∈P
p<y

p for some parameter y (for when n ∈ N0, ν = 1 is

the only divisor appearing on the right and it makes a contribution 1 since
λ1 = 1; while all the other terms on the right hand side, namely whose
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8 CHAPTER 1. SIEVE METHOD/PRINCIPLE OF THE PROOF

associated with n ∈ N0, (n, P (y)) > 1, are non-negative, the λν ’s being
real). Using this method, we can show for instance that:∑

p≤x
p+2 prime

1� x

log2 x
.

To do so, we take N = {n(n+ 2)|n ≤ x} and Ωp = {0,−2} for every prime
number p; then, N0 = {p ≤ x|p+ 2 prime} and:∑

p∈N0

1 ≤
∑
n≤x

( ∑
d|n(n+2)
d<z

λν

)2
+ z.

In this paper, we consider a stronger form of the Selberg sieve which allows
us to get better informations about the set N0. In order to do so, we look
at the sum

S =
∑
n∈N

(∑
d|n
d<y

ad

)(∑
ν|n
ν<z

λν

)2
where ad and λν are bounded real numbers, that vanish for large values of d
and ν, namely when d ≥ y and ν ≥ z, where y and z are parameters which
will be some powers of x. Here we will be able to get a lower bound for the
cardinality of a set ”close” of N0, say Ñ0; for instance, we will establish that

Ñ0 �
x

log2 x
,

where Ñ0 is in this case the set of primes not more than x such that p + 2
has at more four prime factors.

On expanding the sum S, a new set appears: for each positive integer
d, we define the set Nd = {n ∈ N|n ≡ 0 [d]} of elements of N divisible by
d. For sieve problems, we hope to find a multiplicative function f so that
1/f approximates the proportion of elements of N divisible by d. Then, we
define a remainder term Rd by:

|Nd| =
|N |
f(d)

+Rd.

Furthermore, we will use the multiplicative function f1 which is equal to the
convolution product f ? µ. The strongest form of the Selberg sieve, which
can be found in [1], is:

Theorem 1. We have

S = |N |S +O
( ∑
m<yz2

(∑
d|m
d<y

|ad|
)(∑

ν|m
ν<z

|λν |
)2|Rm|)
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where

S =
∑
m<z

∑
d<y

(m,d)=1

µ2(m)

f1(m)

ad
f(d)

( ∑
r|d

r<z/m

µ(r)ζrm

)2
, (1.1)

and

ζr = µ(r)f1(r)
∑
ν<z/r

λνr
f(νr)

. (1.2)

We note here that we can also express the λν in terms of the coefficients
ζr, thanks to the Möbius inversion formula:

λν = µ(ν)f(ν)
∑
r<z/ν

µ2(rν)

f1(rν)
ζrν .

In our applications, we will always take the same sequence of functions
(of the variable z) {ζr}r≥1: ζr = ζ1 when r is a squarefree integer not more
than z and ζr = 0 otherwise. We prove in Lemma 12 that in this case the
weights λν are bounded in absolute value by |λ1|.

Now, let us explain the principle of the proof of the estimation of |Ñ0|.
Firstly, we choose the sequence {ad}d≥1 as a1 = b, where b is a positive real
number, and ad = 0 either. In a second step, we take ap = −1 when p ∈ P
is less than y, and ad = 0 either. Our goal is to get:∑

n∈N

[
b−

∑
p|n

p|P (y)

1
](∑

ν|n
ν<z

λν

)2
∼ K(b, y, z) (1.3)

for some function K which tends to infinity when y and z goes to infinity;
the sizes of y and z (relative to the size of N ) are choosen at the end of
the proof in order to make the function K positive. We will conclude that
b−

∑
p|n

p|P (y)

1 > 0 i.e.
∑

p|n
p|P (y)

1 ≤ bbc for many integers n ∈ N .

1.2 Aims

In these notes, we give two applications of the Selberg sieve. The first of
them deals with the set of prime numbers and more precisely about the
number of prime factors of p+ 2.

Theorem 2 (Upper bound for ω(p+ 2)). There are infinitely many primes
p such that p+ 2 has at most four prime factors.

The other one is on the set of integers; in this case, we aim at giving an
upper bound of the number of prime factors of n(n+ 2).
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Theorem 3 (Upper bound for ω(n(n + 2))). There are infinitely many
positive integers n such that n(n+ 2) has at most six prime factors.

In fact, we will see that we can ”forget” the smaller prime factors. For
a positive real number a, we define the set Pa of integers n satisfying the
following property: ”the prime factors of n+ 2 are bigger than na”. Then,
we can state the next result:

Theorem 4. For a = 1/17, we have:

#{p ≤ x|ω(p+ 2) ≤ 4, p ∈ Pa} �
x

log2 x
.

Analogously, let Qa′ be the set of integers n satisfying the following
property: ”the prime factors of n(n + 2) are bigger than na

′
”. Hence, we

have:

Theorem 5. For a′ = 1/17, we have:

#{n ≤ x|ω(n(n+ 2)) ≤ 6, n ∈ Qa′} �
x

log2 x
.

In order to control the remainder term of S in Theorem 2, we need the
Bombieri-Vinogradov Theorem.

Theorem 6 (Bombieri-Vinogradov (1965)). For all A > 0, there is a con-
stant B = B(A) > 0 such that∑

q≤x1/2(log x)−B
max
y≤x

max
(a,q)=1

| π(y; q, a)− Li(y)

φ(q)
|�A x(log x)−A.

The proofs of these Theorems bear signifiant similarities; in particular,
they are both based on a series of four very similar technical lemmas. In
order to achieve these goals and to lighten the proofs, we shall establish in
the following chapter some essential estimates.



Chapter 2

Lemmas

We order into two sections the two applications that we were talking about.

2.1 On the sequence {p+ 2}p≥2

In our first application of the Selberg sieve, we consider the set of integers
N = {p+ 2|p ≤ x}, where x is a positive real number greater than 2. Here,
Nd = {p+ 2|p ≡ −2 [d], p ≤ x}. The Prime Number Theorem in arithmetic
progression gives us |Nd| ∼ Li(x)/φ(d) (when x goes to infinity), when d is
an odd integer. Moreover, N2 = {4} and N2δ = ∅ for every integer δ ≥ 2.
Then, the function f (defined on odds integers) in the sieve will be the Euler
totient function φ (if we want to define f on even integers, we ask f(2k) =∞
for all k ≥ 1).

About the function φ1

We have φ1(2) = ∞ and φ1(p) = p − 2 when p > 2. First and foremost, it
is required to know an estimation of the sums∑

m<z
m≡1[2]

µ2(m)

φ1(m)
,

called G(z). It is the object of the next lemma.

Lemma 1. There are two numerical constants α1 > 0 and α2 such that, for
every z > 0, we have:

G(z) = α1 log z + α2 +O(z−1/3).

Proof. We prove this first asymptotic result by using the method of convo-
lution. For it, we want to write the multiplicative function, say h, defined by
h(n) = 0 when n is an even integer and h(n) = µ2(n)/f1(n) when n is odd,

11



12 CHAPTER 2. LEMMAS

as a convolution product. Clearly, h is given by h(2) = 0, h(p) = 1/(p− 2)
when p is an odd prime number, and h(pν) = 0 when ν ≥ 2 and p is a prime
number. The Dirichlet series of h is defined by:

D(h, s) =
∑
n≥1

h(n)

ns
.

Since h is a multiplicative function, we can give the formal Euler product of
D(f, s):

D(h, s) =
∏
p≥2

(∑
k≥0

h(pk)

pks

)
=
∏
p≥3

(
1 +

1

(p− 2)ps

)
(2.1)

We want to compare this Euler product to a Zêta function in order to obtain
a new product with a lower abscissa of absolute convergence. We note that
the expansion (2.1) looks like ζ(s+1) as an Euler product. Then, we compare
D(h, s) with the function ζ(s+ 1); let us consider C(s) = D(h, s)/ζ(s+ 1).
We have:

C(s) =
(

1− 1

2s+1

)∏
p≥3

(
1 +

1

(p− 2)ps

)(
1− 1

ps+1

)
=
(

1− 1

2s+1

)∏
p≥3

(
1 +

2

(p− 2)ps+1
− 1

(p− 2)p2s+1

)
where the product is absolutely convergent for R(s) > −1/2. Let f and g
be the multiplicative functions whose Dirichlet series are respectively C and
ζ(s + 1) (in particular, f is defined by f(n) = 1/n, for every n ≥ 1). Now,
we have h = f ?g, and then, on expanding this convolution product, we get:

∑
m<z
m≡1[2]

µ2(m)

φ1(m)
=
∑
m<z

(f ? g)(m)

=
∑
n<z

∑
`m=n

g(m)

`
=
∑
m≥1

g(m)
∑
`<z/m

1

`
.

Now, we use the following estimate (see Lemma 10 in Appendix): for every
t > 0, ∑

`<t

1

`
= log t+ γ +O(t−1/3)

where γ is the Euler’s constant:

G(z) =
∑
m≥1

g(m)
(

log(z/m) + γ +O((z/m)−1/3)
)
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=
(∑
m≥1

g(m)
)

(log z + γ)−
∑
m≥1

g(m) logm+O
(
z−1/3

∑
m≥1
|g(m)|m1/3

)
.

The first sum
∑

m≥1 g(m) is a (positive) constant (since the Dirichlet series of

C is absolutely convergent for σ = 0 or because
∏
p≥3

(
1+1/p(p−2)

)
<∞),

say α1. Furthermore, we note that the second sum is also a constant:

−
∑
m≥1

g(m) logm = C ′(0),

say α2. Lastly we use the fact that the Dirichlet series of C is absolutely
convergent for R(s) > −1/2. Indeed,

∑
m≥1
|g(m)|m1/3 =

(
1 +

1

22/3

)∏
p≥3

(
1 +

2

(p− 2)p2/3
+

1

(p− 2)p1/3

)

which is finite. Then, we can rewrite the remainder term as O(z−1/3) and
the lemma is proved.

We keep the notations α1 and α2 of the previous lemma until the end
of these notes. This one is essential in our study; we establish now the
estimations which appear naturally in the proof of Theorem 2.

Lemma 2. We have:∑
m<z
m≡1[2]

µ2(m)

φ1(m)

1

1 + log(z/m)
� log log z

log z
G(z).

Proof. We prove this result by summation by parts; we start with the inte-
gration’s formula:

1

1 + log(z/m)
=

∫ m

1

du

u(1 + log(z/u))2
+

1

1 + log z

which gives us:

∑
m<z
m≡1[2]

µ2(m)

φ1(m)

1

1 + log(z/m)
=
∑
m<z
m≡1[2]

µ2(m)

φ1(m)

[ ∫ m

1

du

u(1 + log(z/u))2
+

1

1 + log z

]

=
∑
m<z
m≡1[2]

µ2(m)

φ1(m)

∫ m

1

du

u(1 + log(z/u))2
+

G(z)

1 + log z

=

∫ z

1
(G(z)−G(u))

du

u(1 + log(z/u))2
+

G(z)

1 + log z
.



14 CHAPTER 2. LEMMAS

On appealing to the first lemma, we infer that:

∑
m<z
m≡1[2]

µ2(m)

φ1(m)

1

1 + log(z/m)
=

∫ z

1
(α1 log(z/u) +O(u−1/3))

1

u(1 + log(z/u))2
du

+
G(z)

1 + log z
.

Now, we have:∫ z

1

log(z/u)

u(1 + log(z/u))2
du = −

∫ z

1

log t

(1 + log t)2
t

z

(−z)
t2

dt

=

∫ z

1

log t

t(1 + log t)2
dt

= log(1 + log z)− 1 +
1

1 + log z
� log log z.

Moreover,∫ z

1
O(u−1/3)

du

u(1 + log(z/u))2)
�
∫ z

1

du

u4/3(1 + log(z/u))2
≤
∫ +∞

1

du

u4/3
<∞,

and G(z)/(1 + log z) is negligible in front of (log log z/ log z)G(z). Finally,
since G(z) ∼ α1 log z when z goes to infinity, we conclude that:

∑
m<z
m≡1[2]

µ2(m)

φ1(m)

1

1 + log(z/m)
� log log z

� log log z

log z
G(z).

Lemma 3. We have:∑
m<z
m≡1[2]

µ2(m)

φ1(m)
log
( log z

1 + log(z/m)

)
∼ G(z)

when z goes to infinity.

Proof. As in the proof of Lemma 2, we use summation by parts; we start
with the following integration’s formula:

log
( log z

1 + log(z/m)

)
=

∫ m

1

du

u(1 + log(z/u))
+ log

( log z

1 + log z

)
.
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We have:∑
m<z
m≡1[2]

µ2(m)

φ1(m)
log
( log z

1 + log(z/m)

)

=

∫ z

1
(G(z)−G(u))

du

u(1 + log(z/u))
+G(z) log

( log z

1 + log z

)
=

∫ z

1
(α1 log(z/u) +O(u−1/3))

du

u(1 + log(z/u))
+G(z) log

( log z

1 + log z

)
by using Lemma 1. Then,∫ z

1

log(z/u)

u(1 + log(z/u)
du =

∫ z

1

log t

t(1 + log t)
dt

= log z − log(1 + log z) ∼ log z

when z goes to infinity. Moreover,∫ z

1
O(u−1/3)

du

u(1 + log(z/u))
�
∫ +∞

1

du

u4/3
<∞,

and

G(z) log
( log z

1 + log z

)
= O(

G(z)

log z
) = O(1).

Actually, we obtain:∑
m<z
m≡1[2]

µ2(m)

φ1(m)
log
( log z

1 + log(z/m)

)
∼ α1 log z ∼ G(z)

when z goes to infinity.

Lemma 4. We have:∑
m<z
m≡1[2]

µ2(m)

φ1(m)

∑
p|2m

z/m≤p<2z

1

p− 1
= ε(z)G(z)

where ε(z) tends to zero when z goes to infinity.

Proof. Firstly, we exchange the summation’s symbol:∑
m<z
m≡1[2]

µ2(m)

φ1(m)

∑
p|2m

z/m≤p<2z

1

p− 1
=
∑
p<2z

1

p− 1

∑
z/p≤m<z
p|2m
m≡1[2]

µ2(m)

φ1(m)
(2.2)

and we deal with the prime number p = 2 separately; the contribution is

G(z)−G(z/2)� 1.
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Now, for the odd prime numbers p, by putting m = p` in the interior sum
of the right hand side term of (2.2), we get (since φ1(p) = p− 2):∑

2<p<2z

1

p− 1

∑
z/p≤m<z

p|m
m≡1[2]

µ2(m)

φ1(m)
≤

∑
2<p<2z

G(z/p)−G(z/p2)

(p− 2)2

�
∑
p>2

log p

(p− 2)2
<∞

and the lemma follows readily.

2.2 On the sequence {n(n+ 2)}n≥1

In the second application, we consider the set of integers N = {n(n+ 2|n ≤
x}, where x is a positive real number. Here, |Nd| = {n(n + 2)|n(n + 2) ≡
0 [d], n ≤ x}. The equation n(n + 2) ≡ 0 mod p has two solutions when
p is an odd prime number, and only one solution when p = 2. Then Nd =
2ω2(d)bx/dc where the (additive) function w2 counts the number of odd prime
divisors of integers. So, the function f will be defined by f(d) = d/2ω2(d).

About the function f1

We have f1(2) = 1 and f1(p) = (p− 2)/2 when p > 2. Then,

f1(d) =

∏
2<p|d(p− 2)

2w2(d)
.

As in the last subsection, we need an estimation of the sums∑
m<z

µ2(m)

f1(m)
,

called G′(z). This is given by the following lemma.

Lemma 5. There are three numerical constants β1 > 0, β2 and β3 such
that, for every z > 0, we have:

G′(z) = β1 log2 z + β2 log z + β3 +O(z−1/3).

Proof. We denote by h the multiplicative function µ2/f1. We use the con-
volution method like in Lemma 1 but we will need here an estimate of the
sums

∑
n≤t d(n)/n (instead of estimate of the sums

∑
n≤t 1/n) where the

proof of this can be found in [3]: there is a numerical constant β such that
for every t > 0, we have:∑

n≤t

d(n)

n
=

log2 t

2
+ 2γ log t+ β +O(t−1/3). (2.3)



2.2. ON THE SEQUENCE {N(N + 2)}N≥1 17

The Dirichlet series (as a formal Euler product) of the multiplicative function
h is:

D(h, s) =
∏
p≥2

(∑
k≥0

g(pk)p−ks
)

=
(

1 +
1

2s

)∏
p≥3

(
1 +

2

ps(p− 2)

)
(2.4)

We note that the expansion (2.4) looks like the ζ(s+ 1)2’s expansion as an
Euler product. Then, we compare D(h, s) with the function ζ(s + 1)2; let
us consider the function C(s) = D(h, s)/ζ(s+ 1)2. We have:

C(s) =
(

1 +
1

2s

)(
1− 1

2s+1

)2∏
p≥3

(
1 +

2

ps(p− 2)

)(
1− 1

ps+1

)2
=
(

1 +
1

2s

)(
1− 1

2s+1

)2∏
p≥3

(
1 +

2

ps(p− 2)

)(
1− 2

ps+1
+

1

p2(s+1)

)
=
(

1 +
1

2s

)(
1− 1

2s+1

)2∏
p≥3

(
1 +

2

ps+1(p− 2)
+

1

p2(s+1)
− 4

p2s+1(p− 2)
+

2

p3s+2(p− 2)

)
where this product is absolutely convergent for <(s) > −1/2. But we know
that

ζ(s)2 =
∑
n≥1

d(n)

ns
.

As a result, the function ζ(s + 1) is the Dirichlet series associated to the
multiplicative function, say ψ, defined by ψ(n) = d(n)/n. Let g be the
multiplicative function whose Dirichlet series is C; now, we have h = ψ ? g
and on expanding this convolution product, we obtain:

G′(z) =
∑
n<z

(ψ ? g)(n) =
∑
m≥1

g(m)
∑
`<z/m

d(`)

`
.

By using estimation (2.3), we get:

G′(z) =
∑
m≥1

g(m)
[1

2
log2(z/m) + 2γ log(z/m) + β +O

(
(z/m)−1/3

)]
,

and thus:

G′(z) =
(∑
m≥1

g(m)
)(1

2
log2 z + 2γ log z + β

)
+
∑
m≥1

g(m)(−2γ logm+
1

2
log2m− (logm) log z)

+ O
(
z−1/3

∑
m≥1
|g(m)|m1/3

)
.
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The sums: ∑
m≥1

g(m),
∑
m≥1

g(m) logm = −C ′(0),

∑
m≥1

g(m) log2m = C ′′(0) and
∑
m≥1
|g(m)|m1/3

are finite since the Dirichlet series of C is convergent for <(s) > −1/2. In
particular, we can rewrite the remainder term as O(t−1/3). Finally, we define
β1 = 1/2C(0), β2 = 2γC(0) +C ′(0), and β3 = βC(0) + 1/2C ′′(0)− 2γC ′(0)
and the lemma is proved.

We keep the notations β1, β2 and β3 which appeared in Lemma 5 until the
end of these notes. This lemma allows us to obtain three needed estimates.

Lemma 6. We have:∑
m<z

µ2(m)

f1(m)

1

1 + log(z/m)
� log log z

log z

∑
m<z

µ2(m)

f1(m)
.

Proof. We prove this result by summation by parts by starting with the
integration’s formula:

1

1 + log(z/m)
=

∫ m

1

du

u(1 + log(z/u))2
+

1

1 + log z
,

as in Lemma 3. Then,

∑
m<z

µ2(m)

f1(m)

1

1 + log(z/m)
=

∫ z

1
(G′(z)−G′(u))

du

u(1 + log(z/u))2
+

G′(z)

1 + log z

(2.5)
and we call the integral term in the right hand side of (2.5) by I(z). Thanks
to Lemma 5, we have:

I(z) =

∫ z

1
(β1(log2 z − log2 u) + β2 log(z/u) +O(u−1/3))

du

u(1 + log(z/u))2
.

Now, we have ever seen in Lemma 3 that∫ z

1

log(z/u)

u(1 + log(z/u))2
� log log z

and ∫ z

1

du

u4/3(1 + log(z/u))2
� 1.
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Furthermore, ∫ z

1

du

u(1 + log(z/u))2
=

∫ z

1

dt

t(1 + log t)2

= 1− 1

1 + log z

= 1 +O(1/ log z).

Lastly,∫ z

1

log2 u

u(1 + log(z/u))2
du =

∫ z

1

log2(z/t)

t(1 + log t)2
dt

= log2 z

∫ z

1

dt

t(1 + log t)2
− 2 log z

∫ z

1

log t

t(1 + log t)2
dt

+

∫ z

1

log2 t

t(1 + log t)2
dt

Now, ∫ z

1

dt

t(1 + log t)2
= 1 +O(1/ log z), (2.6)

∫ z

1

log t

t(1 + log t)2
dt� log log z (2.7)

and ∫ z

1

log2 t

t(1 + log t)2
dt ≤ log z. (2.8)

Then, by putting the results (2.6), (2.7) and (2.8) together, we get:∫ z

1

log2 u

u(1 + log(z/u))2
du = log2 z +O((log z) log log z)

Finally, since G′(z)/(1 + log z) is negligible in front of (log log z/ log z)G′(z),
we conclude that∑

m<z

µ2(m)

f1(m)

1

1 + log(z/m)
= log2 z − log2 z +O((log z) log log z)

which is that we wanted since G′(z) ∼ β1 log2 z at infinity.

Lemma 7. We have:∑
m<z

µ2(m)

f1(m)
log
( log z

1 + log(z/m)

)
∼ 3

2
G′(z)

when z goes to infinity.
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Proof. As usual, we use summation by parts and we begin with the integra-
tion’s formula:

log
( log z

1 + log(z/m)

)
=

∫ m

1

du

u(1 + log(z/u))
+ log

( log z

1 + log z

)
.

Then,

∑
m<z

µ2(m)

f1(m)
log
( log z

1 + log(z/m)

)
=

∫ m

1
(G′(z)−G′(u))

du

u(1 + log(z/u))

+G′(z) log
( log z

1 + log z

)
. (2.9)

Let I(z) be the integral term which appears in the right hand side of (2.9).
We apply Lemma 5 and we have:

I(z) =

∫ z

1

[
β1(log2 z − log2 u) + β2 log(z/u) +O(u−1/3)

] du

u(1 + log(z/u))
.

We know that (see the proof of Lemma 3)∫ z

1

log(z/u)

u(1 + log(z/u))
du ∼ log z

when z goes to infinity, so this term is negligible in front of G′(z), and∫ z

1

du

u(1 + log(z/u))
= log(1 + log z). (2.10)

Moreover,∫ z

1

log2 u

u(1 + log(z/u))
du = (log z)2 log(1+log z)−2 log z(log z−log(1+log z))

+

∫ z

1

log2 t

t(1 + log t)
dt (2.11)

with∫ z

1

log2 t

t(1 + log t)
dt =

∫ z

1

log t+ 1

t
dt− 2

∫ z

1

log t

t(1 + log t)
dt−

∫ z

1

dt

t(1 + log t)

=
log2 z

2
+O(log z). (2.12)

Thus, by putting the previous estimates (2.10), (2.11) and (2.12) together,
we conclude that:

β−11

∑
m<z

µ2(m)

f1(m)
log
( log z

1 + log(z/m)

)
= (log z)2 log(1 + log z)− (log z)2 log(1 + log z)

+ (2− 1

2
) log2 z +O((log z) log log z),
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i.e. ∑
m<z

µ2(m)

f1(m)
log
( log z

1 + log(z/m)

)
∼ 3

2
β1 log2 z

when z goes to infinity, which conclude the proof of our lemma.

Lemma 8. We have:∑
m<z

µ2(m)

f1(m)

∑
z/m≤p<2z

p|2m

1

p
= ε(z)

∑
m<z

µ2(m)

f1(m)
,

where ε(z) tends to zero when z goes to infinity.

Proof. Firstly, we exchange the summation’s symbol:∑
m<z

µ2(m)

f1(m)

∑
z/m≤p<2z

p|2m

1

p
=
∑
p<2z

1

p

∑
z/p≤m<z
p|2m

µ2(m)

f1(m)
(2.13)

and we deal with the prime number p = 2 separately; the contribution is

G′(z)−G′(z/2)� log z.

Now, for the odd prime numbers p, by putting m = p` in the interior sum
of the right hand side of (2.13), we get, since f1(p) = (p− 2)/2,

∑
2<p<2z

1

p

∑
z/p≤m<z
p|2m

µ2(m)

f1(m)
≤ 2

∑
2<p<2z

G′(z/p)−G′(z/p2)
(p− 2)2

= (4β1 log z +O(1))
∑

2<p<2z

log p

(p− 2)2

� log z.

and the lemma follows readily since the size of G′(z) is log2 z.
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Chapter 3

Proof of Theorem 2

We recall that we want to prove that there are infinitely many primes p such
that p+ 2 has at most four prime factors. We do that in two steps: first we
control the remainder term and afterwards we deal with the main term.

3.1 Control of the remainder term

Here, N = {p+ 2|p ≤ x} and

S =
∑
p≤x

( ∑
d|p+2
d<y

ad

)( ∑
ν|p+2
ν<z

λν

)2

with bounded coefficients ad and λν that we are going to choose later. Then,
Theorem 1 gives us:

S = Li(x)S +O
( ∑
m<yz2

m≡1[2]

d3(m)|Rm|
)

where

S =
∑
m<z
m≡1[2]

∑
d<y
d≡1[2]
(m,d)=1

µ2(m)

φ1(m)

ad
φ(d)

[ ∑
r|d

r<z/m

µ(r)ζrm

]2
(3.1)

and

Rm = π(x;m,−2)− Li(x)

φ(m)
.

Proof. The expression of S is given by (1.1); when p is an odd prime number,
then all divisors of p + 2 are odds and the contribution of p = 2 in S is a
constant (it would be negligible in front of the remainder term) that’s why

23
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the summations in (3.1) are over odd integers. Hence, we can rewrite the
remainder term

O
( ∑
m<yz2

m≡1[2]

(∑
d|m

|ad|
)(∑

ν|m

|λν |
)2|Rm|)

as
O
( ∑
m<yz2

m≡1[2]

(∑
a|m

1
)3|Rm|)

what is that we have announced since
∑

a/m 1 = d(m).

Now, by using the Bombieri-Vinogradov Theorem, we shall prove that
this remainder term is OA

(
x(log x)−A

)
on using the fact that:

|Rm| ≤ Rm := max
u≤x
|π(u;m,−2)− Li(u)

φ(m)
|.

Then, by using the Cauchy-Schwarz inequality, we have:∑
m<yz2

m≡1[2]

d3(m)|Rm| ≤
( ∑
m<yz2

d6(m)

m

)1/2( ∑
m<yz2

m≡1[2]

m|Rm|2
)1/2

.

We admit temporarily that there is a positive integer k (equal to 26 for
instance according to Lemma 9) such that d6(m) ≤ dk(m). Hence,∑

m<yz2

m≡1[2]

d3(m)|Rm| ≤
( ∑
m<yz2

dk(m)

m

)1/2( ∑
m<yz2

m|Rm|2
)1/2

≤
( ∑
m<yz2

1

m

)k/2( ∑
m<yz2

m|Rm|2
)1/2

� (log yz2)32
( ∑
m<yz2

m|Rm|2
)1/2

for k = 64 which is admissible. Since |Rm| � x/φ(m) (indeed, π(u;m,−2) ≤
(x+ 2)/m and Li(x)� x/ log x) and m/φ(m)� logm (see Lemma 13), we
obtain: ∑

m<yz2

m≡1[2]

d3(m)|Rm| � (log yz2)32+1/2x1/2
( ∑
m<yz2

|Rm|
)1/2

� (log yz2)65/2x1/2
( ∑
m<yz2

Rm

)1/2
,
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because |Rm| ≤ Rm. Let A > 0 and A′ := 2A + 65. We use the Bombieri-
Vinogradov Theorem which gives us, if B = B(A′) > 0 is large enough and
yz2 < x(log x)−B:∑

m<yz2

d3(m)|Rm| � (log yz2)65/2x1/2
( ∑
m<x(log x−B)

Rm

)1/2
�A (log x)65/2x1/2x1/2(log x)65/2−A

= x(log x)−A.

Finally, we prove that:

∀A > 0, S = Li(x)S +OA(x(log x)−A). (3.2)

3.2 Main term

As we said in the introduction, we study the sum S with two sequences of
real numbers {ad}d≥1 which each of them gives a different term S. We recall
that we take ζr as more simple as we can: ζr = ζ1 if r < z is squarefree,
ζr = 0 either. First and foremost, let us consider the case a1 = 1 (in fact,
we will take a1 = 2 later) and ad = 0 when d > 1. Hence, we have:

S =
[ ∑

m<z
m≡1[2]

µ2(m)

φ1(m)

]
ζ21 .

Then, ∑
p≤x

( ∑
ν|p+2
ν<z

λν

)2
∼ G(z)ζ21

x

log x
(3.3)

when x goes to infinity (for any choice of y and z such that (3.2) is true for
A > 2). Now, we consider the sequence {ad}d≥1 such that ap′ = −1 when
2 < p′ < y is an odd prime number and ad = 0 otherwise. Then,

−S =
∑
m<z
m≡1[2]

∑
2<p<y
(m,p)=1

µ2(m)

φ1(m)

1

p− 1

[ ∑
r|d

r<z/m

µ(r)ζrm

]2

We easily see that ∑
r|p

µ(r)ζmr = ζ1

when p ≥ z/m, and ∑
r|p

µ(r)ζmr = 0
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otherwise. Hence, we can simplify the main term:

−S =
∑
m<z
m≡1[2]

µ2(m)

φ1(m)

[ ∑
z/m≤p<y
p 6| 2m

1

p− 1

]
ζ21

We want to give an estimation of −S. For this, we use the following ap-
proximation which is the object of Lemma 11: for every t > 0,

∑
p≤t

1

p− 1
= log(1 + log t) +A0 +O(

1

1 + log t
) (3.4)

(where A0 is a numerical constant which is not important for our subject)
and our lemmas in the chapter 2. Before applying them, we write:

−Sζ−21 = G(z)
∑
p<y

1

p− 1
−
∑
m<z
m≡1[2]

µ2(m)

φ1(m)

∑
p<z/m

1

p− 1

−
∑
m<z
m≡1[2]

µ2(m)

φ1(m)

∑
z/m≤p<y
p|2m

1

p− 1
.

The estimate (3.4) gives us:

−Sζ−21 = G(z)
(

log(1 + log y) +A0 +O
( 1

1 + log y

))
−
∑
m<z
m≡1[2]

µ2(m)

φ1(m)

(
log(1 + log(z/m)) +A0 +O(

1

1 + log(z/m)
)
)

−
∑
m<z
m≡1[2]

µ2(m)

φ1(m)

∑
z/m≤p<y
p|2m

1

p− 1

where we apply Lemma 2, Lemma 3 and Lemma 4:

−Sζ−21 =
{

log
log y

log z
+ 1 + ε(z)

}
G(z)

where ε(z) tends to zero when z goes to infinity. Moreover, Li(x) ∼ x/ log x
at infinity and ζ1 = λ1/G(z) (according to (1.2)), so we get:

∑
p≤x

( ∑
p′|p+2
p′<y

1
)( ∑

ν|p+2
ν<z

λν

)2
∼
{

1 + log
log y

log z

} x

G(z) log x
λ21 (3.5)



3.3. A LOWER BOUND 27

if yz2 < x1/2(log x)−B, so as to make the remainder term smaller than the
main term. Hence, the two expressions (3.3) and (3.5) of S give us:

∑
p≤x

[
2−

∑
p′|p+2
p′<y

1
]( ∑

ν|p+2
ν<z

λν

)2
∼
{

1− log
log y

log z

} x

G(z) log x
λ21

when x goes to infinity. Now, if we choose y = x1/4+ε0 and z = x1/8−ε0

(with ε0 small), we have yz2 < x1/2(log x)−B and

∑
p≤x

[
2−

∑
p′|p+2
p′<y

1
]( ∑

ν|p+2
ν<z

λν

)2
∼
{

1− log(
2 + 8ε0
1− 8ε0

)
} x

G(z) log x
λ21. (3.6)

We take ε0 > 0 small enough in order to make the term into embraces in
the right hand side of (3.6) positive. Since x/(G(z) log x) tends to infinity
when x goes to infinity, it follows that

2−
∑
p′|p+2
p′<y

1 > 0

for a lot of prime numbers p. But
∑

p′|p+2
p′<y

1 is exactly the number of prime

factors of p+ 2 smaller than y, so there is at most one prime factor of p+ 2
not more than y. Furthermore, with our choice of y, we see that there is at
most blog(x+ 2)/ log yc = b4 log(x+ 2)/(log x(1 + 4ε0))c = 3 prime factors
of p + 2 bigger than y. Eventually, p + 2 has at most four prime factors,
which conclude the proof of our first Theorem.

3.3 A lower bound

We proved in the previous section that

|Ñ0| = #{p ≤ x|ω(p+ 2) ≤ 4} → +∞

when x goes to infinity and we want to quantify this fact. We start with (3.6).
We note that the function of p: 2−

∑
p′|p+2
p′<y

1 is bounded by twice the char-

acteristic function of Ñ0; moreover the weights λν are bounded in absolute
value by one (with the choice λ1 = 1; see Lemma 12) and there is at most
four squarefree divisors of p + 2 which contribute in the sum (if ν is not
squarefree, then λν = 0 and if p′ and p′′ are the possible prime factors of
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p+ 2, the squarefree divisors of p+ 2 are 1, p′, p′′ and p′p′′). Then,∑
p≤x

[
2−

∑
p′|p+2
p′<y

1
]( ∑

ν|p+2
ν<z

λν

)2
≤ 2(1 + 1 + 1 + 1)2

∑
p≤x

ω(p+2)≤4

1

= 32
∑
p≤x

ω(p+2)≤4

1.

So, since G(z) ∼ α1 log z when z goes to infinity, we have:

#{p ≤ x|ω(p+ 2) ≤ 4} � x

log2 x
. (3.7)



Chapter 4

Proof of Theorem 3

We recall that we want to prove that there are infinitely many integers n
such that n(n+ 2) has at most six prime factors. In order to do so, we sieve
the set of integers of the form n(n+ 2), where n is an integer not more than
x. We control the remainder term first, and we deal with the main term
lastly as in the previous chapter.

4.1 Control of the remainder term

Here, N = {n(n+ 2)|n ≤ x} and

S =
∑
n≤x

( ∑
d|n(n+2)
d<y

ad

)( ∑
ν|n(n+2)
ν<z

λν

)2

with bounded coefficients ad and λν that we are going to choose later. Then
Theorem 1 gives us:

S = xS +O
( ∑
m<yz2

(∑
d|m
d<y

|ad|
)(∑

ν|m
ν<z

|λν |
)2|Rm|),

where

S =
∑
m<z

∑
d<y

(m,d)=1

µ2(m)

f1(m)

2w2(d)

d
ad

( ∑
r|d

r<z/m

µ(r)ζrm

)2
,

and

Rm = |Nm| −
2ω2(m)

m
x.

Under the same hypothesis that the real numbers ad and λν are bounded
by one, we can rewrite the remainder term which becomes, as in the proof

of the previous Theorem O
(∑

m<yz2 d
3(m)|Rm|

)
. But |Rm| = O(2ω2(m))

29
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and 2w2(m) ≤ d(m). We know that d(m) �ε m
ε for all ε > 0, according

to Lemma 14. So, we can rewrite the remainder term as Oε(
∑

m<yz2 m
4ε),

that is to say Oε((yz2)1+ε), for every ε > 0. Finally, we prove that:

∀ε > 0, S = xS +Oε((yz2)1+ε).

4.2 Main term

We follow the proof of Theorem 2 (with our sequence {ζr}r≥1: ζr = ζ1 if
r < z is squarefree, and ζr = 0 either). First, let a1 = 1 > 0 (in fact, we will
take a1 = b for some positive real number later) and ad = 0 when d > 1. In
this case,

S =
[∑
m<z

µ2(m)

f1(m)

]
ζ21 .

Then, ∑
n≤x

( ∑
ν|n(n+2)
ν<z

λν

)2
∼ G′(z)ζ21x (4.1)

when x goes to infinity (for any choice of y and z which make the remain-
der term smaller than the main term). In a second time, we consider the
sequence {ad}d≥1 such that ap = −1 when p < y is prime and ad = 0
otherwise. This time, we get:

−S = S1 + S2

where

S1 =
∑
m<z
m≡1[2]

µ2(m)

f1(m)

1

2

( ∑
r|2

r<z/m

µ(r)
)2
ζ21 ,

and

S2 =
∑
m<z

∑
2<p<y
(m,p)=1

µ2(m)

f1(m)

2

p

( ∑
r|p

r<z/m

µ(r)ζrm

)
.

Firstly, we have for S1:

S1 =
1

2

∑
z/2≤m<z
m≡1[2]

µ2(m)

f1(m)
ζ21
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which is negligible in front ofG′(z)ζ21 because the size of
∑

z/2≤m<z
m≡1 mod 2

µ2(m)/f1(m)

is log z. Then, we study the second term S2:

S2 =
∑
m<z

∑
2<p<y
(m,p)=1

µ2(m)

f1(m)

2

p

( ∑
r|p

r<z/m

µ(r)ζrm

)

= 2
∑
m<z

µ2(m)

f1(m)

[ ∑
z/m≤p<y
p 6|2m

1

p

]
ζ21 .

We want to give an estimate of S2. For this, we use the approximation (3.4)
and our lemmas in the chapter 2. Before applying them, we write:

S2ζ
−2
1

2
= G′(z)

∑
p<y

1

p
−
∑
m<z

µ2(m)

f1(m)

∑
p<z/m

1

p
−
∑
m<z

µ2(m)

f1(m)

∑
z/m≤p<y
p|2m

1

p

The estimate (3.4) gives us:

S2ζ
−2
1

2
=
∑
m<z

µ2(m)

f1(m)

(
log(1 + log y) +B0 +O

( 1

1 + log y

))
−
∑
m<z

µ2(m)

f1(m)

(
log(1 + log(z/m)) +B0 +O

( 1

1 + log(z/m)

))
−
∑
m<z

µ2(m)

f1(m)

∑
z/m≤p<y
p|2m

1

p

where B0 = A0−
∑

p≥2 1/(p(p−1)) is a constant. Now, we apply Lemma 6,
Lemma 7 and Lemma 8:

S2ζ
−2
1

2
=
{

log
log y

log z
+

3

2
+ ε(z)

}
G′(z)

where ε(z) tends to zero when z goes to infinity. Then, we have the second
estimation:∑

n≤x

( ∑
p|n(n+2)
p<y

1
)( ∑

ν|n(n+2)
ν<z

λν

)2
∼
{

3 + 2 log
log y

log z

} x

G′(z)
λ21 (4.2)

when x goes to infinity (for any choice of y and z which make the remainder
term smaller than the main term) since ζ1 = λ1/G

′(z) (according to (1.2)).
Using the two asymptotic results (4.1) and (4.2), we conclude that, if b is a
positive real number, we have (by substituting ”1” for ”b” in (4.1)):∑

n≤x

{
b−

∑
p|n(n+2)
p<y

1
}( ∑

ν|n(n+2)
ν<z

λν

)2
∼
{
b− 3− 2 log

log y

log z

} x

G′(z)
λ21
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at infinity. We choose the parameters y and z such that: y = x1/2+ε0

and z = x1/4−ε0 , where ε0 is a small positive real number, so as to make
the remainder term (recall that it is Oε((yz2)1+ε), for all ε > 0) negligible
in front of the main term. Moreover, we want to choose the positive real
number b as small as we can in order to give the smaller lower upper bound
for ω(n(n + 2)) with this method. But we see that 3 + 2 log(log y/ log z) =
3 + 2 log

(
(2 + 2ε0)/(1− 4ε0)

)
→ 3 + 2 log 2 ≈ 4.4 when ε0 goes to zero with

positive values. So, we can choose the real number b such that 4.5 < b < 5.
We take b = 4.99 which gives us the next estimate:

∑
n≤x

[
4.99−

∑
p|n(n+2)
p<y

1
]( ∑

ν|n(n+2)
ν<z

λν

)2

∼
{

1.99− 2 log
(2 + 2ε0

1− 4ε0

)} x

G′(z)
λ21, (4.3)

when x goes to infinity. Since the term on the right of (4.3) tends to infinity
when x goes to infinity (because of the positivity of 1.99−2 log((2+2ε0)/(1−
4ε0)) when ε0 is small) we conclude that:

4.99−
∑

p|n(n+2)
p<y

1 > 0,

i.e. ∑
p|n(n+2)
p<y

1 ≤ 4

for many integers n. Then, such an integer n(n + 2) has at most four
prime factors not more than y. Moreover, n has at most blog x/ log yc =
b2/(1 + 2ε0)c = 1 prime factor greater than y and n + 2 has at most
blog(x + 2)/ log yc = b2 log(x + 2)/(log x(1 + 2ε0))c=1 prime factor greater
than y. Eventually, there are infinitely many integers n with at most six
prime factors, i.e. ω(n(n+ 2)) ≤ 6, which establishes our Theorem.

4.3 A lower bound

We showed in the previous section that

|Ñ0| = #{n ≤ x|ω(n(n+ 2)) ≤ 6} → +∞

when x goes to infinity and we want to quantify this fact. We start with (4.3).
We note that the function of n: 4.99 −

∑
p|n(n+2)
p<y

1 is raised by five times

the characteristic function of N0; moreover, the weights λν are bounded in
absolute value by one (with the choice λν = 1; see Lemma 12) and there is
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at most 24 squarefree divisors of n ∈ Ñ0 (the divisors ν of n which are not
squarefree give a contribution zero in the sum: λν = 0). Then, the square
of the sum

∑
ν|n(n+2)
ν<z

λν is uniformly bounded by 28 when n ∈ Ñ0. So,

∑
n≤x

[
4.99−

∑
p|n(n+2)
p<y

1
]( ∑

ν|n(n+2)
ν<z

λν

)2
≤ 1280

∑
n≤x

ω(n(n+2))≤6

1.

Consequently, since G′(z) ∼ β1 log2 z, we have:

#{n ≤ x|ω(n(n+ 2)) ≤ 6} � x

log2 x
. (4.4)
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Chapter 5

Without small prime factors

5.1 On the sequence {p+ 2}p≥2

In this section, we consider prime numbers p such that all prime factors p′

of p + 2 are greater than pa, where a > 0 is small. We want to determine
such an admissible value of a: there should be infinitely many primes p with
at most four prime factors of p+ 2 greater than pa and no prime factors less
than pa (i.e. with our notations: ω(p+ 2) ≤ 4 and p ∈ Pa). More precisely,
we want to prove that:

Theorem 7. For a = 1/17, we have:∑
p≤x
p∈Pa

ω(p+2)≤4

1� x

log2 x
.

Proof. We follow the proof of Theorem 2. Firstly, we keep the same values of
ad: a1 = 2 and ad = 0 when d > 1 which gives the estimation (3.3). Lastly,
we choose the sequence {ad}d≥1 such that ap′ = −2 when 2 < p′ < xa and
ap′ = −1 when xa ≤ p′ < y. Then,

−S =
∑
m<z
m≡1[2]

∑
2<p<y
(m,p)=1

µ2(m)

φ1(m)

ap
p− 1

[ ∑
r|d

r<z/m

µ(r)ζrm

]2
= S1 + S2,

with

S1 =
∑
m<z
m≡1[2]

µ2(m)

φ1(m)

( ∑
z/m≤p<y
p 6|2m

1

p− 1

)
ζ21

and

S2 =
∑
m<z
m≡1[2]

µ2(m)

φ1(m)

( ∑
z/m≤p<xa

p 6|2m

1

p− 1

)
ζ21 ,
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where we apply again Lemma 2, Lemma 3 and Lemma 4 which give us (with
this second choice of {ad}d≥1):

−
∑
p≤x

( ∑
d|p+2
d<y

ad

)( ∑
ν|p+2
ν<z

λν

)2
∼
{

2 + log
log y

log z
+ log(a

log x

log z
)
} x

G(z) log x
λ21

(5.1)
when x goes to infinity (morally, we have added (3.5) to (3.5) with y = xa).
Thus, the estimates (3.3) and (5.1) give us:∑
p≤x

[
2−

∑
p′|p+2

2<p′<xa

2−
∑
p′|p+2
xa≤p′<y

1
]( ∑

ν|p+2
ν<z

λν

)2
∼
{
−log

log y

log z
−log(a

log x

log z
)
} x

G(z) log x
λ21,

at infinity. We take back the parameters y and z of the proof of Theorem 2,
i.e. y = x1/4+ε0 and z = x1/8−ε0 (ε0 > 0 small), which gives us:∑
p≤x

[
2−

∑
p′|p+2

2<p′<xa

2−
∑
p′|p+2
xa≤p′<y

1
]( ∑

ν|p+2
ν<z

λν

)2
∼ log

( (1− 8ε0)
2

8a(2 + 8ε0)

) x

G(z) log x
λ21.

(5.2)
Here, we take the constant a in order to make the logarithm in the right
hand side of (5.2) positive, which is equivalent to make the function of a in
the logarithm greater than 1. In short, we want to determine a such that
a < (1−8ε0)

2/(16(1 + 4ε0)) where this function (of the variable ε0) decrease
on ]0, 1/8[ with a limit in zero equals to 1/16 = 0.0625. So, we can choose
for a every value in ]0, 1/16[; for instance, a = 1/17 is admissible. Now,
the right hand side of (5.2) tends to infinity when x goes to infinity for this
value of a. Then, we conclude that

2−
∑
p′|p+2

2<p′<xa

2−
∑
p′|p+2
xa≤p′<y

1 > 0

for a lot of primes p. This inequality implies that the sum over prime factors
of p+ 2 not more than xa is zero. Finally, a prime number p which satisfies
the previous inequality is such that p+ 2 has no prime factor less than xa,
one prime factor p′ in [xa, y[ (or no prime factor in this interval) and at most
three prime factors bigger than y. By the same arguments as in the proof
of (3.7), we conclude that: ∑

p≤x
p∈P1/17

ω(p+2)≤4

1� x

log2 x
.

In particular, there is infinitely many prime numbers p such that p+ 2 has
at most four prime factors not more than p1/17 and no prime factors lower
than p1/17.
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5.2 On the sequence {n(n+ 2)}n≥1

Here, we consider integers n such that all prime factors of n(n + 2) are
greater than na

′
, where a′ > 0 is small. We want to determine such an

admissible value of a′: there should be infinitely many integers n such that
n(n+ 2) has at most six prime factors greater than na

′
and no prime factors

less than na
′
(i.e. with our notations: ω(n(n + 2)) ≤ 6 and n ∈ Qa′). More

precisely, we have:

Theorem 8. For a′ = 1/17, we have:∑
n≤x
n∈Qa′

ω(n(n+2))≤6

1� x

log2 x
.

Proof. We follow the proof of Theorem 3. We keep the coefficients a1 = b
and ad = 0 when d > 1 at the begining and we get the estimate (4.1). Next,
let ap = −b when p < xa and ap = −1 when xa ≤ p < y (for some positive
real number b). Then, we have in this second case:

−S =
∑
m<z

∑
p<y

(m,p)=1

µ2(m)

f1(m)

ap
p

2ω2(p)
( ∑

r|p
r<z/m

µ(r)ζrm

)

= S1 + S2 + ε(z)G′(z)ζ21

where
S1ζ

−2
1

2
= (b− 1)

∑
m<z

µ2(m)

f1(m)

∑
z/m≤p<xa

p 6|2m

1

p
,

S2ζ
−2
1

2
=
∑
m<z

µ2(m)

f1(m)

∑
z/m≤p<y
p 6|2m

1

p

and ε(z) tends to zero when z goes to infinity. We apply Lemma 6, Lemma 7
and Lemma 8 (morally, we add (b− 1) times the estimate (4.2) for to (4.2)
with y = xa) which give us (for this second choice of {ad}d≥1):

−
∑
n≤x

( ∑
d|n(n+2)
d<y

ad

)( ∑
ν|n(n+2)
ν<z

λν

)2

∼
{

3(b− 1) + 2(b− 1) log
(
a

log x

log z

)
+ 3 + 2 log

log y

log z

} x

G′(z)
λ21 (5.3)
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at infinity. Thus, with the two choices of the sequence {ad}d≥1, we have
(accorrding to (4.1) and (5.3)):

∑
n≤x

[
b−

∑
p|n(n+2)
p<xa

b−
∑

p|n(n+2)
xa≤p<y

1
]( ∑

ν|n(n+2)
ν<z

λν

)2

∼
{
− 2b+ 2(b− 1) log

(1− 4ε0
4a

))
+ 2 log

(1− 4ε0
2 + 4ε0

)} x

G′(z)
λ21 (5.4)

where we have kept the same expressions of our parameters y = x1/2+ε0 and
z = x1/4−ε0 . We want to make the term into embraces positive (we take b
in ]4, 5[ as in the proof of Theorem 3). So, we want to have:

log(4a) < − b

b− 1
+ log(1− 4ε0) +

1

b− 1
log
(1− 4ε0

2 + 4ε0

)
,

i.e.

a <
1

4e
(1− 4ε0)

(1− 4ε0
2 + 4ε0

)1/(b−1)
e−1/(b−1)

where the term on the right hand side is a decreasing function of ε0 (for a
given b ∈]4, 5[) which tends to e−1−1/(b−1)2−2−1/(b−1), say f(b). We see that
f is an increasing function of b and we find that a′ = 1/17 is admissible (we
look at b near to 5). Now, the right hand side of (5.4) tends to infinity when
x goes to infinity. Then, we conclude that

b−
∑

p|n(n+2)
p<xa

b−
∑

p|n(n+2)
xa≤p<y

1 > 0

for many integers n. This inequality implies that the sum over prime factors
of n(n+2) not more than xa is zero. Finally, an integer n which satisfies the
previous inequality is such that n(n + 2) has no prime factor less than xa,
at most four prime factors in [xa, y[ and at most two prime factors bigger
than y. By the same argument as in the proof of (4.4), we conclude that:∑

n≤x
n∈Q1/17

ω(n(n+2))≤6

1� x

log2 x
.

In particular, there are infinitely many integers n such that n(n+ 2) has at
most six prime factors bigger than n1/17 and no prime factors lower than
n1/17.
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Appendix

6.1 A combinatorial result

In the proof of Theorem 2, we have admitted the following fact.

Lemma 9. There is an integer k (equal to 26 for instance) such that d6(m) ≤
dk(m), for every integer m ≥ 1.

Proof. It suffices to show the result on the power of prime numbers because
the function dk is multiplicative (for this, we note that when (m,n) = 1
then all divisor c of mn take the form bc, where a is a divisor of m, b is a
divisor of n and this decomposition is unique). Then, we want to find an
integer k such that d6(pr) ≤ dk(p

r), that is to say (r + 1)6 ≤ dk(p
r), for

every prime number p and every integer r ≥ 1. But dk(p
r) is the coefficient

of zr in the series’ expansion of 1/(1 − z)k. The derivation rule gives us
dk(p

r) =
(
r+k−1
k−1

)
. The case r = 1 gives a good idea of the candidate for k.

Indeed, d6(p) = 26 and dk(p) = k so k ≥ 26 necessarily and we prove that
k = 26 is admitted. For this, we can say that (r + 1)6 ≤ (r + 1) . . . (r + 6)
and we see that (26 − 1)! ≤ (r + 26 − 1) . . . (r + 7) when r ≥ 3. Finally, we

check that (r + 1)6 ≤
(
r+26−1
26−1

)
for r = 2 and the lemma follows readily.

6.2 Some useful estimates

We give below two estimates that we used in each of the proofs of the
Theorems and that can be found in [3].

Lemma 10. For every t > 0,

∑
n<t

1

n
= log t+ γ +O(t−1/3).

39
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Proof. Let t be a real number greater than 1. We study the sums
∑

n≤t 1/n
since 0 ≤

∑
n≤t 1/n−

∑
n<t 1/n ≤ 1/n. Then,

∑
n≤t

1

n
=
∑
n≤t

(∫ t

n

du

u2
+

1

t

)
=

∫ t

1

[∑
n≤u

1
]du
u2

+ 1− {t}
t

=

∫ t

1
(u− {u})du

u2
+ 1− {t}

t

= log t+ γ +O(1/t) = log t+ γ +O(t−1/3)

since γ = 1−
∫∞
1 {u}du/u

2 and
∫∞
t {u}du/u

2 � 1/t. When t ≤ 1, the result

follows to the fact that t1/3 log t goes to 0 when t goes to 0.

Lemma 11. For every t > 0,∑
p≤t

1

p− 1
= log(1 + log t) +A0 +O(

1

1 + log t
)

where A0 is a numerical constant.

Proof. We use Mertens Theorem which says that, for every u ≥ 2,∑
p≤u

log p

p
= log u+O(1).

Let t > 0. If we denote by R the bounded function defined by:
R(u) =

∑
p≤u log p/p− log u, we have:

∑
p≤t

1

p
=
∑
p≤t

log p

p

1

log p
=
∑
p≤t

log p

p

(∫ t

p

du

u(log u)2
+

1

log t

)
=
∑
p≤t

log p

p

∫ t

p

du

u(log u)2
+

1

log t

∑
p≤t

log p

p

=

∫ t

2

[∑
p≤u

log p

p

] du

u(log u)2
+

1

log t

∑
p≤t

log p

p

=

∫ t

2

du

u log u
+

∫ t

2

R(u)

u(log u)2
du+ 1 +

R(t)

log t

= log log t+ c+O(
1

1 + log t
)

because
∫∞
t R(u)/(u log2 u)du = O(1/ log t) and where

c =

∫ +∞

2
R(u)

du

u(log u)2
+ 1− log log 2 ≈ 0, 26.
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We end the proof by writing:∑
p≤t

1

p− 1
=
∑
p≤t

1

p
+
∑
p≥2

1

p(p− 1)
+O(

1

1 + log t
)

which gives us the lemma with the constant A0 = c+
∑

p≥2
1

p(p−1) .

6.3 On the weights λν

In the proofs of our Theorems, we used the following result:

Lemma 12. In the case where ζr = ζ1 when r < z is squarefree and ζr = 0
otherwise, the weights λν are bounded in absolute value by |λ1|.
Proof. We recall that

λν = µ(ν)f(ν)
∑
r<z/ν

µ2(rν)

f1(rν)
ζrν .

Let ν be a squarefree integer. With the hypothesis, we get:

λν = µ(ν)f(ν)
[ ∑
r<z/ν

µ2(rν)

f1(rν)

]
ζ1

=
µ(ν)f(ν)

f1(ν)

Gν(z)

G1(z)
λ1

since ζ1 = λ1/G1(z) and where

Gt(z) =
∑
r<z/t
(r,t)=1

µ2(r)

f1(r)

Now,

G1(z) =
∑
δ|ν

∑
s<z

(s,ν)=δ

µ2(s)

f1(s)
=
∑
δ|ν

µ2(δ)

f1(δ)

∑
r<z/ν
(r,ν)=1

µ2(r)

f1(r)

≥
[∑
δ|ν

µ2(δ)

f1(δ)

]
Gν(z)

since δ ≤ ν. Since the function µ2/f1 is multiplicative, we have:∑
δ|ν

µ2(δ)

f1(δ)
=
∏
p|ν

(1 +
1

f1(p)
) =

f(ν)

f1(ν)
.

Eventually

|λν | ≤ |λ1|

and the lemma follows readily.
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6.4 On the function φ

In order to control the remainder term in the proof of Theorem 2, we claim
that m/φ(m)� logm. In fact,

Lemma 13. We have:

m/φ(m)� log logm.

Proof. We expand the multiplicative function Id /φ as a product:

m

φ(m)
=
∏
p|m

1

1− 1/p
.

Let P be a parameter that we will choose later. We get:

log(
m

φ(m)
) = −

∑
p|m

log(1− 1

p
) =

∑
p|m

1

p
+O(

∑
p|m

1

p
)

=
∑
p|m
p≤P

1

p
+
∑
p|m
p>P

1

p
+O(1)

≤ log logP +
logm

P logP
+O(1)

according to Lemma 11. The choice P = logm gives us:

log(
m

φ(m)
) ≤ log log logm+O(1)

and we easily conclude.

6.5 On the function d

In the proof of Theorem 3 we use the following estimation of the function d.

Lemma 14. For every ε > 0, d(n)�ε n
ε.

Proof. Let n be an integer. It is well-known that d(n) =
∏
pα‖n(α + 1).

Thus, for a parameter P that we will choose later, we have:

log d(n) =
∑
pα‖n
p≤P

log(α+ 1) +
∑
pα‖n
p>P

log(α+ 1).

Now, ∑
pα‖n
p>P

log(α+ 1) ≤
∑
pα‖n
p>P

α ≤ log n

logP
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and ∑
pα‖n
p≤P

log(α+ 1) ≤ log
(
1 +

log n

log 2

)∑
p≤P

1� log log n
P

logP
.

We take P = log n/ log logn and we get:

log d(n) ≤ C log n

log log n

for some constant C > 0. Finally,

d(n) ≤ nC/ log logn

and the lemma follows readily.
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Notations

Notations used troughout these notes are the following:

−→ The use of the letters p and p′ always refer to prime numbers.

−→ [m,n] stands for the lcm and (m,n) for the gcd of n and m.

−→ |A| or #A stands for the cardinality of the set A.

−→ ω(d) is the number of prime factors of d, counted without multiplic-
ity.

−→ ω2(d) is the number of odd prime factors of d, counted without multi-
plicity.

−→ φ(d) is the Euler totient function.

−→ µ(d) is the Möbius function, that is 0 when d is divisible by a square
> 1 and otherwise (−1)r, where r is the number of prime factors of d.

−→ d(n) is the number of divisors of n and dk(n) is the number of rep-
resentations of n as a1 . . . ak = n where a1, . . . , ak are positive integers.

−→ The notation of Vinogradov f � g means that |f(t)| ≤ cg(t) for some
constant c independant of the variable t.

−→ The notation f = OA(g) means that there exists a constant B such
that |f | ≤ Bg but that this constant may depend on A.

−→ The notation f �A g means that f � g with a constant c which
may depend on A.

−→ The notation f?g denotes the arithmetical convolution of f and g, that is
to say the function h on positive integers such that h(d) =

∑
q|d f(q)g(d/q).
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−→ The integer part of the real number x is defined by bxc.

−→ The notation a ≡ b[q] means that q divides a − b, for any three in-
tegers a, b and q.

−→ The logarithmic integral function Li is defined by Li(x) =
∫ x
0 dt/ log t

and satisfies Li(x)� x/ log x.
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