LOGIQUE ET RAISONNEMENT

Exercice 1 Vrai ou faux? Justifier.

- 1. $\forall x \in \mathbb{R}, \ x > 2 \implies x \geqslant 3$;
- 2. $\forall x, y \in \mathbb{R}^*, \ x < y \implies \frac{1}{x} > \frac{1}{y};$
- 3. $\exists x \in \mathbb{R}_+, x < \sqrt{x};$
- 4. $\forall x, x' \in \mathbb{R} \setminus \{1\}, \ x \neq x' \implies \frac{x+1}{x-1} \neq \frac{x'+1}{x'-1};$
- 5. $\forall N \in \mathbb{N}^*, \ \exists n \in \mathbb{N}^*, \ \sum_{k=1}^n k \geqslant N;$
- 6. $\forall x \in \mathbb{R}, \ x^2 + x \geqslant 0 \implies x \geqslant 0$

Exercice 2 Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction. Écrire avec des quantificateurs les propositions suivantes :

- 1. f est périodique;
- 2. f est majorée;
- 3. f est constante;
- 4. f est croissante;
- 5. f possède un minimum;
- $6.\ f$ prend des valeurs aussi grandes que l'on veut;
- 7. f s'annule au plus une fois.

Exercice 3 Soient I un intervalle non vide de \mathbb{R} et $f:I\longrightarrow\mathbb{R}$ une fonction. Exprimer les négation des assertions suivantes :

- 1. $\forall x \in I, \ f(x) \neq 0$;
- 2. $\forall y \in \mathbb{R}, \ \exists x \in I, \ f(x) = y;$
- 3. $\exists M \in \mathbb{R}, \ \forall x \in I, \ |f(x)| \leq M;$
- 4. $\forall x, y \in I, \ x \leqslant y \Longrightarrow f(x) \leqslant f(y)$;
- 5. $\forall x, y \in I, f(x) = f(y) \Longrightarrow x = y$;
- 6. $\forall x \in I, \ f(x) > 0 \Longrightarrow x \leqslant 0.$

Exercice 4 (raisonnement direct) Démontrer que :

1.
$$\forall x, y \in \mathbb{R}, \ xy \leqslant \frac{x^2 + y^2}{2};$$

- 2. $\forall x \in [0,1], \ \forall n \in \mathbb{N}, \ 0 \le x^n x^{n+1} \le 1;$
- 3. $\forall n \in \mathbb{N}^*, \ \sqrt{n+1} \sqrt{n} < \frac{1}{2\sqrt{n}} < \sqrt{n} \sqrt{n-1};$
- 4. $\forall a, b \in \mathbb{R}_+, \ \sqrt{a+b} \leqslant \sqrt{a} + \sqrt{b};$
- 5. $\forall a, b \in \mathbb{R}_+^*, (a+b)\left(\frac{1}{a} + \frac{1}{b}\right) \geqslant 4.$

1 Disjonction de cas

Exercice 5 Montrer que, pour tout entier relatif n, le nombre $n^4 - n + 2022$ est un entier pair.

Exercice 6 Montrer que :

$$\forall x \in \mathbb{R}, \qquad x^2 - x + 1 \geqslant |x - 1|$$

Exercice 7 Montrer que :

$$\forall x, y \in \mathbb{R}, \quad \max(x, y) = \frac{x + y + |x - y|}{2}$$

2 Raisonnement par l'absurde ou par contraposition

Exercice 8 1. Soit $x \in \mathbb{R}$. Démontrer que :

$$(\forall \varepsilon > 0, |x| \leqslant \varepsilon) \Longrightarrow x = 0$$

2. Montrer que :

$$\forall x, y \in \mathbb{R}, \quad (x \neq 1 \text{ et } y \neq 1) \Longrightarrow (xy - x - y \neq 1)$$

3. Montrer que :

1

 $\forall n \in \mathbb{N}, \quad (n^2 \text{ est un multiple de 6}) \iff (n \text{ est un multiple de 6})$

Exercice 9 On admet que $\sqrt{2} \notin \mathbb{Q}$. Montrer que :

$$\forall x \in \mathbb{Q}, \qquad x + \sqrt{2} \notin \mathbb{Q}$$

Exercice 10 Montrer qu'il n'existe pas de polynôme P à coefficients réels tel que :

$$\forall x \in \mathbb{R}, \qquad e^x = P(x)$$

3 Récurrences

Exercice 11 1. Soit $x \in \mathbb{R}^*$ tel que $x + \frac{1}{x} \in \mathbb{Z}$. Montrer que :

$$\forall n \in \mathbb{N}, \qquad x^n + \frac{1}{x^n} \in \mathbb{Z}$$

2. Déterminer un nombre réel x non entier vérifiant la propriété : $x + \frac{1}{x} \in \mathbb{Z}$.

Exercice 12 Pour tout entier naturel n, comparer les quantités (n+1)! et 2^n .

Exercice 13 Pour tout $n \in \mathbb{N}$, considérons la propriété \mathscr{P}_n : « l'entier $8^n + 1$ est divisible par 7 ».

- 1. Soit $n \in \mathbb{N}$. Montrer que $\mathscr{P}_n \Longrightarrow \mathscr{P}_{n+1}$.
- 2. Que peut-on en déduire?

Exercice 14 On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par récurrence comme suit :

$$\begin{cases} u_0 = 0 \\ u_1 = 1 \\ \forall n \in \mathbb{N}, \ u_{n+2} = u_{n+1} + 3u_n \end{cases}$$

- 1. Déterminer les racines ψ et $\overline{\psi}$ du polynôme $X^2 X 3$.
- 2. Démontrer que :

$$\forall n \in \mathbb{N}, \qquad u_n = \frac{\psi^n - \left(\overline{\psi}\right)^n}{\psi - \overline{\psi}}$$

Exercice 15 (inégalité de Bernoulli) Démontrer que :

$$\forall x \in \mathbb{R}_+, \ \forall n \in \mathbb{N}, \qquad (1+x)^n \geqslant 1 + nx$$

Exercice 16 À l'aide d'un raisonnement par récurrence, montrer que :

$$\forall n \in \mathbb{N}^*, \qquad \sum_{k=1}^n \frac{1}{k(k+1)} = \frac{n}{n+1},$$

où $\sum_{k=1}^{n} a_k$ correspond à la somme $a_1 + a_2 + \cdots + a_n$.

Exercice 17 Soit $(u_n)_{n\geqslant 1}$ la suite définie par $u_1=1$ et :

$$\forall n \in \mathbb{N}^*, \qquad u_{n+1} = \frac{u_n}{1 + u_n}$$

Exprimer, pour tout $n \in \mathbb{N}^*$, le terme général u_n en fonction de n.

Exercice 18 Montrer que :

$$\forall n \in \mathbb{N}, \quad \exists a_n, b_n \in \mathbb{N}, \ (1 + \sqrt{2})^n = a_n + b_n \sqrt{2}$$

Exercice 19 Soit $(a_n)_{n\in\mathbb{N}}$ la suite définie par $a_0=a_1=1$ et par :

$$\forall n \in \mathbb{N}, \qquad a_{n+2} = a_{n+1} + \frac{a_n}{n+1}$$

Montrer que :

$$\forall n \in \mathbb{N}^*, \qquad 1 \leqslant a_n \leqslant n^2$$

Exercice 20 À l'aide d'une récurrence forte, montrer que :

$$\forall n \in \mathbb{N}^*, \quad \exists p, q \in \mathbb{N}, \ n = 2^p (2q + 1)$$

4 Analyse-synthèse

Exercice 21 Déterminer les nombres réels x tels que $\sqrt{2-x} = x$.

Exercice 22 Déterminer les fonctions impaires $f : \mathbb{R} \longrightarrow \mathbb{R}$ telles que f-1 soit paire.

Exercice 23 Déterminer les solutions $f: \mathbb{R} \longrightarrow \mathbb{R}$ de l'équation fonctionnelle suivante :

$$\forall x, y \in \mathbb{R}, \qquad f(x) + f(y) = 2f(x - y) + 1$$

Exercice 24 On note \mathscr{A} l'ensemble des fonctions affines et \mathscr{B} l'ensemble des fonctions $f: \mathbb{R} \longrightarrow \mathbb{R}$ dérivables sur \mathbb{R} telles que f(0) = f'(0) = 0. Montrer que toute fonction dérivable de \mathbb{R} dans \mathbb{R} est la somme, d'une et une seule manière, d'une fonction de \mathscr{A} et d'une fonction de \mathscr{B} .