ENSEMBLES

(quelques corrigés)

Exercice 3 On raisonne par double implication.

- \star Si E = F, alors il est clair que $\mathscr{P}(E) = \mathscr{P}(F)$.
- \star Réciproquement, supposons que $\mathscr{P}(E)=\mathscr{P}(F).$ Montrons alors l'égalité E=F en raisonnant par double inclusion.
 - Montrons que $E \subset F$. Par définition de $\mathscr{P}(E)$, on a $E \in \mathscr{P}(E)$ (puisque E est une partie de E) donc (d'après notre hypothèse) $E \in \mathscr{P}(F)$, ce qui signifie que $E \subset F$.
 - Les ensembles E et F jouant des rôles symétriques, on a également $F \subset E$.

Par double inclusion, on a donc E = F.

Finalement:

$$\mathscr{P}(E) = \mathscr{P}(F) \iff E = F$$

Exercice 4

- 1. Vrai. On le démontre en raisonnant par double inclusion.
 - **★** Montrons que $\mathscr{P}(A \cap B) \subset \mathscr{P}(A) \cap \mathscr{P}(B)$. Soit $X \in \mathscr{P}(A \cap B)$. Alors $X \subset A \cap B$ (par définition de l'ensemble des parties d'un ensemble). On a donc $X \subset A$ et $X \subset B$. Autrement dit, $X \in \mathscr{P}(A)$ et $X \in \mathscr{P}(B)$, c'est-à-dire $X \in \mathscr{P}(A) \cap \mathscr{P}(B)$. Ainsi, on a bien l'inclusion $\mathscr{P}(A \cap B) \subset \mathscr{P}(A) \cap \mathscr{P}(B)$.
 - ★ Montrons que $\mathscr{P}(A) \cap \mathscr{P}(B) \subset \mathscr{P}(A \cap B)$. Soit $X \in \mathscr{P}(A) \cap \mathscr{P}(B)$. Alors $X \in \mathscr{P}(A)$ et $X \in \mathscr{P}(B)$, ce qui signifie que $X \subset A$ et $X \subset B$. On a donc l'inclusion $X \subset A \cap B$, c'est-à-dire $X \in \mathscr{P}(A \cap B)$. D'où l'inclusion $\mathscr{P}(A) \cap \mathscr{P}(B) \subset \mathscr{P}(A \cap B)$.

Par double inclusion, on a montré que :

$$\mathscr{P}(A \cap B) = \mathscr{P}(A) \cap \mathscr{P}(B)$$

2. C'est faux en général. Fournissons un contre-exemple. Dans $\mathbb R$ par exemple, considérons les sous-ensembles $A = \mathbb R_-$ et $B = \mathbb R_+$. Alors $A \cup B = \mathbb R$. La partie $X = \mathbb R$ est donc une partie de $\mathbb R = A \cup B$ (c'est-à-dire $X \in \mathscr P(A \cup B)$, mais X n'est ni une partie de $\mathbb R_- = A$, ni une partie de $B = \mathbb R_+$ (c'est-à-dire $X \notin \mathscr P(A) \cup \mathscr P(B)$). Donc $\mathscr P(A \cup B) \neq \mathscr P(A) \cup \mathscr P(B)$.

Remarque : on vérifie qu'on a toujours l'inclusion $\mathscr{P}(A) \cup \mathscr{P}(B) \subset \mathscr{P}(A \cup B)$.

Exercice 5

1. On a $\mathscr{P}(\{a\}) = \{\varnothing, \{a\}\}$ puis :

$$\mathscr{P}(\mathscr{P}(\{a\})) = \Big\{\varnothing, \{\varnothing\}, \big\{\{a\}\big\}, \mathscr{P}(\{a\})\Big\}$$

2. On a $\mathscr{P}(\{a,b\}) = \{\varnothing, \{a\}, \{b\}, \{a,b\}\}$ puis :

$$\begin{split} \mathscr{P}(\mathscr{P}(\{a,b\})) &= \Big\{\varnothing, \{\varnothing\}, \big\{\{a\}\big\}, \big\{\{b\}\big\}, \big\{\{a,b\}\big\}, \\ &\quad \big\{\varnothing, \{a\}\big\}, \big\{\varnothing, \{b\}\big\}, \big\{\varnothing, \{a,b\}\big\}, \big\{\{a\}, \{b\}\big\}, \big\{\{a\}, \{a,b\}\big\}, \\ &\quad \big\{\{b\}, \{a,b\}\big\}, \big\{\varnothing, \{a\}, \{b\}\big\}, \big\{\varnothing, \{a,b\}\big\}, \\ &\quad \big\{\varnothing, \{b\}, \{a,b\}\big\}, \big\{\{a\}, \{b\}, \{a,b\}\big\}, \mathscr{P}(\{a,b\})\big\} \end{split}$$

3. On a $\mathscr{P}(\varnothing) = \{\varnothing\}$ donc :

$$\mathscr{P}(\mathscr{P}(\varnothing)) = \{\varnothing, \{\varnothing\}\}$$

Exercice 11

3. On suppose que $A\Delta B=A\cap B$. Montrons que $A=B=\varnothing$. D'après l'exercice 10, on a :

$$A\Delta B = (A \cup B) \setminus (A \cap B)$$
 donc $(A \cup B) \setminus (A \cap B) = A \cap B$

Or (par définition du complémentaire d'un ensemble) :

$$[(A \cup B) \setminus (A \cap B)] \cap (A \cap B) = \emptyset$$

donc:

1

$$A \cap B = \varnothing = (A \cup B) \setminus (A \cap B)$$

puis $A \cup B = \emptyset$. On en déduit que $A = B = \emptyset$.

Exercice 12 On démontre l'égalité en raisonnant par double inclusion.

* Montrons que $(E \times G) \cup (F \times G) \subset (E \cup F) \times G$. Soit $(x, y) \in (E \times G) \cup (F \times G)$. On distingue deux cas.

- **Premier cas**: $(x,y) \in E \times G$. Alors $x \in E$ donc $x \in E \cup F$ et $(x,y) \in (E \cup F) \times G$.
- Deuxième cas : $(x,y) \in F \times G$. Alors $x \in F$ donc $x \in E \cup F$ et $(x,y) \in (E \cup F) \times G$.

Ceci montre l'inclusion annoncée.

- ★ Montrons que $(E \cup F) \times G \subset (E \times G) \cup (F \times G)$. Soit $(x,y) \in (E \cup F) \times G$. Alors $x \in E \cup F$ et $y \in G$ donc (on raisonne à nouveau par disjonction de cas) :
 - si $x \in E$, alors $(x, y) \in E \times G$ et donc $(x, y) \in (E \times G) \cup (F \times G)$;
 - si $x \in F$, alors $(x, y) \in F \times G$ et donc $(x, y) \in (E \times G) \cup (F \times G)$.

On a donc l'inclusion réciproque.

Par double inclusion, on a bien démontré l'égalité :

$$(E \times G) \cup (F \times G) = (E \cup F) \times G$$

Exercice 14

1. Posons:

$$A = (X \cup Z) \cap (Y \cup \overline{Z})$$
 et $B = (X \cap \overline{Z}) \cup (Y \cap Z)$

Par distributivité de l'intersection par rapport à la réunion, on a :

$$A = (X \cap Y) \cup (X \cap \overline{Z}) \cup (Z \cap Y) \cup (\overline{Z} \cap Z)$$
$$= (X \cap Y) \cup (X \cap \overline{Z}) \cup (Y \cap Z)$$
$$= B$$

Pour montrer que A=B, il suffit donc de montrer que :

$$X \cap Y \subset B$$

Soit $x \in X \cap Y$. On raisonne par disjonction de cas.

- * Premier cas : $x \in Z$. Alors $x \in Y$ et $x \in Z$ donc $x \in Y \cap Z$ et donc $x \in (X \cap \overline{Z}) \cup (Y \cap Z) = B$.
- **★ Deuxième cas :** $x \notin Z$. Alors $x \in X$ et $x \in \overline{Z}$ donc $x \in X \cap \overline{Z}$. Ainsi, $x \in (X \cap \overline{Z}) \cup (Y \cap Z) = B$.

On a donc bien montré l'inclusion $X \cap Y \subset B$. On conclut donc que :

$$A = B$$

2. Par distributivité de la réunion (respectivement de l'intersection) par rapport à l'intersection (respectivement de la réunion), on a :

$$\begin{split} (X \cup Y) \cap (Y \cup Z) \cap (X \cup Z) &= \left[(X \cup Y) \cap (Z \cup Y) \right] \cap (X \cup Z) \\ &= \left[(X \cap Z) \cup Y \right] \cap (X \cup Z) \\ &= \left[(X \cap Z) \cap (X \cup Z) \right] \cup \left[Y \cap (X \cup Z) \right] \\ &= (X \cap Z) \cup (Y \cap X) \cup (Y \cap Z) \end{split}$$

car $X \cap Z \subset X \cup Z$. Ainsi :

$$(X \cup Y) \cap (Y \cup Z) \cap (X \cup Z) = (X \cap Y) \cup (Y \cap Z) \cup (X \cap Z)$$

Exercice 16 Raisonnons par l'absurde en supposant que $\mathscr{P} \cap \mathscr{I} \neq \varnothing$. Il existe alors $x \in \mathbb{Z}$ tel que $x \in \mathscr{P}$ et $x \in \mathscr{I}$. Donc il existe $k, \ell \in \mathbb{Z}$ tel que x = 2k et $x = 2\ell + 1$. Ainsi:

$$2k = 2\ell + 1$$
 ce qui implique que $k - \ell = \frac{1}{2}$

On obtient une absurdité puisque $k-\ell$ est un entier alors que $\frac{1}{2}$ n'en est pas un. Ainsi :

$$\mathscr{P}\cap\mathscr{I}=\varnothing$$