MPSI 2022/2023 Lycée Mariette

DEVOIR MAISON 8

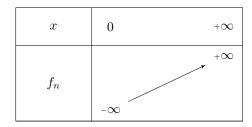
un corrigé

Exercice 1 (suite implicite).

1. (a) Soit $n \in \mathbb{N}$. La fonction f_n est dérivable sur \mathbb{R}_+^* et :

$$\forall x \in \mathbb{R}_+^*, \qquad f_n'(x) = \frac{1}{x} + n > 0 \qquad \text{car } \frac{1}{x} > 0 \text{ et } n \geqslant 0$$

On en déduit que f_n est strictement croissante sur \mathbb{R}_+^* . On obtient le tableau de variation de f_n suivant (les limites sont immédiates) :



On applique maintenant le théorème de la bijection. La fonction f_n est continue et strictement croissante sur \mathbb{R}_+^* . De plus, $f_n(\mathbb{R}_+^*) = \mathbb{R}$ donc $0 \in f_n(\mathbb{R}_+^*)$. Ainsi :

l'équation $f_n(x) = 0$ admet une unique solution u_n dans \mathbb{R}_+^*

(b) Soit $n \in \mathbb{N}$. On a:

$$\forall x \in \mathbb{R}_{+}^{*}, \quad f_{n+1}(x) - f_{n}(x) = \ln(x) + (n+1)x - (\ln(x) + nx) = x > 0$$

donc:

pour tout $n \in \mathbb{N}$, la fonction $f_{n+1} - f_n$ est à valeurs strictement positives sur \mathbb{R}_+^*

(c) Soit $n \in \mathbb{N}$. Comme $u_n \in \mathbb{R}_+^*$, on a $(f_{n+1} - f_n)(u_n) > 0$ (d'après la question précédente), *i.e.* $f_{n+1}(u_n) > f_n(u_n)$. Or on sait que $f_n(u_n) = 0$ par définition de u_n donc $f_{n+1}(u_n) > 0$, ce que l'on peut réécrire $f_{n+1}(u_n) > f_{n+1}(u_{n+1})$ (par définition de u_{n+1}). Or la fonction f_{n+1} est strictement croissante sur \mathbb{R}_+^* et $u_n, u_{n+1} \in \mathbb{R}_+^*$ donc $u_n > u_{n+1}$. Ainsi :

la suite
$$u$$
 est (strictement) décroissante

- (d) La suite u est décroissante et minorée par 0 (car pour tout $n \in \mathbb{N}$, on a $u_n \in \mathbb{R}_+^*$) donc u est convergente d'après le théorème de la limite monotone. Notons $\ell \in \mathbb{R}$ la limite de la suite u.
 - ★ Pour tout $n \in \mathbb{N}$, on a $u_n > 0$ donc $\ell \ge 0$.
 - \star Montrons que $\ell=0$ en raisonnant par l'absurde. Supposons donc que $\ell>0$. On sait que :

$$\forall n \in \mathbb{N}, \quad f_n(u_n) = 0 \quad i.e. \quad \ln(u_n) = -nu_n$$
 (*)

Comme $\ell > 0$, on a $\ln(u_n) \xrightarrow[n \to +\infty]{} \ln(\ell) \in \mathbb{R}$ tandis que $-nu_n \xrightarrow[n \to +\infty]{} -\infty$ (opération sur les limites). Ceci fournit une absurdité en passant à la limite quand n tend vers $+\infty$ dans (*). Ainsi, $\ell = 0$.

Finalement:

la suite u est convergente de limite 0

2. (a) Pour tout $n \in \mathbb{N}$, on a $f_n(u_n) = 0$, i.e. $nu_n = -\ln(u_n)$. Or $u_n \xrightarrow[n \to +\infty]{} 0$ donc $x_n = -\ln(u_n) \xrightarrow[n \to +\infty]{} +\infty$. Par conséquent :

$$x_n \xrightarrow[n \to +\infty]{} +\infty$$

(b) Soit $n \in \mathbb{N}^*$. On a $\ln(u_n) + nu_n = 0$, i.e. $\ln(u_n) + x_n = 0$. Or $x_n = nu_n$ donc $u_n = \frac{x_n}{n}$, ce qui implique que :

$$\ln\left(\frac{x_n}{n}\right) + x_n = 0 \qquad i.e. \qquad \ln(x_n) - \ln(n) + x_n = 0$$

Ainsi:

$$\forall n \in \mathbb{N}^*, \qquad x_n + \ln(x_n) = \ln(n)$$

Soit $n \in \mathbb{N}^*$. En divisant par $x_n > 0$ dans l'égalité précédente, on a :

$$1 + \frac{\ln(x_n)}{x_n} = \frac{\ln(n)}{x_n}$$

Or $x_n \xrightarrow[n \to +\infty]{} +\infty$ donc, par croissances comparées, on a $\frac{\ln(x_n)}{x_n} \xrightarrow[n \to +\infty]{} 0$. Ainsi, en faisant tendre n

vers $+\infty$ dans la dernière égalité, on a $\frac{\ln(n)}{x_n} \xrightarrow[n \to +\infty]{} 1$. En passant à l'inverse, on peut donc conclure que :

$$\boxed{\frac{x_n}{\ln(n)} \xrightarrow[n \to +\infty]{} 1}$$

Exercice 2 (nombres de Fermat).

1. On a $u_3=2^3+1=9=3\times 3$ donc u_3 n'est pas un nombre premier. Ainsi :

l'assertion proposée est fausse

2. (a) Soient $n \in \mathbb{N}^*$ et $a, b \in \mathbb{R}$. On a :

$$\begin{split} (a-b)\sum_{k=0}^{n-1}a^kb^{n-1-k} &= a\sum_{k=0}^{n-1}a^kb^{n-1-k} - b\sum_{k=0}^{n-1}a^kb^{n-1-k} \\ &= \sum_{k=0}^{n-1}a^{k+1}b^{n-1-k} - \sum_{k=0}^{n-1}a^kb^{n-k} \\ &= \sum_{\ell=1}^na^\ell b^{n-\ell} - \sum_{\ell=0}^{n-1}a^\ell b^{n-\ell} \quad \text{(changement d'indice $\ell=k+1$ dans la première somme)} \\ &= a^nb^0 - a^0b^n \qquad \text{(sommes télescopiques)} \\ &= a^n - b^n \end{split}$$

Ainsi:

$$\forall n \in \mathbb{N}^*, \ \forall a, b \in \mathbb{R}, \qquad a^n - b^n = (a - b) \sum_{k=0}^{n-1} a^k b^{n-1-k}$$

(b) Soit $n \in \mathbb{N}$. On raisonne par contraposition. Supposons que n ne soit pas une puissance de 2. Alors il existe un entier impair $m \geqslant 3$ tel que $n = m2^k$ où $k = v_2(n)$. En utilisant la question précédente, on a :

$$u_n = 2^{m2^k} + 1 = (2^{2^k})^m - (-1)^m \quad \text{(car } m \text{ est impair)}$$

$$= (2^{2^k} - (-1)) \sum_{i=0}^{m-1} 2^{i2^k} (-1)^{m-1-i}$$

$$= (2^{2^k} + 1) \underbrace{\sum_{i=0}^{m-1} 2^{i2^k} (-1)^{m-1-i}}_{C^{\mathbb{Z}}}$$

On a $1 < 2^{2^k} + 1 < 2^{m2^k} + 1 = u_n$ et $2^{2^k} + 1 \mid u_n$ d'après l'égalité précédente donc u_n n'est pas un nombre premier. En prenant la forme contraposée, on peut conclure que :

si \boldsymbol{u}_n est un nombre premier, alors n est une puissance de 2

3. (a) On procède par récurrence.

 \star On a $F_0 = 2^{2^0} + 1 = 3$ et:

$$F_1 = 2^2 + 1 = 5 = 2 + F_0 = 2 + \prod_{k=0}^{0} F_k$$

L'égalité est donc vraie au rang n=0.

* Soit $n \in \mathbb{N}$. On suppose que $F_{n+1} = 2 + \prod_{k=0}^{n} F_k$. Montrons que $F_{n+2} = 2 + \prod_{k=0}^{n+1} F_k$. On a :

$$\prod_{k=0}^{n+1}F_k=\left(\prod_{k=0}^nF_k\right)F_{n+1}=(F_{n+1}-2)F_{n+1}\qquad \text{(hypothèse de récurrence)}$$

Ainsi:

$$2 + \prod_{k=0}^{n+1} F_k = 2 + F_{n+1}^2 - 2F_{n+1} = 2 + \left(2^{2^{n+1}} + 1\right)^2 - 2\left(2^{2^{n+1}} + 1\right)$$
$$= 2 + 2^{2 \times 2^{n+1}} + 2 \times 2^{2^{n+1}} + 1 - 2 \times 2^{2^{n+1}} - 2$$
$$= 2^{2^{n+2}} + 1.$$

d'où l'égalité au rang n+1.

Par principe de récurrence simple, on peut conclure que :

$$\forall n \in \mathbb{N}, \qquad F_{n+1} = 2 + \prod_{k=0}^{n} F_k$$

(b) Soient $m, n \in \mathbb{N}$ tels que $m \neq n$. Posons $d = F_m \wedge F_n$. Il s'agit de montrer que d = 1. Sans perte de généralité, on peut supposer que m > n. On a $d \mid n$ et $n \leq m-1$ donc $d \mid \prod_{k=0}^{m-1} F_k$. Par ailleurs, $d \mid F_m$ donc :

$$d \mid F_m - \prod_{k=0}^{m-1} F_k$$
 i.e. $d \mid 2$

d'après la question précédente. Par définition du PGCD, on a d>0 donc d=1 ou d=2. Remarquons de plus que $F_n=2^{2^n}+1$ est impair (puisque 2^{2^n} est pair) donc $d\neq 2$. Ainsi, d=1. Finalement :

$$\boxed{\forall m, n \in \mathbb{N}, \qquad m \neq n \implies F_m \land F_n = 1}$$