Devoir Maison 8

- Un devoir rendu après la date indiquée ne sera pas corrigé.
- Soignez la présentation.
- Chaque conclusion doit être encadrée.
- La rédaction doit être soignée.
- Toute variable utilisée dans un raisonnement doit être préalablement introduite.

Exercice 1 (suite implicite, mardi 10 décembre).

Soit n un entier naturel non nul. On définit la fonction f_n sur $\mathbb R$ par :

$$\forall x \in \mathbb{R}, \qquad f_n(x) = \frac{1}{1 + e^x} + nx$$

- 1. Étudier les variations de la fonction f_n sur \mathbb{R} .
- 2. Montrer qu'il existe un unique nombre réel u_n tel que $f_n(u_n) = 0$.
- 3. Montrer que $\frac{-1}{n} < u_n < 0$.
- 4. Étudier le signe de $f_{n+1} f_n$ sur \mathbb{R}_- puis comparer $f_{n+1}(u_n)$ et $f_{n+1}(u_{n+1})$. En déduire que la suite $(u_n)_{n\geqslant 1}$ est convergente.
- 5. Montrer que $\lim_{n \to +\infty} u_n = 0$.
- 6. Déterminer la limite de la suite $(nu_n)_{n\geqslant 1}$.

Exercice 2 (nombres de Fermat, mardi 17 décembre).

- 1. Soient a un entier strictement supérieur à 1 et n un entier naturel non nul. On suppose que $a^n + 1$ est un nombre premier.
 - (a) Montrer que a est pair.
 - (b) Soit m un diviseur impair de n. Il existe alors $k \in \mathbb{N}^*$ tel que n = km. Montrer que $a^k + 1$ divise $a^n + 1$ puis que m = 1.
 - (c) Que peut-on en déduire sur l'entier n?
- 2. Pour tout entier naturel n, on pose $F_n=2^{2^n}+1$ (le nombre F_n est appelé le n^e nombre de Fermat).
 - (a) Montrer que:

$$\forall n \in \mathbb{N}, \qquad F_{n+1} = (F_n - 1)^2 + 1$$

(b) Montrer que:

$$\forall n \in \mathbb{N}^*, \qquad F_n - 2 = \prod_{k=0}^{n-1} F_k$$

- (c) Soit $m, n \in \mathbb{N}$ tel que m < n. Montrer que $F_m \wedge F_n = 1$.
- 3. Soient $n \in \mathbb{N}$ et p un nombre premier divisant F_n . On considère l'ensemble :

$$A = \left\{ k \in \mathbb{N}^* \,\middle|\, 2^k \equiv 1 \,[p] \right\}$$

- (a) Montrer que $2^{n+1} \in A$.
- (b) Justifier que A admet un minimum. On le notera m.
- (c) En écrivant la division euclidienne de 2^{n+1} par m, montrer que m divise 2^{n+1} .
- (d) Montrer que $m = 2^{n+1}$.
- (e) Justifier que $p-1 \in A$.
- (f) En déduire que $p \equiv 1 [2^{n+1}]$.