MPSI 2024/2025 Lycée Mariette

DEVOIR MAISON 7

un corrigé

Exercice 1 (équation différentielle).

1. La fonction f est continue sur \mathbb{R} comme produit de fonctions qui le sont. D'après le théorème fondamental de l'Analyse, une primitive de f sur \mathbb{R} est la fonction :

$$F: \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \int_0^x f(t) \, \mathrm{d}t \end{array} \right.$$

Soit $x \in \mathbb{R}$. Calculons l'intégrale $F(x) = \int_0^x t \operatorname{sh}(t) dt$ en utilisant une intégration par parties. Posons :

$$u'(t) = \operatorname{sh}(t)$$
 $v(t) = t$ $u(t) = \operatorname{ch}(t)$ $v'(t) = 1$

On a :

$$F(x) = \left[t \operatorname{ch}(t)\right]_0^x - \int_0^x \operatorname{ch}(t) \, \mathrm{d}t = x \operatorname{ch}(x) - \left[\operatorname{sh}(t)\right]_0^x = x \operatorname{ch}(x) - \operatorname{sh}(x)$$

Ainsi:

une primitive de
$$f$$
 sur \mathbb{R} est la fonction $F: x \longmapsto x \operatorname{ch}(x) - \operatorname{sh}(x)$

- 2. L'équation différentielle proposée est linéaire du premier ordre.
 - ★ Une primitive de la fonction th = $\frac{\sinh}{\cosh}$ sur \mathbb{R} est $t \longmapsto \ln(|\cosh(t)|)$, i.e. $t \longmapsto \ln(\cosh(t))$ (car ch est à valeurs strictement positives). Donc l'ensemble des solutions de l'équation différentielle homogène associée à (E) est :

$$\left\{t \longmapsto C \,\mathrm{e}^{-\ln(\mathrm{ch}(t))} \,\middle|\, C \in \mathbb{R}\right\} = \left\{t \longmapsto \frac{C}{\mathrm{ch}(t)} \,\middle|\, C \in \mathbb{R}\right\}$$

★ Déterminons maintenant une solution particulière de (E) sur \mathbb{R} en utilisant la méthode de la variation de la constante. Soient donc $C \in \mathscr{D}(\mathbb{R}, \mathbb{R})$ et $y : t \longmapsto \frac{C(t)}{\operatorname{ch}(t)}$. La fonction y est dérivable sur \mathbb{R} comme quotient de fonctions qui le sont et :

$$\forall t \in \mathbb{R}, \qquad y'(t) = \frac{C'(t)\operatorname{ch}(t) - C(t)\operatorname{sh}(t)}{\operatorname{ch}(t)^2}$$

donc:

$$(y \text{ est solution de } (E) \text{ sur } \mathbb{R}) \iff (\forall t \in \mathbb{R}, \ y'(t) + \operatorname{th}(t)y(t) = t \operatorname{th}(t)) \\ \iff \left(\forall t \in \mathbb{R}, \ \frac{C'(t) \operatorname{ch}(t) - C(t) \operatorname{sh}(t)}{\operatorname{ch}(t)^2} + \frac{\operatorname{sh}(t)}{\operatorname{ch}(t)} \times \frac{C(t)}{\operatorname{ch}(t)} = t \frac{\operatorname{sh}(t)}{\operatorname{ch}(t)} \right) \\ \iff \left(\forall t \in \mathbb{R}, \ \frac{C'(t)}{\operatorname{ch}(t)} - C(t) \frac{\operatorname{sh}(t)}{\operatorname{ch}(t)^2} + C(t) \frac{\operatorname{sh}(t)}{\operatorname{ch}(t)^2} = t \frac{\operatorname{sh}(t)}{\operatorname{ch}(t)} \right) \\ \iff (\forall t \in \mathbb{R}, \ C'(t) = t \operatorname{sh}(t))$$

D'après la question 1., il suffit de choisir $C: t \longmapsto t \operatorname{ch}(t) - \operatorname{sh}(t)$. Une solution de (E) sur \mathbb{R} est donc la fonction $t \longmapsto t - \operatorname{th}(t)$.

Finalement:

^{1.} On divise la fonction C par la fonction th.

l'ensemble des solutions de (E) sur \mathbb{R} est $\left\{t\longmapsto t-\operatorname{th}(t)+\frac{C}{\operatorname{ch}(t)}\,\middle|\,C\in\mathbb{R}\right\}$

Exercice 2 (automorphismes intérieurs).

1. Soit $g \in G$. Pour tous $x, y \in G$, on a d'une part :

$$\tau_g(x*y) = g*(x*y)*g^{-1} = g*x*y*g^{-1}$$
 (par associativité de la loi *)

et d'autre part :

$$\begin{split} \tau_g(x) * \tau_g(y) &= (g * x * g^{-1}) * (g * y * g^{-1}) \\ &= g * x * g^{-1} * g * y * g^{-1} \quad \text{(par associativit\'e de la loi *)} \\ &= g * x * e * y * g^{-1} \quad \text{(en notant e l'\'el\'ement neutre de G)} \\ &= \tau_g(x * y) \end{split}$$

Ainsi:

pour tout $g \in G$, l'application τ_g est un morphisme du groupe G

2. (a) Soient $g, g' \in G$. Pour tout $x \in G$, on a :

$$(\tau_g \circ \tau_{g'})(x) = \tau_g(\tau_{g'}(x)) = \tau_g(g' * x * (g')^{-1}) = g * (g' * x * (g')^{-1}) * g^{-1}$$

$$= (g * g') * x * ((g')^{-1} * g^{-1}) \qquad \text{(par associativit\'e de *)}$$

$$= (g * g') * x * (g * g')^{-1} \qquad \text{(propri\'et\'e de l'inverse)}$$

$$= \tau_{g * g'}(x)$$

Ainsi, $\tau_g \circ \tau_{g'} = \tau_{g*g'}$. Finalement :

$$\forall g, g' \in G, \qquad \tau_g \circ \tau_{g'} = \tau_{g*g'}$$

(b) On remarque que $\tau_e = \operatorname{Id}_G$. En effet, on sait que $e^{-1} = e$ donc :

$$\forall x \in G, \quad \tau_e(x) = e * x * e^{-1} = x * e = x$$

Soit $g \in G$. Alors $g^{-1} \in G$ (puisque G est un groupe) et, d'après la question précédente, on a :

$$\tau_g \circ \tau_{g^{-1}} = \tau_{g*g^{-1}} = \tau_e = \mathrm{Id}_G \qquad \text{ et, de la même manière} \qquad \tau_{g^{-1}} \circ \tau_g = \mathrm{Id}_G$$

Par conséquent :

Ainsi:

pour tout
$$g \in G$$
, l'application τ_g est bijective et $(\tau_g)^{-1} = \tau_{g^{-1}}$

- 3. Montrons que $(\operatorname{Int}(G), \circ)$ est un sous-groupe de (S_G, \circ) $(S_G$ étant l'ensemble des applications bijectives de G sur G).
 - ★ Tout d'abord, $\operatorname{Int}(G) \neq \emptyset$ car on sait que $\operatorname{Id}_G = \tau_e \in \operatorname{Int}(G)$. Par ailleurs, on sait d'après la question 2.(b) que tout élément de $\operatorname{Int}(G)$ est une application bijective de G sur G, i.e. est un élément de S_G . Ainsi, $\operatorname{Int}(G) \subset S_G$.
 - * Soient $\varphi, \psi \in \text{Int}(G)$. Il existe $g, h \in G$ tels que $\varphi = \tau_g$ et $\psi = \tau_h$. En utilisant les questions 2.(b) puis 2.(a), on a :

$$\varphi \circ \psi^{-1} = \tau_q \circ (\tau_h)^{-1} = \tau_q \circ \tau_{h^{-1}} = \tau_{q*h^{-1}}$$

On a bien $g*h^{-1}$ (par structure de groupe de G) donc $\varphi \circ \psi^{-1} \in \text{Int}(G)$.

Int(C) agt un sous groupe de (S_{-})

 $\operatorname{Int}(G)$ est un sous-groupe de (S_G, \circ)

- 4. (a) Montrons que (Z(G), *) est un sous-groupe de (G, *).
 - ★ Tout d'abord, $Z(G) \neq \emptyset$ car $e \in Z(G)$ (en effet, par définition de l'élément neutre dans un groupe, on sait que pour tout $g \in G$, on a g * e = g = e * g). Par ailleurs, on a clairement $Z(G) \subset G$ (par définition de Z(G)).
 - ★ Soient $g, g' \in Z(G)$. Montrons que $g * g' \in Z(G)$. Soit $h \in G$. On a (en utilisant l'associativité de * à la première égalité :

$$\begin{array}{ll} (g*g')*h=g*(g'*h)=g*(h*g') & (\operatorname{car} g'\in Z(G)) \\ &=(g*h)*g' & (\operatorname{en \; utilisant \; l'associativit\'e \; de \; la \; loi \; *)} \\ &=(h*g)*g' & (\operatorname{car} g\in Z(G)) \\ &=h*(g*g'), \end{array}$$

à nouveau par associativité de la loi *.

★ Soit $g \in Z(G)$. Montrons que $g^{-1} \in G$. Soit $h \in G$. Par hypothèse, on a g * h = h * g. En composant à gauche et à droite par g^{-1} , on obtient :

$$q^{-1} * (q * h) * q^{-1} = q^{-1} * (h * q) * q^{-1}$$

et donc, en utilisant l'associativité de la loi *, il vient :

$$(g^{-1} * g) * h * g^{-1} = g^{-1} * h * (g * g^{-1})$$
 i.e. $e * h * g^{-1} = g^{-1} * h * e$,

soit encore $h * g^{-1} = g^{-1} * h$. Ainsi, $g^{-1} \in Z(G)$.

Finalement:

$${\cal Z}(G)$$
 est un sous-groupe de G

(b) Soit $g \in Z(G)$. Pour tout $x \in G$, on a :

$$\tau_g(x) = g*x*g^{-1} = x*g*g^{-1}$$
 (car, par hypothèse, on a $g \in Z(G)$)
$$= x*e$$

$$= x$$

Autrement dit, $\tau_g = \mathrm{Id}_G$. Ainsi :

pour tout $g \in Z(G)$, on a l'égalité $\tau_g = \mathrm{Id}_G$