RELATIONS BINAIRES

La notion de relation permet de comparer des objets mathématiques. Par exemple :

- ★ quand nous disons que 3 est inférieur ou égal à 5, nous mettons en relation les nombres 3 et 5 avec la relation « inférieur ou égal » ;
- \star quand on dit que $\mathbb N$ est inclus dans $\mathbb Z$, on compare deux ensembles à l'aide de la relation d'inclusion :
- \star quand nous disons que 1+i et 1-i ont même module, nous sommes en train de comparer deux nombres complexes à l'aide du module.

$$\star$$
 si $f: \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \mathrm{e}^x \end{array} \right.$ et $g: \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & x+1 \end{array} \right.$, on sait que $g \leqslant f$ sur \mathbb{R} , $i.e.:$

Dans tout ce chapitre, E désigne un ensemble non vide quelconque.

I – Relations binaires

Nous définissons ici ce qu'est une relation binaire sur un ensemble.

Définition (relation) \star On appelle relation binaire sur E toute partie \mathscr{R} de $E \times E$.

★ Si \mathscr{R} est une telle relation et si $(x,y) \in \mathscr{R}$, on dit que « x est en relation avec y par la relation \mathscr{R} », ce que l'on note :

$$x\mathcal{R}y$$

Exemple \star Sur l'ensemble E=[1,4], la relation < est, d'après la définition précédente, le sous-ensemble de E^2 suivant :

$$\langle = \{(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)\}$$

En pratique, on comparera directement les éléments à l'aide de la relation.

 \star Considérons la relation « divise », notée \mathscr{R} sur l'ensemble [1,4]. Autrement dit :

$$\forall (a,b) \in [1,4], \quad a\mathscr{R}b \iff a \mid b$$

Ainsi, cette relation est complètement déterminée par les relations :

★ Sur l'ensemble $E = \{\text{Tom}, \text{Max}, \text{Lou}, \text{Lili}\}$, on peut considérer la relation \heartsuit définie par :

$$\text{Lou} \heartsuit \text{Max}$$
, $\text{Max} \heartsuit \text{Lou}$, $\text{Lili} \heartsuit \text{Max}$ et $\text{Tom} \heartsuit \text{Tom}$

Remarque: le couple $(x,y) \in E^2$ n'étant pas le couple $(y,x) \in E^2$ si $x \neq y$, la relation $x\mathcal{R}y$ peut être vraie sans que la relation $y\mathcal{R}x$ le soit! Par exemple :

- \star Pour la relation divise ci-dessus, on a 1 | 4 mais 4 \delta 1
- ★ On a Lili ♡ Max mais Max ♡ Lili

1) Relation d'ordre

Les propriétés importantes que doivent vérifier les « bonnes » relations sont les suivantes.

Définition (relation d'ordre) Soit \mathscr{R} une relation binaire sur E. On dit que \mathscr{R} est une relation d'ordre sur E si elle est :

* réflexive, i.e. :

$$\forall x \in E, \qquad x \mathcal{R} x$$

 \star antisymétrique, i.e.:

$$\forall x, y \in E, \qquad (x \mathcal{R} y \text{ et } y \mathcal{R} x) \Longrightarrow x = y$$

 \star transitive, i.e.:

$$\forall x, y, z \in E, \qquad (x \mathcal{R} y \text{ et } y \mathcal{R} z) \Longrightarrow x \mathcal{R} z$$

On dit aussi que le couple (E, \mathcal{R}) est un ensemble ordonné.

Notation. une relation d'ordre est souvent notée \leq ou \leq ou \leq .

Remarque : en pratique, on n'explicite pas l'ensemble \mathscr{R} (comme sous-ensemble de E^2) mais on manipule directement la relation en comparant les éléments de E via cette relation.

Exemple \star Sur \mathbb{R} , la relation \leq est une relation d'ordre. En effet :

- pour tout $x \in \mathbb{R}$, on a bien $x \leqslant x$;
- pour tout $(x,y) \in \mathbb{R}^2$, si $x \leq y$ et $y \leq x$, alors x = y;
- pour tout $(x, y, z) \in \mathbb{R}^3$, si $x \leq y$ et $y \leq z$, alors $x \leq z$.
- \star Sur $\mathscr{P}(E)$, la relation \subset est une relation d'ordre.
- \star Sur \mathbb{N} , la relation | est une relation d'ordre.

Démonstration • Soit $n \in \mathbb{N}$. Alors $n = 1 \times n$ et $1 \in \mathbb{N}$ donc $n \mid n$. Ainsi, la relation \mid est réflexive sur \mathbb{N} .

- Soient $m, n \in \mathbb{N}$. On suppose que $m \mid n$ et que $n \mid n$. Il existe alors $k, \ell \in \mathbb{N}$ tels que n = km et $m = \ell n$. Par conséquent, on a $n = \ell kn$ donc $(1 \ell k)n = 0$. Si n = 0, alors $m = \ell \times 0 = 0$ donc m = n. Sinon, on a $\ell k = 1$, et comme $\ell, k \in \mathbb{N}$, il vient $\ell = k = 1$, d'où l'on tire que m = n. Dans les deux cas, on a bien m = n. La relation $\ell = n$ est donc antisymétrique sur \mathbb{N} .
- Soient $m, n, p \in \mathbb{N}$. On suppose que $m \mid n$ et que $n \mid p$. Il existe alors $k, \ell \in \mathbb{N}$ tels que n = km et $p = \ell n$. Ainsi :

$$p = \ell n = \ell(km) = (\ell k)m$$

Comme $\ell k \in \mathbb{N}$, on a bien $m \mid p$. La relation | est donc transitive sur \mathbb{N} .

Finalement, | est une relation d'ordre sur \mathbb{N} .

- ★ Sur \mathbb{Z} , la relation | n'est pas une relation d'ordre (en effet, elle n'est pas antisymétrique car $4 \mid -4$ et $-4 \mid 4$; pourtant $4 \neq -4$).
- \star Sur $\mathbb{R}^{\mathbb{R}}$, la relation \leq est une relation d'ordre.
- * La relation ♥ n'est pas une relation d'ordre (par exemple car elle n'est pas réflexive).

Définition (ordre partiel, ordre total) Soit (E, \mathcal{R}) un ensemble ordonné. On dit l'ordre est total sur E (ou que (E, \mathcal{R}) est un ensemble totalement ordonné) si :

$$\forall x, y \in E, \qquad x \mathcal{R} y \text{ ou } y \mathcal{R} x$$

Dans le cas contraire, on dit que l'ordre sur E est partiel.

Remarque : dire que \mathscr{R} est une relation d'ordre totale sur E signifie donc que deux éléments quelconques x et y de E peuvent être comparés ; on a nécessairement ou bien $x\mathscr{R}y$, ou bien $y\mathscr{R}x$.

Exemple \star L'ensemble (\mathbb{R}, \leq) est totalement ordonné.

- \star Par contre, $(\mathscr{P}(E), \subset)$ est partiellement ordonné dès que $|E| \geq 2$.
- \star De même, l'ordre \leq sur $\mathbb{R}^{\mathbb{R}}$ est partiel.
- ★ La relation d'ordre | sur N n'est pas totale (en effet, 4 et 5 ne sont pas en relation).
- ★ La relation ♥ est partielle (on ne peut pas comparer Tom et Lili).

2) Majorants, minorants

On peut généraliser les notions de majorant, minorant, maximum et minimum vus dans \mathbb{R} à un ensemble ordonné.

Définition (majorant, minorant) Soient (E, \preceq) un ensemble ordonné, $A \in \mathcal{P}(E)$ et $x \in E$.

 \star On dit que x est un majorant de A si :

$$\forall a \in A, \qquad a \preccurlyeq x$$

On dit aussi que A est majoré par x (pour la relation \leq).

 \star On dit que x est le maximum A (ou le plus grand élément de A) si :

$$x \in A$$
 et $(\forall a \in A, a \leq x)$

On note alors $x = \max(A, \preceq)$.

 \star On dit que x est un minorant de A si :

$$\forall a \in A, \qquad x \preccurlyeq a$$

 \star On dit que x est le maximum de A (ou le plus petit élément de A) si :

$$x \in A$$
 et $(\forall a \in A, x \leq a)$

On note alors $x = \min(A, \preccurlyeq)$.

 \star On dira que l'ensemble A est bornée s'il est à la fois minoré et majoré.

Remarque: la définition sous-entend l'unicité du maximum et/ou du minimum lorsqu'il(s) existe(nt), ce qui s'obtient avec la propriété d'antisymétrie de la relation preccurlyeq (il est ici supposé que

est une relation d'ordre).

Exemple \star Pour la relation \leq , l'ensemble \mathbb{R} n'est ni majoré, ni minoré (en particulier, il n'admet ni minimum, ni maximum).

- \star Pour la relation \leq , l'ensemble [0,1[est majoré par 1, n'admet pas de maximum, est minoré par -5 et cet ensemble ordonné admet 0 pour minimum.
- \star (N, |) admet pour minimum 1 et pour maximum 0 (en effet, tout entier naturel n divise 0 puisque l'on peut écrire $0 = n \times 0$).
- ★ $(\mathscr{P}(E), \subset)$ est minoré par \varnothing et majoré par E. Par ailleurs, $\varnothing = \min(\mathscr{P}(E), \subset)$ et $E = \max(\mathscr{P}(E), \subset)$. L'ensemble $\mathscr{P}(E)$ est donc borné pour la relation \subset .

II – Relation d'équivalence

1) Définition

Définition (relation d'équivalence) Une relation \mathscr{R} sur E est appelée une relation d'équivalence si elle est :

* réflexive, i.e. :

$$\forall x \in E, \qquad x \mathcal{R} x$$

★ symétrique, i.e. :

$$\forall x, y \in E, \qquad x\mathscr{R}y \Longrightarrow y\mathscr{R}x$$

★ transitive, i.e.:

$$\forall x, y, z \in E, \qquad (x \mathcal{R} y \text{ et } y \mathcal{R} z) \Longrightarrow x \mathcal{R} z$$

Exemple \star La relation d'égalité = sur E est une relation d'équivalence (c'est aussi une relation d'ordre).

 \star Soit F un ensemble non vide et $f\in F^E.$ La relation ${\mathscr R}$ définie par :

$$\forall x, y \in E, \qquad x \mathcal{R} y \iff f(x) = f(y)$$

est une relation d'équivalence sur E.

- \star La relation \heartsuit n'est pas une relation d'équivalence.
- ★ Sur N, la relation de divisibilité | n'est pas une relation d'équivalence (la propriété de symétrie étant mise en défaut). Il s'agit par contre d'une relation d'ordre.
- \star Dans $\mathbb{R}^{\mathbb{R}}$, la relation \leq est une relation d'ordre qui n'est pas une relation d'équivalence.

2) Un exemple important : la relation de congruence

(a) Congruences dans \mathbb{Z}

Définition (congruence) Soient $a, b, n \in \mathbb{Z}$. On dit que a est congru à b modulo n, noté $a \equiv b$ [n], s'il existe $k \in \mathbb{Z}$ tel que a = b + kn.

Exemple On a
$$7 \equiv 3 \ [2], \ 13 \equiv -1 \ [7].$$

Remarques:

- ★ La congruence modulo 0 est tout simplement la relation d'égalité.
- \star La congruence modulo 1 est la relation triviale : tous les entiers sont congrus entre eux modulo 1
- ★ Pour tout $n \in \mathbb{N}^*$, la congruence modulo n est la congruence modulo -n (cela ne change rien à remplacer n par -n dans la définition précédente).

Proposition Soit $n \in \mathbb{N}$. La congruence modulo n est une relation d'équivalence sur \mathbb{Z} .

Démonstration Soit $n \in \mathbb{N}$. Montrons que la relation de congruence modulo n est réflexive, symétrique et transitive.

- * Soit $a \in \mathbb{Z}$. On peut écrire que $a = a + 0 \times n$ (et $0 \in \mathbb{Z}$) donc $a \equiv a[n]$. La relation est donc réflexive.
- ★ Soit $a, b \in \mathbb{Z}$. On suppose que $a \equiv b[n]$. Alors il existe $k \in \mathbb{Z}$ tel que a = b + kn, ce que l'on peut réécrire :

$$b = a + (-k)n$$

Comme $-k \in \mathbb{Z}$ (puisque $k \in \mathbb{Z}$), on a aussi $b \equiv a[n]$. La relation est donc symétrique.

* Soit $a, b, c \in \mathbb{Z}$. On suppose que $a \equiv b[n]$ et $b \equiv c[n]$. Alors il existe $(k, \ell) \in \mathbb{Z}^2$ tel que :

$$a = b + kn$$
 et $b = c + \ell n$

Par conséquent :

$$a = (c + \ell n) + kn = c + (\ell + k)n$$

Comme $\ell + n \in \mathbb{Z}$ (puisque ℓ et k sont des entiers), on a la relation $a \equiv c[n]$. La relation est donc aussi transitive.

Finalement, la congruence modulo n est une relation d'équivalence sur \mathbb{Z} .

(b) Congruences dans \mathbb{R}

Définition (congruence) Soient $a, b, \alpha \in \mathbb{R}$. On dit que a est congru à b modulo α , noté $a \equiv b[\alpha]$ s'il existe $k \in \mathbb{Z}$ tel que a = b + kn.

Remarques:

- \star Dans la définition, le k est un entier. La congruence modulo 0 est tout simplement la relation d'égalité.
- \star Nous utiliserons souvent la relation de congruence modulo 2π (ou π).

Exemple $\frac{13\pi}{6} \equiv \frac{\pi}{6} [\pi]$

Proposition Soit $\alpha \in \mathbb{R}$. La congruence modulo α est une relation d'équivalence sur \mathbb{R} .

Démonstration La démonstration est identique à la précédente.

3) Classes d'équivalences

La notion de classe d'équivalence permet de rassembler, dans un ensemble muni d'une relation d'équivalence, tous les éléments qui sont en relation.

Définition (classe d'équivalence) Soit \mathcal{R} une relation d'équivalence sur E.

★ Soit $x \in E$. On appelle classe (d'équivalence) de x modulo \mathcal{R} l'ensemble noté \bar{x} des éléments de E qui sont en relation avec x pour la relation \mathcal{R} , i.e.:

$$\bar{x} = \{ y \in E \, | \, x \mathcal{R} y \}$$

 \star L'ensemble des classes d'équivalences de E pour la relation \mathscr{R} est noté E/\mathscr{R} . Autrement dit :

5

$$E/\mathscr{R} = \{ \bar{x} \mid x \in E \}$$

Cet ensemble est aussi appelé ensemble quotient de E par la relation \mathscr{R} .

Remarque: E/\mathscr{R} est donc un ensemble de sous-ensembles de E. Autrement dit, $E/\mathscr{R} \in \mathscr{P}(\mathscr{P}(E))$.

Proposition Soient \mathscr{R} une relation d'équivalence sur E et $x, y \in E$. Si $x\mathscr{R}y$, alors $\overline{x} = \overline{y}$.

Démonstration On raisonne par double inclusion.

- \star Soit $z \in \overline{x}$. Alors $z\mathcal{R}x$. Si $x\mathcal{R}y$, alors $z\mathcal{R}y$ par transitivité de \mathcal{R} . On a donc $\overline{x} \subset \overline{y}$.
- * On obtient l'autre inclusion de manière analogue.

Par double inclusion, on a bien l'égalité annoncée.

Exemple Soient $a, n \in \mathbb{N}$. La classe d'équivalence de a pour la relation de congruence modulo n est :

$$\overline{a} = \{ b \in \mathbb{Z} \mid b \equiv a [n] \} = \{ b \in \mathbb{Z} \mid \exists k \in \mathbb{Z}, b = a + kn \}$$
$$= \{ a + kn \mid k \in \mathbb{Z} \}$$

Par exemple, pour n = 2, on a :

$$\overline{0} = 2\mathbb{Z}$$
 et $\overline{1} = 2\mathbb{Z} + 1$

La famille des classes d'équivalences de E (pour la relation \mathscr{R}) est une partition de l'ensemble E d'après le résultat suivant.

Proposition Soient E un ensemble et \mathscr{R} une relation d'équivalence sur E. Alors $(C)_{C \in E/\mathscr{R}}$ est une partition de E, i.e.:

- (i) $\forall C \in E/\mathscr{R}, \ C \neq \varnothing$;
- (ii) $\forall C, C' \in E/\mathcal{R}, \quad C \neq C' \implies C \cap C' = \varnothing;$
- $(iii) \bigcup_{C \in E/\mathscr{R}} C = E.$

Démonstration Pour tout $x \in E$, on note \overline{x} la classe d'équivalence de x dans E pour la relation \mathcal{R} .

- (i) Soit $C \in E/\mathscr{R}$. Par définition d'une classe d'équivalence, il existe $x \in E$ tel que $C = \overline{x}$. Par réflexivité de la relation d'équivalence, on a $x\mathscr{R}x$ donc $x \in C$. Ainsi, C est non vide.
- (ii) Soient $C, C' \in E/\mathscr{R}$. Par définition d'une classe d'équivalence, il existe $x, y \in E$ tels que $C = \overline{x}$ et $C' = \overline{y}$. Raisonnons maintenant par contraposition. Supposons que $C \cap C' \neq \emptyset$, alors il existe $z \in E$ tel que $z \in C \cap C'$. D'après la proposition précédente, on a $C = \overline{z} = C'$.
- (iii) Pour tout $x \in E$, on a $x \in \overline{x}$ donc $C \subset \bigcup_{C \in E/\mathscr{R}} C = E$. L'inclusion réciproque est immédiate.

Remarque: le théorème de la division euclidienne (chapitre « Arithmétique des entiers relatifs ») nous permettra de montrer que, pour $n \in \mathbb{N}^*$, tout entier relatif appartient à la classe d'équivalence, pour la relation de congruence modulo n, d'un et un seul élément de [0, n-1]. Les classes d'équivalence de \mathbb{Z} pour cette relation sont donc les ensembles $k+n\mathbb{Z}$, où $k \in [0, n-1]$. On note traditionnellement $\mathbb{Z}/n\mathbb{Z}$ l'ensemble quotient formé de ces classes d'équivalence.