MPSI 2022/2023 Lycée Mariette

CONCOURS BLANC

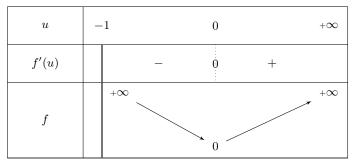
un corrigé

Exercice 1 (calcul d'une limite).

1. La fonction $f: u \longmapsto u - \ln(1+u)$ est dérivable sur] $-1, +\infty$ [et :

$$\forall u \in]-1, +\infty[, \qquad f'(u) = 1 - \frac{1}{1+u} = \frac{u}{1+u}$$

On en déduit le tableau de signes de f^\prime et de variations de f suivants :



La fonction f est positive sur $]-1,+\infty[$, *i.e.* :

$$\forall u \in]-1, +\infty[, \qquad u - \ln(1+u) \geqslant 0,$$

soit encore:

$$\forall u \in]-1, +\infty[, \qquad \ln(1+u) \leqslant u \tag{*}$$

2. (a) Soit $t \in [0,n]$. En appliquant l'inégalité (*) au point $x=\frac{t}{n}\geqslant 0>-1,$ on a :

$$\ln\left(1+\frac{t}{n}\right) \leqslant \frac{t}{n}$$
 puis $n\ln\left(1+\frac{t}{n}\right) \leqslant t$

car $n\geqslant 0.$ La fonction exponentielle étant croissante sur $\mathbb{R},$ on obtient :

$$\exp\left[n\ln\left(1+\frac{t}{n}\right)\right]\leqslant \operatorname{e}^t \qquad i.e. \qquad \exp\left[\ln\left(\left(1+\frac{t}{n}\right)^n\right)\right]\leqslant \operatorname{e}^t,$$

d'où l'on tire que $\left(1 + \frac{t}{n}\right)^n \leqslant e^t$.

Quant à la deuxième inégalité, on remarque qu'elle est immédiate si t=n (en effet, le nombre de gauche est nul tandis que $\mathrm{e}^{-n}\geqslant 0$). Si $t\in [0,n[$, alors $-\frac{t}{n}>-1$ donc on peut appliquer l'inégalité (*) au point $x=-\frac{t}{n}$:

$$\ln\left(1 - \frac{t}{n}\right) \leqslant -\frac{t}{n}$$

Le même raisonnement que celui mené pour démontrer la première inégalité nous permet d'obtenir que $\left(1-\frac{t}{n}\right)^n\leqslant \mathrm{e}^{-t}$. Ainsi :

$$\forall t \in [0, n], \qquad \left(1 + \frac{t}{n}\right)^n \leqslant e^t \qquad \text{et} \qquad \left(1 - \frac{t}{n}\right)^n \leqslant e^{-t}$$

(b) Soit $t \in [0, n]$. On sait que $e^t \ge \left(1 + \frac{t}{n}\right)^n$ (question 2.(a)) donc, en multipliant par $f_n(t) \ge 0$, on obtient l'inégalité :

$$f_n(t) e^t \geqslant \left(1 - \frac{t}{n}\right)^n \left(1 + \frac{t}{n}\right)^n = \left[\left(1 - \frac{t}{n}\right) \left(1 + \frac{t}{n}\right)\right]^n$$

Ainsi:

$$\forall t \in [0, n], \qquad f_n(t) e^t \geqslant \left(1 - \frac{t^2}{n^2}\right)^n$$

- (c) Soit $t \in [0, n]$.
 - ★ D'après la deuxième inégalité établie à la question 2.(a), on a :

$$e^{-t} - f_n(t) = e^{-t} - \left(1 - \frac{t}{n}\right)^n \ge 0$$

★ De plus, d'après la question 2.(b), on sait que (en multipliant par $e^{-t} \ge 0$):

$$f_n(t) \ge e^{-t} \left(1 - \frac{t^2}{n^2}\right)^n$$
 puis $-f_n(t) \le -e^{-t} \left(1 - \frac{t^2}{n^2}\right)^n$

En ajoutant e^{-t} , il vient :

$$e^{-t} - f_n(t) \le e^{-t} - e^{-t} \left(1 - \frac{t^2}{n^2}\right)^n = e^{-t} \left[1 - \left(1 - \frac{t^2}{n^2}\right)^n\right]$$

Ainsi:

$$\forall t \in [0, n], \quad 0 \leqslant e^{-t} - f_n(t) \leqslant e^{-t} \left[1 - \left(1 - \frac{t^2}{n^2} \right)^n \right]$$

(d) On considère la fonction $\varphi: \left\{ \begin{array}{ccc} [0,1] & \longrightarrow & \mathbb{R} \\ u & \longmapsto & nu+(1-u)^n-1 \end{array} \right.$ La fonction φ est dérivable sur [0,1] (comme fonction polynomiale) et :

$$\forall u \in [0,1], \qquad \varphi'(u) = n - n(1-u)^{n-1} = n[1 - (1-u)^{n-1}]$$

Pour tout $u \in [0, 1]$, on a $1 - u \in [0, 1]$ puis $(1 - u)^{n-1} \in [0, 1]$ (en effet, $n - 1 \ge 0$ donc la fonction puissance $t \longmapsto t^{n-1}$ est croissante sur \mathbb{R}_+).

u	0	1
$\varphi'(u)$	+	
φ	0	n-1

La fonction φ est positive sur [0,1], *i.e.*:

$$\forall u \in [0, 1], \qquad nu + (1 - u)^n - 1 \geqslant 0,$$

soit encore:

$$\forall u \in [0,1], \qquad 1 - (1-u)^n \leqslant nu$$

(e) Soit $t \in [0,n]$. On a $\frac{t^2}{n^2} \in [0,1]$ donc, d'après la question 2.(d), on a :

$$1 - \left(1 - \frac{t^2}{n^2}\right)^n \leqslant n \times \frac{t^2}{n^2} = \frac{t^2}{n} \quad \text{puis} \quad \mathrm{e}^{-t} \left[1 - \left(1 - \frac{t^2}{n^2}\right)^n\right] \leqslant \frac{t^2 \, \mathrm{e}^{-t}}{n}$$

car e $^{-t} \ge 0$. Ainsi, les inégalités de la question 2.(c) impliquent que :

$$0 \leqslant e^{-t} - f_n(t) \leqslant \frac{t^2 e^{-t}}{n}$$

En isolant $f_n(t)$ dans ces inégalités, on obtient bien :

$$\forall t \in [0, n], \quad e^{-t} - \frac{t^2 e^{-t}}{n} \leqslant f_n(t) \leqslant e^{-t}$$

3. Soit $n \in \mathbb{N}^*$. On utilise la propriété de croissance de l'intégrale :

$$\int_0^n \left(e^{-t} - \frac{t^2 e^{-t}}{n} \right) dt \leqslant \int_0^n f_n(t) dt \leqslant \int_0^n e^{-t} dt,$$

i.e. (par linéarité de l'intégrale) :

$$\int_0^n e^{-t} dt - \frac{1}{n} \int_0^1 t^2 e^{-t} dt \le I_n \le \int_0^n e^{-t} dt$$

2

Or $\int_0^n e^{-t} = \left[-e^{-t} \right]_0^1 = 1 - e^{-n}$ et, en utilisant une double intégration par parties, on a :

$$\int_{0}^{n} t^{2} e^{-t} dt = 2 - n^{2} e^{-n} - 2n e^{-n} - 2e^{-n}$$

donc:

$$\forall n \in \mathbb{N}^*, \qquad 1 - e^{-n} - \frac{1}{n} (2 - n^2 e^{-n} - 2n e^{-n} - 2e^{-n}) \leqslant I_n \leqslant 1 - e^{-n}$$

Le théorème des gendarmes permet de conclure que :

la suite $(I_n)_{n\geqslant 1}$ est convergente de limite 1

Exercice 2 (arithmétique).

1. On a la relation $1 \times (n+1) + (-1) \times n = 1$ donc, d'après le théorème de Bézout :

les entiers n et n+1 sont premiers entre eux

- 2. (a) On utilise un raisonnement par récurrence.
 - * D'une part, on a $\sum_{k=1}^{n} k^3 = 1^3 = 1$, et d'autre part, $\frac{1^2 \times 2^2}{4} = 1$ donc l'égalité est vraie au rang 1.
 - * Soit $n \in \mathbb{N}^*$. On suppose que $\sum_{k=1}^n k^3 = \frac{n^2(n+1)^2}{4}$. Montrons que $\sum_{k=1}^{n+1} k^3 = \frac{(n+1)^2(n+2)^2}{4}$. D'après la relation de Chasles, on a :

$$\begin{split} \sum_{k=1}^{n+1} k^3 &= \sum_{k=1}^n k^3 + (n+1)^3 = \frac{n^2(n+1)^2}{4} + (n+1)^3 \qquad \text{(hypothèse de récurrence)} \\ &= \frac{n^2(n+1)^2 + 4(n+1)^2(n+1)}{4} \\ &= \frac{(n+1)^2(n^2+4n+4)}{4} \\ &= \frac{(n+1)^2(n+2)^2}{4}, \end{split}$$

ce qu'il fallait démontrer. L'égalité est établie au rang n+1.

Par principe de récurrence simple, on peut conclure que :

$$\forall n \in \mathbb{N}^*, \qquad \sum_{k=1}^n k^3 = \frac{n^2(n+1)^2}{4}$$

(b) Soit $n \in \mathbb{N}^*$. Tout d'abord, les nombres $\sum_{k=1}^n k$ et $\sum_{k=1}^n k^3$ sont clairement des entiers (une somme d'entiers étant un entier). De plus, d'après la question précédente, on a :

$$\sum_{k=1}^{n} k^{3} = \left(\sum_{k=1}^{n} k\right)^{2} \quad \text{donc} \quad \sum_{k=1}^{n} k \quad \text{divise} \quad \sum_{k=1}^{n} k^{3}$$

Ainsi:

le théorème de Faulhaber est vrai si $q=3\,$

3. (a) Le lemme de Gauss s'énonce comme suit :

Soit
$$a, b, c \in \mathbb{Z}$$
 tels que $a \mid bc$ et $a \wedge b = 1$. Alors $a \mid c$.

(b) Soient $a,b,c\in\mathbb{Z}$ tels que $a\wedge b=1$. On suppose que $a\mid c$ et $b\mid c$. Comme $a\mid c$, il existe $k\in\mathbb{Z}$ tel que c=ka. Ensuite $b\mid ka$ et $a\wedge b=1$ donc $b\mid k$ d'après le lemme de Gauss. On en déduit que $ab\mid ka$, i.e. que $ab\mid c$. Ainsi :

$$\forall a, b, c \in \mathbb{Z}, \qquad (a \land b = 1 \text{ et } a \mid c \text{ et } b \mid c) \implies ab \mid c$$

4. (a) Les changements d'indices (décroissants) $\ell = n + 1 - k$ dans la première somme et p = n - k dans la seconde fournissent :

$$\sum_{k=1}^{n} (n+1-k)^{q} = \sum_{\ell=1}^{n} \ell^{q} \qquad \text{et} \qquad \sum_{k=0}^{n} (n-k)^{q} = \sum_{p=0}^{n} p^{q} = \sum_{p=1}^{n} p^{q}$$

car $0^q = 0$ (puisque $q \ge 1$). Autrement dit :

$$S_n(q) = \sum_{k=1}^n (n+1-k)^q = \sum_{k=0}^n (n-k)^q$$

(b) Pour tout $k \in [0, n]$, on a $n + 1 - k \equiv -k[n + 1]$ et $n - k \equiv -k[n]$ puis, par compatibilité de la relation de congruence avec l'exponentiation positive entière :

$$(n+1-k)^q \equiv (-k)^q \equiv -k^q [n+1]$$
 et $(n-k)^q \equiv (-k)^q \equiv -k^q [n]$

car $(-k)^q = (-1)^q k^q = -k^q$ (en effet, l'entier q est impair). En sommant les relations de congruences, on obtient :

$$\sum_{k=1}^{n} (n+1-k)^{q} \equiv -\sum_{k=1}^{n} k^{q} [n] \quad \text{et} \quad \sum_{k=0}^{n} (n-k)^{q} \equiv -\sum_{k=1}^{n} k^{q} [n]$$

En utilisant la question précédente, ces relations se réécrivent

$$S_n(q) \equiv -S_n(q) [n+1]$$
 et $S_n(q) \equiv -S_n(q) [n]$

(c) D'après la question 4.(a), on a $2S_n(q) \equiv 0$ [n+1] et $2S_n(q) \equiv 0$ [n]. Autrement dit, l'entier $2S_n(q)$ est divisible par n et par n+1. Or n et n+1 sont premiers entre eux (d'après la question 1.) donc n(n+1) divise $2S_n(q)$ (d'après la question 3.(b)). Autrement dit, il existe $\alpha \in \mathbb{Z}$ tel que $2S_n(q) = \alpha n(n+1)$, ce qui se réécrit :

$$S_n(q) = \alpha \frac{n(n+1)}{2}$$
 soit encore $S_n(q) = \alpha S_n(1)$

Autrement dit, $S_n(1) \mid S_n(q)$. Finalement :

le théorème de Faulhaber est démontré

Exercice 3 (diagonalisation).

1. Calcul des puissances de A.

(a) Soit
$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{R})$$
. On résout l'équation $P \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}$ d'inconnue $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{R})$:

$$\begin{split} P\begin{pmatrix} x \\ y \\ z \end{pmatrix} &= \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} \iff \begin{pmatrix} 2 & -1 & -1 \\ -1 & 1 & 2 \\ -1 & 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} \\ &\iff \begin{cases} 2x & -y & -z & = X & \mathbf{L}_1 \\ -x & +y & +2z & = Y & \mathbf{L}_2 \\ -x & +y & +z & = Z & \mathbf{L}_3 \end{cases} \\ &\iff \begin{cases} 2x & -y & -z & = X & \mathbf{L}_1 \\ y & +3z & = X+2Y & \mathbf{L}_2 \leftarrow 2\mathbf{L}_2 + \mathbf{L}_1 \\ y & +z & = X+2Z & \mathbf{L}_3 \leftarrow 2\mathbf{L}_3 + \mathbf{L}_1 \end{cases} \\ &\iff \begin{cases} 2x & -y & -z & = X & \mathbf{L}_1 \\ y & +z & = X+2Z & \mathbf{L}_3 \leftarrow 2\mathbf{L}_3 + \mathbf{L}_1 \\ y & +3z & = X+2Y & \mathbf{L}_2 \\ 2z & =2Y-2Z & \mathbf{L}_3 \leftarrow \mathbf{L}_2 - \mathbf{L}_3 \end{cases} \end{split}$$

On obtient un système de Cramer donc P est inversible et :

$$P\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} \iff \begin{cases} x & = & \frac{1}{2}(X+y+z) = X+Z \\ y & = & X+2Y-3z = X-Y+3Z \\ z & = & Y-Z \end{cases}$$
$$\iff \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & -1 & 3 \\ 0 & 1 & -1 \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}$$

Ainsi:

la matrice
$$P$$
 est inversible d'inverse $P^{-1} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & -1 & 3 \\ 0 & 1 & -1 \end{pmatrix}$

(b) On a:

$$PDP^{-1} = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 1 & 2 \\ -1 & 1 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 1 & -1 & 3 \\ 0 & 1 & -1 \end{pmatrix} = \begin{pmatrix} -2 & -1 & -2 \\ 1 & 1 & 4 \\ 1 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 1 & -1 & 3 \\ 0 & 1 & -1 \end{pmatrix}$$
$$= \begin{pmatrix} -3 & -1 & -3 \\ 2 & 3 & 0 \\ 2 & 1 & 2 \end{pmatrix}$$

Autrement dit:

$$A = PDP^{-1}$$

En multipliant à gauche par P^{-1} dans cette égalité, il vient $P^{-1}A = P^{-1}PDP^{-1} = I_3DP^{-1} = DP^{-1}$ puis, en multipliant par P à droite, on obtient (puisque $P^{-1}P = I_3$):

$$P^{-1}AP = D$$

(c) La matrice D est diagonale donc :

$$\forall n \in \mathbb{N}, \qquad D^n = \begin{pmatrix} (-1)^n & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 2^n \end{pmatrix}$$

- (d) On raisonne par récurrence.
 - ★ D'une part, $A^0 = I_3$, et d'autre part :

$$PD^{0}P^{-1} = PI_{3}P^{-1} = PP^{-1} = I_{3}$$

donc l'égalité est vraie au rang n = 0.

★ Soit $n \in \mathbb{N}$. On suppose que $A^n = PD^nP^{-1}$. Alors, en utilisant l'égalité obtenue à la question 1.(b) (et l'associativité du produit matriciel),

$$A^{n+1} = AA^n = (PDP^{-1})(PD^nP^{-1}) = PDP^{-1}PD^nP^{-1} = PDI_3D^nP^{-1} = PDD^nP^{-1} = PD^{n+1}P^{-1}$$

L'égalité est donc vraie au rang n+1.

Par principe de récurrence simple, on peut conclure que :

$$\forall n \in \mathbb{N}, \qquad A^n = PD^nP^{-1}$$

- 2. Étude du commutant de A.
 - (a) Soit $N \in \mathcal{M}_3(\mathbb{R})$. On a:

$$\begin{split} N \in \mathscr{C}(A) &\iff AN = NA \iff PDP^{-1}N = NPDP^{-1} \qquad \text{(d'après la question 1.(b))} \\ &\iff P^{-1}PDP^{-1}NP = P^{-1}NPDP^{-1}P \\ &\iff I_3DP^{-1}NP = P^{-1}NPDI_3 \\ &\iff D(P^{-1}NP) = (P^{-1}NP)D \\ &\iff P^{-1}NP \in \mathscr{C}(D) \end{split}$$

Donc:

$$\forall N \in \mathscr{C}(A), \qquad N \in \mathscr{C}(A) \iff P^{-1}NP \in \mathscr{C}(D)$$

(b) Soit
$$X = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \in \mathcal{M}_3(\mathbb{R})$$
. Alors :

$$X \in \mathcal{C}(D) \iff DX = XD \iff \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

$$\iff \begin{pmatrix} -a & -b & -c \\ d & e & f \\ 2g & 2h & 2i \end{pmatrix} = \begin{pmatrix} -a & b & 2c \\ -d & e & 2f \\ -g & h & 2i \end{pmatrix}$$

$$\iff \begin{cases} -b & = & b \\ -c & = & 2c \\ d & = & -d \\ f & = & 2f \\ 2g & = & -g \\ 2h & = & h \end{cases}$$

$$\iff b = c = d = f = g = h = 0$$

$$\iff X = \begin{pmatrix} a & 0 & 0 \\ 0 & e & 0 \\ 0 & 0 & i \end{pmatrix}$$

Ainsi:

$$\mathscr{C}(D) = \mathscr{D}_3(\mathbb{R})$$

(c) Soit $N \in \mathcal{M}_3(\mathbb{R})$. D'après les questions 2.(a) et 2.(b), on a :

$$\begin{split} N \in \mathscr{C}(A) &\iff P^{-1}NP \in \mathscr{C}(D) = \mathscr{D}_3(\mathbb{R}) \\ &\iff \exists \, \alpha, \beta, \gamma \in \mathbb{R}, \ P^{-1}NP = \begin{pmatrix} \alpha & 0 & 0 \\ 0 & \beta & 0 \\ 0 & 0 & \gamma \end{pmatrix} \\ &\iff \exists \, \alpha, \beta, \gamma \in \mathbb{R}, \ P^{-1}NP = \alpha \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \beta \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \gamma \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ &\iff \exists \, \alpha, \beta, \gamma \in \mathbb{R}, \ N = \alpha P E_{1,1} P^{-1} + \beta P E_{2,2} P^{-1} + \gamma P E_{3,3} P^{-1} \end{split}$$

Donc:

$$\mathscr{C}(A) = \left\{\alpha_1 X_1 + \alpha_2 X_2 + \alpha_3 X_3 \mid \alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}\right\} \text{ où, pour tout } i \in \{1, 2, 3\}, \text{ on a posé } X_i = PE_{i,i}P^{-1}$$

- 3. Étude de trois suites imbriquées.
 - (a) Soit $n \in \mathbb{N}$. On a:

$$X_{n+1} = \begin{pmatrix} u_{n+1} \\ v_{n+1} \\ w_{n+1} \end{pmatrix} = \begin{pmatrix} -3u_n - v_n - 3w_n \\ 2u_n + 3v_n \\ 2u_n + v_n + 2w_n \end{pmatrix} = \begin{pmatrix} -3 & -1 & -3 \\ 2 & 3 & 0 \\ 2 & 1 & 2 \end{pmatrix} \begin{pmatrix} u_n \\ v_n \\ w_n \end{pmatrix}$$

donc:

$$\forall n \in \mathbb{N}, \qquad X_{n+1} = AX_n$$

- (b) À l'aide d'un raisonnement par récurrence, montrons que pour tout $n \in \mathbb{N}$, on a $X_n = A^n X_0$.
 - \star On a $A^0X_0 = I_3X_0 = X_0$ donc l'égalité est vraie au rang n = 0.
 - ★ Soit $n \in \mathbb{N}$. On suppose que $X_n = A^n X_0$. D'après la question précédente, on a $X_{n+1} = A X_n$ et donc, en utilisant l'hypothèse de récurrence, on obtient $X_{n+1} = A(A^n X_0) = A^{n+1} X_0$ (par associativité du produit matriciel). L'égalité est donc vérifiée au rang n+1.

Par principe de récurrence simple, on peut conclure que :

$$\forall n \in \mathbb{N}, \qquad X_n = A^n X_0$$

(c) On a $X_0 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ par hypothèse. Soit $n \in \mathbb{N}$. On utilise la question 1.(d) :

$$X_{n} = A^{n} X_{0} = PD^{n} \begin{pmatrix} 1 & 0 & 1 \\ 1 & -1 & 3 \\ 0 & 1 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = P \begin{pmatrix} (-1)^{n} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2^{n} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
$$= \begin{pmatrix} 2 & -1 & -1 \\ -1 & 1 & 2 \\ -1 & 1 & 1 \end{pmatrix} \begin{pmatrix} (-1)^{n} \\ 0 \\ 2^{n} \end{pmatrix}$$
$$= \begin{pmatrix} 2(-1)^{n} - 2^{n} \\ (-1)^{n+1} + 2^{n+1} \\ (-1)^{n+1} + 2^{n} \end{pmatrix}$$

Finalement:

$$\forall n \in \mathbb{N}, \qquad \begin{cases} u_n &= 2(-1)^n - 2^n \\ v_n &= (-1)^{n+1} + 2^{n+1} \\ w_n &= (-1)^{n+1} + 2^n \end{cases}$$

Exercice 4 (résolution d'une équation fonctionnelle).

- 1. Questions préliminaires.
 - (a) Le choix $x = y = 1 \in \mathbb{R}_+^*$ dans la relation (*) vérifiée par f fournit :

$$f(1^2) = f(1) + f(1)$$
 i.e. $f(1) = 2f(1)$,

soit encore:

$$f(1) = 0$$

(b) On utilise une récurrence simple.

* Pour tout $x_1 \in \mathbb{R}_+^*$, on a:

$$f\left(\prod_{k=1}^{1} x_k\right) = f(x_1)$$
 et $\sum_{k=1}^{1} f(x_k) = f(x_1)$

donc l'égalité est vérifiée au rang n=1.

* Soit $n \in \mathbb{N}^*$. On suppose que pour tous $x_1, \ldots, x_n \in \mathbb{R}_+^*$, on a l'égalité $f\left(\prod_{k=1}^n x_k\right) = \sum_{k=1}^n f(x_k)$. Soient $x_1, \ldots, x_n, x_{n+1} \in \mathbb{R}_+^*$. Alors :

$$f\left(\prod_{k=1}^{n+1} x_k\right) = f\left(\left[\prod_{k=1}^{n+1} x_k\right] \times x_{n+1}\right) = f\left(\prod_{k=1}^{n} x_k\right) + f(x_{n+1}) \qquad \text{(d'après (*))}$$

$$= \left(\sum_{k=1}^{n} f(x_k)\right) + f(x_{n+1}) \qquad \text{(hypothèse de récurrence)}$$

$$= \sum_{k=1}^{n+1} f(x_k) \qquad \text{(relation de Chasles)}$$

La propriété est donc établie au rang n+1.

Par principe de récurrence simple, on peut conclure que :

$$\forall n \in \mathbb{N}^*, \ \forall x_1, \dots, x_n \in \mathbb{R}_+^*, \qquad f\left(\prod_{k=1}^n x_k\right) = \sum_{k=1}^n f(x_k)$$

(c) Soit $x \in \mathbb{R}_+^*$. En appliquant (*) avec $y = \frac{1}{x} \in \mathbb{R}_+^*$, on a:

$$f\left(x \times \frac{1}{x}\right) = f(x) + f\left(\frac{1}{x}\right)$$
 i.e. $0 = f(1) = f(x) + f\left(\frac{1}{x}\right)$

Autrement dit:

$$\forall x \in \mathbb{R}_+^*, \qquad f\left(\frac{1}{x}\right) = -f(x)$$

- 2. Solutions de (*) dérivables sur \mathbb{R}_+^* .
 - (a) Soit f une fonction dérivable sur \mathbb{R}_+^* et vérifiant la relation (*). Soit $x \in \mathbb{R}_+^*$. La fonction f est dérivable sur \mathbb{R}_+^* donc, en dérivant (*) par rapport à la variable y, on a :

$$\forall y \in \mathbb{R}_+^*, \qquad xf'(xy) = 0 + f'(y) \qquad i.e. \qquad xf'(xy) = f'(y)$$

Le choix $y=1\in\mathbb{R}_+^*$ dans cette nouvelle relation fournit l'égalité xf'(x)=f'(1), i.e. $f'(x)=\frac{f'(1)}{x}$ (car $x\neq 0$). Ainsi :

$$\forall x \in \mathbb{R}_+^*, \qquad f'(x) = \frac{f'(1)}{x}$$

- (b) Notons \mathscr{S}_d l'ensemble des fonctions dérivables sur \mathbb{R}_+^* et vérifiant (*). On raisonne par double inclusion.
 - \subset Soit $f \in \mathcal{S}_d$. D'après la question précédente, on a en posant $C = f'(1) \in \mathbb{R}$:

$$\forall x \in \mathbb{R}_+^*, \qquad f'(x) = \frac{C}{x}$$

Il existe donc $D \in \mathbb{R}$ tel que pour tout $x \in \mathbb{R}_+^*$, on ait $f(x) = C \ln(x) + D$. Or f(1) = 1 (d'après la question 1.(a)) et $\ln(1) = 0$ donc D = 0. Ainsi $\mathscr{S}_d \subset \{x \longmapsto C \ln(x) \mid C \in \mathbb{R}\}$.

Soient $C \in \mathbb{R}$ et considérons la fonction $f: x \mapsto C \ln(x)$. Alors f est dérivable sur \mathbb{R}_+^* et on a, en utilisant les propriétés du logarithme,

$$\forall x, y \in \mathbb{R}_{+}^{*}, \qquad f(xy) = C \ln(xy) = C \left[\ln(x) + \ln(y) \right] = C \ln(x) + C \ln(y) = f(x) + f(y)$$

Autrement dit, f vérifie la relation (*) et donc $f \in \mathcal{S}_d$. On a bien l'inclusion réciproque.

Finalement:

$$\mathscr{S}_d = \{x \longmapsto C \ln(x) \mid C \in \mathbb{R}\}$$

3. Solutions de (*) continues sur \mathbb{R}_+^*

Soit $f \in \mathbb{R}^{\mathbb{R}_+^*}$ une solution de (*) continue sur \mathbb{R}_+^* .

(a) Pour tout $x \in \mathbb{R}_+^*$, on sait d'après la question 1.(b) que :

$$f(x^n) = f\left(\prod_{k=1}^n x\right) = \sum_{k=1}^n f(x) = f(x) \sum_{k=1}^n 1$$

Autrement dit:

$$\forall x \in \mathbb{R}_+^*, \ \forall n \in \mathbb{N}, \qquad f(x^n) = nf(x)$$

(b) Soient $n \in \mathbb{Z} \setminus \mathbb{N}$ et $x \in \mathbb{R}_+^*$. D'après la question 1.(c) appliquée au point $x^n \in \mathbb{R}_+^*$, on a :

$$f(x^n) = -f\left(\frac{1}{x^n}\right) = -f(x^{-n}) = -(-n)f(x) \qquad \text{(d'après la question 3.(a) car } -n \in \mathbb{N})$$
$$= nf(x)$$

Ainsi:

$$\forall n \in \mathbb{Z}, \ \forall x \in \mathbb{R}_+^*, \qquad f(x^n) = nf(x)$$

(c) Soit $q \in \mathbb{N}^*$. On applique la question 3.(a) avec $x = e^{\frac{1}{q}} \in \mathbb{R}_+^*$ et n = q:

$$qf\left(e^{\frac{1}{q}}\right) = f\left(\left[e^{\frac{1}{q}}\right]^q\right) = f(e),$$

d'où l'égalité en divisant par $q \neq 0$. Ainsi :

$$\forall q \in \mathbb{N}^*, \qquad f\left(e^{\frac{1}{q}}\right) = \frac{f(e)}{q}$$

(d) Soit $r \in \mathbb{Q}$. Il existe $(p,q) \in \mathbb{Z} \times \mathbb{N}^*$ tel que $r = \frac{p}{q}$. On a :

$$f(e^r) = f\left(e^{\frac{p}{q}}\right) = f\left(\left[e^{\frac{1}{q}}\right]^p\right) = pf\left(e^{\frac{1}{q}}\right) \qquad \text{(question 3.(b) avec } x = e^{1/q} \in \mathbb{R}_+^* \text{ et } n = p \in \mathbb{Z}\text{)}$$

$$= p \times \frac{f(e)}{q} \qquad \text{(question 3.(c))}$$

$$= rf(e)$$

On a donc bien:

$$\forall r \in \mathbb{Q}, \qquad f(e^r) = rf(e)$$

(e) Soit $x \in \mathbb{R}$. Comme \mathbb{Q} est dense dans \mathbb{R} , il existe $(r_n)_{n \in \mathbb{N}} \in \mathbb{Q}^{\mathbb{N}}$ telle que $r_n \xrightarrow[n \to +\infty]{} x$ (d'après la caractérisation séquentielle de la densité). Par ailleurs, $f \in \mathscr{C}(\mathbb{R}_+^*, \mathbb{R})$ et $\exp \in \mathscr{C}(\mathbb{R}, \mathbb{R}_+^*)$ donc, par composition, la fonction $f \circ \exp$ est continue sur \mathbb{R} . En utilisant la caractérisation séquentielle de la continuité, on obtient :

$$\begin{split} f(\mathbf{e}^{\,x}) &= \lim_{n \to +\infty} f(\mathbf{e}^{\,r_n}) = \lim_{n \to +\infty} r_n f(\mathbf{e}) \qquad \text{(d'après la question 3.(d) car } r_n \in \mathbb{Q}) \\ &= x f(\mathbf{e}) \qquad \text{(puisque } r_n \xrightarrow[n \to +\infty]{} x) \end{split}$$

Par conséquent :

$$\forall x \in \mathbb{R}, \qquad f(e^x) = xf(e)$$

- (f) On note \mathscr{S}_c l'ensemble des fonctions continues sur \mathbb{R}_+^* et solutions de (*). On raisonne par analyse-synthèse.
 - ★ Soit $f \in \mathcal{S}_c$. D'après la question 3.(e), si on pose $C = f(e) \in \mathbb{R}$, alors :

$$\forall t \in \mathbb{R}, \qquad f(e^t) = Ct$$

et donc :

$$\forall x \in \mathbb{R}_+^*, \qquad f(x) = f(e^{\ln(x)}) = C \ln(x)$$

On en déduit que $\mathscr{S}_c \subset \{x \longmapsto C \ln(x) \mid C \in \mathbb{R}\} = \mathscr{S}_d$.

 \star Toute fonction dérivable sur un intervalle étant continue sur celui-ci, on a aussi $\mathscr{S}_d \subset \mathscr{S}_c$.

Finalement, on a l'égalité :

$$\mathscr{S}_c = \mathscr{S}_d = \{x \longmapsto C \ln(x) \mid C \in \mathbb{R} \}$$