APPLICATIONS

(quelques corrigés)

Exercice 6

On note f l'application proposée. Soient $(a,b),(a',b')\in\mathbb{Z}^2$. On suppose qu'on a l'égalité f((a,b))=f((a',b')). Montrons que (a,b)=(a',b') (c'est-à-dire que a=a' et b=b'). Par hypothèse, on a $a+b\sqrt{2}=a'+b'\sqrt{2}$, ce qui implique que :

$$a - a' = (b' - b)\sqrt{2}$$

Par l'absurde, supposons que $b \neq b'$. Alors :

$$\sqrt{2} = \frac{a - a'}{b' - b}$$

est le quotient de deux entiers relatifs donc $\sqrt{2}$ est un rationnel, ce qui est absurde. On en déduit que b=b' et donc a-a'=0 puis a=a'. Finalement, (a,b)=(a',b'). On peut donc conclure que :

l'application f est injective

Exercice 7

On suppose que f est surjective et que $g_1 \circ f = g_2 \circ f$. Montrons que $g_1 = g_2$. On veut donc montrer que :

$$\forall y \in F, \qquad g_1(y) = g_2(y)$$

Soit $y \in F$. Comme f est une surjection de E sur F et puisque $y \in F$, il existe $x \in E$ tel que y = f(x). On a donc :

$$g_1(y) = g_1(f(x)) = (g_1 \circ f)(x)$$
 et $g_2(y) = g_2(f(x)) = (g_2 \circ f)(x)$

Or $g_1 \circ f = g_2 \circ f$ donc $g_1(y) = g_2(y)$, ce qu'il fallait démontrer. Finalement :

on a bien l'égalité
$$g_1 = g_2$$

Exercice 8

Soit $f: \mathbb{N} \longrightarrow \mathbb{N}$ telle que, pour tout $n \in \mathbb{N}$, on ait $f(n) \leqslant n$. Montrons que $f = \mathrm{Id}_{\mathbb{N}}$, *i.e.* que:

$$\forall n \in \mathbb{N}, \qquad f(n) = \mathrm{Id}_{\mathbb{N}}(n) = n$$

On utilise une récurrence forte.

- ★ On sait que $f(0) \in \mathbb{N}$ et que $f(0) \leq 0$. Ceci entraı̂ne que f(0) = 0.
- \star Soit $n \in \mathbb{N}$. On suppose que :

$$\forall k \in [0, n], \qquad f(k) = k$$

Montrons que f(n+1) = n+1. Par hypothèse, on sait que $f(n+1) \le n+1$, donc :

$$f(n+1) \in \llbracket 0, n+1 \rrbracket$$

Il existe donc $j \in [0, n+1]$ tel que f(n+1) = j. Par l'absurde, supposons que $j \in [0, n]$. Alors on a f(n+1) = j et, par hypothèse de récurrence, on a aussi f(j) = j. L'égalité f(n+1) = f(j) et l'injectivité de f entraı̂nent que j = n+1, ce qui contredit la définition de j. Ainsi, j = n+1 et donc f(n+1) = n+1.

On a bien montré par récurrence que :

pour tout
$$n \in \mathbb{N}$$
, $f(n) = n$, ce qui signifie que $f = \mathrm{Id}_{\mathbb{N}}$

Exercice 10

1

1. Considérons $X_1 = \emptyset$ et $X_2 = \{1\}$. Alors X_1 et X_2 sont deux parties distinctes (c'est-à-dire $X_1 \neq X_2$) de \mathbb{N} et, comme 1 est un entier naturel impair, on a :

$$\varphi(X_1) = \varphi(X_2) = \varnothing$$

On en déduit que :

l'application φ n'est pas injective

2. Pour tout $X \in \mathscr{P}(\mathbb{N})$, on a :

$$\varphi(X) = X \cap 2\mathbb{N} \subset 2\mathbb{N} \tag{*}$$

La partie $\{1\}$ de $\mathbb N$ n'est pas incluse dans $2\mathbb N$ donc elle n'admet pas d'antécédent par φ dans $\mathscr P(\mathbb N)$. On en déduit que :

l'application φ n'est pas surjective

Remarque : si E et F sont des ensembles et si $f \in F^E$, on appelle image de f l'ensemble f(E).

Montrons que l'image de φ est :

$$\varphi(\mathscr{P}(\mathbb{N})) = \mathscr{P}(2\mathbb{N})$$

en raisonnant par double inclusion.

- * Montrons que $\varphi(\mathscr{P}(\mathbb{N})) \subset \mathscr{P}(2\mathbb{N})$. Soit $Y \in \varphi(\mathscr{P}(\mathbb{N}))$. Alors il existe $X \in \mathbb{N}$ tel que $Y = \varphi(X)$. D'après (*), on a $Y \subset 2\mathbb{N}$, c'est-à-dire $Y \in \mathscr{P}(2\mathbb{N})$. On a donc bien l'inclusion $\varphi(\mathscr{P}(\mathbb{N})) \subset \mathscr{P}(2\mathbb{N})$.
- * Montrons que $\mathscr{P}(2\mathbb{N}) \subset \varphi(\mathscr{P}(\mathbb{N}))$. Soit $X \in \mathscr{P}(2\mathbb{N})$. Alors $X \subset 2\mathbb{N}$ donc $X \cap 2\mathbb{N} = X$. Comme $2\mathbb{N} \subset \mathbb{N}$, on a aussi $X \in \mathscr{P}(\mathbb{N})$ donc la dernière égalité se réécrit $\varphi(X) = X$. On a ainsi $X \in \varphi(\mathscr{P}(\mathbb{N}))$, d'où l'inclusion $\mathscr{P}(2\mathbb{N}) \subset \varphi(\mathscr{P}(\mathbb{N}))$.

Finalement, on a l'égalité :

$$\varphi(\mathscr{P}(\mathbb{N})) = \mathscr{P}(2\mathbb{N})$$

Exercice 11

- 1. On distingue deux cas.
 - * Premier cas : $A = \emptyset$

Alors $\psi = \operatorname{Id}_{\mathscr{P}(E)}$ et donc ψ est injective (en tant qu'application identité).

 \star Deuxième cas : $A \neq \emptyset$

On remarque que $\psi(\varnothing) = \psi(A) = A$ donc, comme $A \neq \varnothing$, l'application ψ n'est pas injective.

Ainsi:

$$\psi$$
 est injective si et seulement si $A = \emptyset$

- 2. On distingue à nouveau deux cas.
 - * Premier cas : $A = \emptyset$

Alors $\psi = \operatorname{Id}_{\mathscr{P}(E)}$ et donc ψ est surjective (en tant qu'application identité).

 \star Deuxième cas : $A \neq \emptyset$

Pour tout $X \in \mathscr{P}(E)$, on a $A \subset \psi(X)$ (par définition de $\psi(X)$) et, comme $A \neq \emptyset$, on ne peut pas avoir l'égalité $\psi(X) = \emptyset$. En effet, supposons par l'absurde que $\psi(X) = \emptyset$. Alors :

$$\varnothing \subset A \subset \varphi(X) = \varnothing,$$

ce qui implique que $A=\varnothing$, ce qui est absurde. On en déduit que \varnothing n'admet pas d'antécédent par ψ dans $\mathscr{P}(E)$ et donc que ψ n'est pas surjective.

On en déduit que :

$$\psi$$
est surjective si et seulement si $A=\varnothing$

Dans tous les cas, montrons que :

$$\psi(\mathscr{P}(E)) = \{ Y \in \mathscr{P}(E) \mid A \subset Y \}$$

Remarque: dans le cas où $A = \emptyset$, on retrouve bien entendu le fait que :

$$\psi(\mathscr{P}(E)) = \mathscr{P}(E)$$

— Soit $Y \in \psi(\mathscr{P}(E))$. Il existe alors $X \in \mathscr{P}(E)$ tel que :

$$Y = \psi(X) = X \cup A$$

Comme $A \subset X \cup A$, on a bien $A \subset Y$.

— Soit $Y \in \mathcal{P}(E)$ tel que $A \subset Y$. On remarque que :

$$\psi(Y) = Y \cup A = Y$$

puisque $A \subset Y$. On en déduit que $Y \in \psi(\mathscr{P}(E))$.

Finalement, l'image de ψ est :

2

$$\psi(\mathscr{P}(E)) = \{ Y \in \mathscr{P}(E) \mid A \subset Y \}$$