ANALYSE ASYMPTOTIQUE

1 Équivalents (et DL)

Exercice 1 Déterminer les limites des expressions suivantes, notées f(x), aux points indiqués :

1.
$$x(x+3)\frac{\sqrt{x+3}}{\sqrt{x}\sin(\sqrt{x})}$$
 en 0^+

3.
$$\frac{(1-e^x)(1-\cos(x))}{3x^3+2x^4}$$
 en 0 4. $\left(x-\frac{\pi}{4}\right)\tan\left(x+\frac{\pi}{4}\right)$ en $\frac{\pi}{4}$

5.
$$th(x)^{\ln(x)}$$
 en $+\infty$

6.
$$\sqrt[3]{x^3+1} - \sqrt{x^2+x+1}$$
 en $+\infty$

7.
$$\left(1 + \frac{1}{x}\right)^x$$
 en 0^+

8.
$$\tan(x)\tan(2x)$$
 en $\frac{\pi}{2}$

2. $\frac{(1-\cos(x^2))e^{\frac{1}{x}}}{x^5+x^3}$ en 0^+

9.
$$\left(1+\frac{1}{x}\right)^x$$
 en $+\infty$

$$10. \frac{e^{x^2+x}-e^{2x}}{\cos\left(\frac{\pi x}{2}\right)} \text{ en } 1$$

11.
$$\frac{\cos(3x) - \cos(x)}{x^2}$$
 en 0

12.
$$\frac{a^x - b^x}{x}$$
 en 0 (0 < a < b)

13.
$$\frac{\sqrt{2-x^2}-1}{\ln(x)}$$
 en 1

14.
$$\frac{\sqrt{3}\cos(x) - \sin(x)}{x - \frac{\pi}{3}}$$
 en $\frac{\pi}{3}$

15.
$$\frac{1}{\sin(x)^2} - \frac{1}{x^2}$$
 en 0

16.
$$\ln(x) \ln(1-x)$$
 en 1

Exercice 2 Soient a, b et c trois nombres réels strictement positifs. Déterminer la limite, quand x tend vers $+\infty$, de la fonction :

$$f: x \longmapsto \left(\frac{a^{\frac{1}{x}} + b^{\frac{1}{x}} + c^{\frac{1}{x}}}{3}\right)^x$$

Exercice 3 Soit $f: x \longmapsto x \ln \left(1 + \frac{\ln \left(1 + \frac{1}{x}\right)}{\ln(x)}\right)$.

- 1. Montrer que $f(x) \underset{x \to +\infty}{\sim} \frac{1}{\ln(x)}$.
- 2. En déduire la limite en $+\infty$ de $g: x \mapsto (e^{f(x)} 1) \ln(x)$.

3. Soit $h: x \longmapsto \left[\left(\frac{\ln(x+1)}{\ln(x)} \right)^x - 1 \right] \ln(x)$. Déterminer la limite de h en $+\infty$.

Exercice 4 Déterminer un équivalent *simple* des expressions suivantes, notées f(x), aux points indiqués :

1.
$$x \ln(1+x) - (x+1) \ln(x)$$
 en $+\infty$

$$2. \ln(\cos(x)) \text{ en } 0$$

3.
$$\lfloor x \rfloor \ln \left(1 + \frac{1}{x^2} \right)$$
 en $+\infty$

4.
$$x\left(e^{\frac{1}{x}} - \cos\left(\frac{1}{x}\right)\right)$$
 en $+\infty$

5.
$$\sqrt{x+1} - \sqrt{x^2+1}$$
 en 0

6.
$$\tan\left(\frac{\pi x}{2x^2+3}\right)$$
 en $+\infty$

7.
$$\cos(x)$$
 en $\frac{\pi}{2}$

8.
$$\frac{1}{1+x} - \frac{1}{2}$$
 en 1

9.
$$\frac{\sqrt{1+x}-1}{1-\cos(x)}$$
 en 0

10.
$$\arcsin(x) + \cos(x) - 1 \text{ en } 0$$

11.
$$\arccos(x) - \frac{\pi}{2}$$
 en 0

12.
$$\ln\left(\frac{e^x+1}{2}\right) - \frac{4x+x^2}{8}$$

Exercice 5 Déterminer un équivalent simple du terme général suivant quand n tend vers $+\infty$:

$$u_n = 2\sqrt{n} - \sqrt{n+1} - \sqrt{n-1}$$

2 Développements limités

Exercice 6 Déterminer les développements limités à l'ordre n au voisinage de 0 des expressions suivantes, notées f(x), pour la valeur de n indiquée :

1.
$$e^x \sin(x)$$
 pour $n = 3$

2.
$$\sin(x)^3 - x^3 \cos(x)$$
 pour $n = 3$

3.
$$x^3\sqrt{1+x}$$
 pour $n=5$

$$4. \sqrt{4-x} \text{ pour } n=3$$

5.
$$(1+x)^{\frac{1}{x}}$$
 pour $n=2$

6.
$$\cos\left(\frac{\pi}{3} + x\right)$$
 pour $n = 3$

7.
$$e^{\tan(x)}$$
 pour $n=3$

1

8.
$$\ln(3e^x + e^{-x})$$
 pour $n = 3$

9.
$$\frac{1}{1 + \cos(x)}$$
 pour $n = 4$

10.
$$\frac{\cos(x)}{\sqrt{1-x}}$$
 pour $n=4$

Exercice 7 Calculer les développements limités à l'ordre 4 des expressions suivantes aux points x_0 indiqués :

1.
$$e^x$$
 pour $x_0 = 1$

2.
$$\cos(x)$$
 pour $x_0 = \frac{\pi}{4}$

3.
$$\arctan(x)$$
 pour $x_0 = 1$

4.
$$\ln(x)$$
 pour $x_0 = e$

5.
$$\tan(x)^{\tan(2x)}$$
 pour $x_0 = \frac{\pi}{4}$

6.
$$\frac{1}{1+x^2}$$
 pour $x_0 = 1$

7.
$$\frac{\sqrt{x^2 - 1}}{x}$$
 pour $x_0 = +\infty$

8.
$$\sqrt{x^2 + x} - \sqrt{x^2 - x}$$
 pour $x_0 = +\infty$

Exercice 8 (DL d'une bijection réciproque) On considère la fonction f définie sur I =]-1,1[par :

$$\forall x \in I, \qquad f(x) = x + \ln(1+x)$$

- 1. Déterminer le développement limité à l'ordre 3 de f au voisinage de 0.
- 2. Démontrer que f réalise une bijection de I sur un intervalle J à déterminer.
- 3. Justifier l'existence du développement limité à l'ordre 3 de f^{-1} au voisinage de 0 puis le déterminer.

Exercice 9 Soit la fonction $f: x \longmapsto x^{1+\frac{1}{x}}$ définie sur \mathbb{R}_+^* . Déterminer la position de la courbe représentative \mathscr{C} de f par rapport à sa tangente au voisinage de 1.

Exercice 10 Montrer que la fonction $f: x \longmapsto \frac{\sqrt[3]{3x-2}}{1+\ln(x)}$ admet un maximum local en x=1.

3 Applications

Exercice 11 1. Montrer que :

$$\forall x \in [0,1], \qquad x - \frac{x^3}{6} \leqslant \sin(x) \leqslant x$$

2. En déduire que :

$$\sum_{k=1}^{n} \sin\left(\frac{k}{n^2}\right) \underset{n \to +\infty}{=} \frac{1}{2} + \frac{1}{2n} + o\left(\frac{1}{n}\right)$$

Exercice 12 (suite implicite) 1. Montrer que, pour tout $n \in \mathbb{N}^*$, l'équation $\cos(x) = nx$ possède une unique solution notée x_n dans l'intervalle [0,1].

- 2. Déterminer la limite de $(x_n)_{n\in\mathbb{N}^*}$.
- 3. Étudier la monotonie de $(x_n)_{n\in\mathbb{N}^*}$.
- 4. Montrer que $x_n \underset{n\to+\infty}{\sim} \frac{1}{n}$.
- 5. Déterminer un équivalent de $x_n \frac{1}{n}$ quand n tend vers $+\infty$.

Exercice 13 (suite récurrente) On considère la suite $u=(u_n)_{n\in\mathbb{N}}$ définie par $u_0=0$ et :

$$\forall n \in \mathbb{N}, \qquad u_{n+1} = \sqrt{u_n + n^2}$$

- 1. Justifier que la suite u est bien définie et positive.
- 2. Déterminer la limite de la suite u.
- 3. Montrer que pour tout $n \in \mathbb{N}$, on a $u_n \leq n$.
- 4. En déduire que $u_n = n + \mathcal{O}(1)$.
- 5. En déduire que $u_n = n \frac{1}{2} + o(1)$.
- 6. En utilisant le développement limité de $x \longmapsto \sqrt{1+x}$ au voisinage de 0, montrer que :

$$u_n \underset{n \to +\infty}{=} n - \frac{1}{2} - \frac{3}{8n} + o\left(\frac{1}{n}\right)$$

Exercice 14 Pour tout $n \in \mathbb{N}$, on pose $u_n = \int_{n^2}^{n^3} \frac{\mathrm{d}t}{1+t^2}$. Montrer que $u_n \underset{n \to +\infty}{\sim} \frac{1}{n^2}$.

Exercice 15 (étude locale) On cherche à déterminer le comportement au voisinage de 0 de la fonction $f: x \longmapsto \frac{1}{\arcsin(x)} - \frac{1}{x}$.

- 1. Déterminer le domaine de définition \mathcal{D} de f.
- 2. Montrer que l'on peut prolonger f par continuité en 0. On notera encore f ce prolongement.
- 3. La fonction f est-elle dérivable en 0?

2

4. Étudier la position relative du graphe de f et de sa tangente au voisinage de l'origine.

Exercice 16 (étude locale) Soit la fonction $f: x \mapsto (1+x)e^{\frac{1}{x}}$. Étudier les branches infinies de f et déterminer la position relative des asymptotes par rapport à la courbe représentative de f.