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Students need a robust and extensive computer-based education.  Our schools have become an 

increasingly technological environment. Students have greater access to computational technology for 

learning than ever before. Following school, many career and work opportunities are situated within an 

increasingly technological environment. Computational thinking (CT) is a process that can aid students 

to use these technology tools more effectively in their educational and potential career pursuits. To 

undertake learning with CT is to invoke an heuristic problem solving method that incorporates hands-on 

learning while working towards a solution using the best tools available (Yadav et al., 2017). CT has been 

and is being integrated into programs and curricula in Canadian provinces and around the world (Caeli & 

Bundsgaard, 2020; European Commission. Joint Research Centre., 2016; Floyd, 2020; Gülbahar & 

Kalelioğlu, 2017; Hubwieser et al., 2015). The use of CT methods is growing but necessary shifts in 

practices and understanding around computers-based education and computational thinking still need 

to occur for both students and teachers. Proponents of computational thinking see it as a multi-

disciplinary practice that will broaden the focus of computer science and mathematics instruction 

(Grover et al., 2015; Wing & Stanzione, 2016).  

Computational thinking in the classroom ensures that students can receive a robust computer-

based education, providing educators and students with methods and skills to explore subjects with an 

evolving understanding of the technical tools and processes available. This paper reviews the concepts 

of computational thinking, the theorical underpinnings, and areas of application for both students and 

teachers with a focus on middle years education (grades 6-9). 



What is Computational Thinking? 

  Computational thinking, as an educational theory, is an evolving concept. Computational 

thinking draws elements from comparable thinking styles such as algorithmic thinking or design thinking, 

and adds the use of computing technology to arrive at a problem solution (Denning, 2017; Jenson & 

Droumeva, 2016; Papert, 1980). Computational thinking considers the use of tools, both analog and 

digital, to determine the best method, or methods, to solve problems (Barr & Stephenson, 2011).  

Though the first instance of computational thinking is attributed to Seymour Papert, CT rose to 

prominence following a 2006 article by Jeannette Wing (Dagienė et al., 2017). Wing’s article provided 

several conceptual ideas regarding computational thinking. Her definitions are cited by authors 

extensively, and many have added to and expanded on her original definitions, see Figure 1. Generally, 

most authors agree that CT is a thinking process that allows students to solve problems using a range of 

skills, often involving technology. CT, as a process, has avoided codification, and there is some 

discrepancy as to all that CT entails. A recent study out of Denmark by Caeli and Bundsgaard (2020) 

stated, "there is still little common understanding of what computational thinking is, how it should be 

taught, and how it can be assessed”. The variety within CT does not negate the potential of 

computational thinking but reflects upon the flexibility found within the process. As technology changes 

so can the associated elements of computational thinking (Aho, 2012). Computational thinking evolves as 

the understanding of computers changes since that understanding is related to how computers are used.  

Figure 1: Computational Thinking Definitions 



Computational Thinking Skills 

Wing (2006) provided an extensive list of computational thinking characteristics that set the 

foundation for CT, see Figure 2. More recently, the European Commission’s Science and Knowledge 

service released a comprehensive report on the practice and acceptance of CT. The commission report 

included a list of core skills for computational thinking from various definitions and descriptions. The skills 

list included concepts of “abstraction, algorithmic thinking, automation, decomposition, debugging, and 

generalization” (European Commission. Joint Research Centre., 2016), see Table 1. The focus on 

technology and computational logic extends the capabilities of other forms of thinking such as algorithmic 

thinking or logical reasoning (Csizmadia et al., 2015). "The power of computational thinking is that it 

applies to every other type of reasoning. It enables all kinds of things to get done: quantum physics, 

advanced biology, human computer systems, development of useful computational tools” (Barr & 

Stephenson, 2011). The skills of CT expand the student’s understanding of what is possible through 

technology, and provides the learner with types of thinking required to explore problems in new ways. 

Figure 2: Computational Thinking (Wing, 2006) 



Table 1: Core Skills of Computational Thinking 

 

The Computational Thinking Process 

Many authors have provided frameworks for the computational thinking process. Einhorn (2012) 

provided a thorough example of the CT process in education, 

"A student, when using programming to tackle a question, has to develop a hypothesis as to 

how best to solve or answer it, then build, through analysis of the problem, a set of rules (an 

algorithm) that can be used to test the hypothesis, after which she can review the results 

(data), and revise the solution. The art of programming requires creativity and inventiveness, 

logic, algorithmic thinking, and an appreciation of the recursive nature of this process, as the 

student learns from her failures, refines her work, and gets a deeper understanding of the 

problem. As with any creation, even once a solution is found – a pattern, an algorithm – the 

solution can be refined, simplified and beautified, made more elegant.”  

This description highlights the relationship between CT skills and the application of computer tools 

in the educational process. It is important to note that the process does not necessarily incorporate 

all the skills every time, but that there are clear identifiable phases in the process. Wolfram (2020) 

proposed a 4-step computational thinking process that reasonably summarizes the Einhorn 

description: 1) define the questions to consider, 2) abstract the process to something computable, 

3) compute answers and 4) interpret the results. Palts & Pedaste (2020) provided a cyclical model 

Abstraction “Abstraction is the process of making an artefact more understandable 
through reducing the unnecessary detail” (Csizmadia et al., 2015) 

Algorithmic Thinking “A way of getting to a solution through a clear definition of the steps” 
(Csizmadia et al., 2015) 

Automation “Process in which a computer is instructed to execute a set of repetitive 
tasks” (European Commission. Joint Research Centre., 2016) 

Decomposition “A way of thinking about artefacts in terms of their component parts” 
(Csizmadia et al., 2015) 

Debugging Fixing errors and fine tuning solutions 
Generalization “identifying patterns, similarities and connections, and exploiting those 

features.” (Csizmadia et al., 2015) 



for computational thinking similar to both the Einhorn description and Wolfram process, see Figure 

3. These models provide structure to encapsulate the skills of the computational thinking process. 

The process is still flexible but is scaffolded to follow a relatively similar structure when applied.   

The Theoretical Underpinnings of Computational Thinking 

The framework of computational thinking would not be complete without consideration of the 

learning theories embedded within the process. CT is meant to be a constructivist process. The idea is to 

take problems, have students pull them apart, and develop algorithms or methods to solve the problems. 

The students analyze the results for errors, biases, and appropriate solutions (Wolfram, 2020). To 

consider a problem, the student contemplates what they know and what they need to know. They work 

with that knowledge or lack of knowledge, guided by a teacher to scaffold understanding, and work 

through any misconceptions as needed (Armoni, 2011; Resnick et al., 2009). Ultimately the students 

come to their own conclusions, “they interpret what they hear in the light of their own knowledge and 

experience” (Ackermann, 2001). CT uses several constructivist skills to allow students to create their own 

understanding, work with their own data and content, and generate their own product. 

Figure 3: Computational Thinking Cycle: Palts & Pedaste, 2020 



Ackerman (2001) described a main goal of constructivist learning, “learning, especially today is 

much less about acquiring information or submitting to other people’s ideas or values, than it is about 

putting one’s own words to the world, or finding one’s own voice, and exchanging our ideas with others”. 

This is the way that CT is intended to work for the learner. The way to a solution does not have be the 

same for each student. Students can use methods that are helpful and useful to them. They can 

collaborate with others, to work with individual strengths and develop a creative or informative solution. 

Students are not limited to the rigid structures of particular methods, and the goal may be to develop 

their own method beyond their current understanding (Barr & Stephenson, 2011). The student grows and 

explores methods with a teacher’s support and guidance. The teacher facilitates the ways the student can 

develop their own thinking, to grasp new ideas and explore the technology that is available to them 

(Armoni, 2011).  

An even more relevant learning theory associated with CT is constructionism. Seymour Papert, an 

early proponent of CT, is attributed with the development of constructionism (Ackermann, 2001). Papert 

was a student of constructivism (Papert, 1980), and advocated for using technology with the 

metacognitive and knowledge creation elements of constructivism, “Papert’s approach helps us 

understand how ideas get formed and transformed when expressed through different media, when 

actualized in particular contexts, when worked out by individual minds” (Ackermann, 2001). He arrived at 

the idea that computers should power constructivist learning: 

“When a child learns to program, the process of learning is transformed. It becomes more 

active and self-directed. In particular, the knowledge is acquired for a recognizable personal 

purpose. The child does something with it. The new knowledge is a source of power and is 

experienced as such from the moment it begins to form in the child's mind.” (Papert, 1980) 

The tools available through technology encourage students to think more about the problems explored.  

This is the kind of thinking that drives computational thinking, that computers are a tool with which 



students can explore metacognition and increase communication in learning. “The intellectual 

environments offered to children by today's cultures are poor in opportunities to bring their thinking 

about thinking into the open, to learn to talk about it and to test their ideas by externalizing them" 

(Papert, 1980). Papert was not interested in the ‘drill and practice’ use for computer-based learning that 

was prevalent in the early 1980s and is still prevalent today.   

“the idea of the computer as an instrument for drill and practice that appeals to teachers 

because it resembles traditional teaching methods also appeals to the engineers who 

design computer systems: Drill and practice applications are predictable, simple to 

describe, efficient in use of the machine's resources.” (Papert, 1980) 

To Papert, computer-based learning should occur through metacognition and construction of tangible 

and useful artifacts. In relation to constructivism, “Papert’s constructionism, in contrast, focuses more on 

the art of learning, or ‘learning to learn’, and on the significance of making things in learning” 

(Ackermann, 2001).  

CT is a process that allows students to explore problem solving with a constructivist / 

constructionist framework. The process is useful in many subject areas, but particularly where problem 

solving could include technology skills. The technology aspect extends the application of various problem 

solving methods and gives students the ability to think beyond the limitations of basic skills and 

knowledge regurgitation. 



Computational Thinking and Middle Years Mathematics 

 Computational thinking is a useful problem solving and thinking process to incorporate into 

middle years (grades 6-9). Piaget in his stages of cognitive development, describe these students as 

moving out of the concrete operational stage and into the formal operational stage (Driscoll, 2005). 

Students in this age range can apply logic to situations, think more abstractly, and synthesize disparate 

concepts to help them construct their own knowledge (Driscoll, 2005). Socially and mentally, middle 

years students are defining their identities. They are exploring topics with developing interests, 

personalities, and attitudes. They are given new opportunities to explore subject areas that they may 

not have had access to in the early years of school. Their experiences in band, shop, technology, and 

physical education become more specialized. Students of this age range are more open than older 

students to trying new subject areas like programming (Kong et al., 2018). It is an interesting time, and a 

good place to explore tasks and projects that tap into the elements of computational thinking. The 

following sections reflect upon areas of learning where CT practices are already present in middle years 

classrooms, and areas which would allow for integration within already existing classroom practice. 

CT Applications in Mathematic Instruction: The Math(s) Fix 

As much as technology is available to teachers and students in many classrooms, our curricular 

expectations do not make much room for technology usage. According to Wolfram (2020), “Every maths 

curriculum around the world starts from the assumption that the student needs to calculate themselves 

and only then in some cases — if they're lucky — might they progress to using calculating machinery". 

The focus on computation in our current mathematics instruction leads to a protracted, less dynamic 

engagement with mathematics (Wolfram, 2020). Papert (1980) raised similar concern that computer use 

in education is more about “The computer programming the child” rather than “The child programs the 

computer”.  



Wolfram (2020) provided a four-step computational thinking process: define, abstract, compute 

and interpret the results. To undertake the compute step in CT is to have something else do the 

calculation rather than the problem solver. This provides more time and capacity for the learner to focus 

on the other elements of the CT process. Avoiding the drudgery of hand-calculation encourages 

algorithmic thinking, the exploration of more complex problems, and creativity in problem solving and 

solution presentation (Wolfram, 2020). In traditional mathematics lessons, students are often provided 

the problems and their task is to determine the answer. CT shifts the focus from just calculation to 

problem deconstruction and analysis of solutions, “What was the hardest, most human-centred step in 

the maths process is now the cheapest and the most mechanized” (Wolfram, 2020). Students need 

more time in our math classes to ensure they are just as effective at problem building and problem 

analysis as they are with numeracy and calculation (Wolfram, 2020). "Traditional maths in school has 

largely drowned out context of the application of the maths from being integral to what's learnt" 

(Wolfram, 2020). 

CT Connections to Real-World Problems  

A common question from students within middle years and high school mathematics is “when am 

I ever going to use this?”. Certain topics within mathematics courses are useful for trades work, further 

mathematics, science, cooking, and various other topics. However, some of the skills are enigmatic to 

the learner. Computational thinking allows for focus on real problems while incorporating the abstract 

nature of certain mathematical concepts, whether that is working with data sets tracking COVID cases or 

determining how many basketballs would be needed to fill the gymnasium. These types of tasks lead to 

tangible situations where the search for a solution leads to hands-on activity or the provision of useful 

tools to showcase and share results. The amount of data and variety of cases that are available to us 

from all areas of life could easily provide connections across the mathematics curriculum, and into other 

subject areas. The limitation at this point is not in data and case studies applicable to this age group, the 



limitation is the focus on hand-calculation, or even calculator-based analysis (Wolfram, 2020). CT is a 

way to take problem solving into new realms for students. 

Another common concern heard from students relates to frustration with their abilities in 

mathematics, “I can’t do this!”. Where rote instruction and the focus on calculation perpetuates this 

kind of thinking in students, the problem solving nature of CT has the potential to break through that 

kind of thinking. To students who are frustrated, computational thinking provides a process that can 

open a toolbox beyond hand-calculation. Students can demonstrate knowledge and understanding 

through their application of tools and their ability to organize or showcase data. Students could show 

their understanding of parabolas through art and parabola translation using a graphing application on a 

tablet.  Students could show social science research data through an infographic designed online. By 

expanding the focus of math beyond the limits of calculation, students can build confidence in 

associated problem building and analysis processes. Calculation is important and has a place within 

mathematics instruction, but we have tools to better include various modes of thinking that are 

excluded when the focus is only on calculation. 

Programming and Mathematics – The Two Go Together 

Programming skills are only a portion of the CT toolkit, but there is still a place for 

understanding computer programming within mathematics instruction. Grover et al. (2015) propose 

that there is a strong reciprocal relationship between the development of mathematical skills and 

computer science skills, “Given the synergies between these domains of thinking and problem solving, 

perhaps there is also a case for teaching Math through computing and vice versa” (Grover et al., 2015). 

CT is most effective if students have the skills of programming and coding in their toolkit, “All of today’s 

students will go on to live a life heavily influenced by computing, and many will work in fields that 

involve or are influenced by computing” (Barr & Stephenson, 2011). 



The provision of programming, computational thinking and computer science education for K-9 

students is expanding around the world (European Commission. Joint Research Centre., 2016). It can be 

difficult to bridge the gap between fun coding activities in elementary school, and the more academic 

aspects of computer science in high school. It can be difficult for students to make connections between 

computer programming and other subjects if the computer science instruction is without context. This 

can lead students to dismiss computer science in high school (Grover et al., 2014). A computer-based 

instruction that focuses on integrating CT with problem solving in mathematics and other subject areas 

can provide necessary context. “To remedy the situation, therefore, student perceptions of the 

discipline of [computer science] must develop early on in their school career and must also move 

beyond hardware, software, and programming to encompass a more realistic, broader, real-world 

context” (Grover et al., 2014). To instruct with CT, it is important to include programming, but the 

reliance can not be programming apart from the rest of the process. The teaching and application of CT 

comes from the focus on problem solving, real-world applications, and working with interesting topics 

for the students (European Commission. Joint Research Centre., 2016). Callysto, an online learning tool 

provided by Cybera, provides a variety of lessons incorporating coding, computational thinking and data 

analysis across several subject areas (How It Works – Callysto, 2021). The tool includes activities 

incorporating CT and programming to study the bubonic plague, French verb coding, and poetry 

concepts, to name a few (Learning Modules – Callysto, 2021). Learning programming will expand the 

student’s toolkit, and hopefully increase their understanding of the role of computer science in a host of 

curricular domains.  

Probability and Statistics Through Data Science and Computational Thinking 

With the ever-increasing power of computers to do the heavy work of data analysis and 

interpretation, data science can be explored through middle years probability, statistics, digital 



citizenship, and social studies.  Students can easily incorporate data science to work with real world 

data, data representation, and integrate large datasets located on or scraped from the web.  

The statistics and probability elements of the Saskatchewan curriculum include a surface 

exploration of the topic of data, see Figure 4. A computer-based analysis would allow for expansive 

explorations of data sets while maintaining the core competencies as described in the curriculum. The 

curriculum includes discussion about conclusions, biases, and understanding of the role of probability in 

society (Saskatchewan et al., 2009). Computer-based data analysis as part of the computational thinking 

process can deepen those discussions. The ability to explore data confidently, and competently is a 

necessary skill in our data-flooded world, a world that frequently showcases misinformation. Any ability 

to overcome misinformation is useful for society. Having students use their own critical thinking, and 

Figure 4: Statistics and Probability Outcomes in Saskatchewan Curriculum (Saskatchewan et al., 2007, 2008; Saskatchewan, 
Ministry of Education, et al., 2009; Saskatchewan, Saskatchewan Science and Technology, et al., 2009) 



tools such as data analysis and visualization to come to their own conclusions about relevant topics is 

essential for such a vulnerable and connected group of students.  

Students need access to the tools and skills related to data analysis. Probability and statistics 

education is a start, and integrating more computer based analysis and visualization is possible with the 

tools currently available.  

A further application of the probability and statistics curriculum that fits with CT is art and 

design as part of data visualization (Saskatchewan et al., 2008, 2009). Adding elements of artistry to 

mathematics is something that students may have little experience with. Teaching data visualization 

with CT extends how students can represent data, and students have new opportunities to create. They 

can learn of ways that they could represent their work through graphing or plotting in digital and analog 

forms. They have the choice then to communicate with data in ways they find suitable: They could 

choose an analog method like a poster or hand-drawn graphs and charts, but with access and 

understanding of computer-based data visualization, students could develop interactive digital tools. 

Though not the only tools available, Jupyter Notebook (Project Jupyter, 2019) and Wolfram Language 

(Wolfram, 2021) provide programming environments with accessible methods for working with and 

representing data. With a greater focus on CT processes that allow for data analysis and data 

visualization, students could be at the forefront for creating community information portals. These 

young students could explain trends on pandemic information and become leaders in providing reliable 

accurate information.  

Computational Thinking and Game Design 

 Having a positive attitude about a subject, by both teacher and students, can help students 

excel. This is further enhanced when students can connect to the content and the purposes of learning.  

Finding meaning in learning can come in a variety of forms, but if students can see programming and 

computing as useful, they will likely be more invested (Kong et al., 2018). Many children enjoy games, 



find ways to use their devices to pass time, and use their devices to connect with others. These are 

pastimes and interests that can be explored in education too. Tools like Scratch, and other game design 

tools, can create a connection between pastime and learning, between games and programming 

(Resnick et al., 2009). Furthermore, game design connects CT to processes within mathematics, science 

and associated fields, "One of the main motivations for bringing game design and development into the 

fold of STEM curriculum planning concerns the need to introduce and familiarize youth to the principles 

of computation, design thinking and procedural logic, from an earlier age than is currently practised" 

(Jenson & Droumeva, 2016). Game design incorporates several of the same skills as CT (and 

mathematics) – planning, problem solving, abstraction, and creative representation.  

Game design encourages exploration of the non-computed products of the CT process. For 

example, many students have had their fair share of time practicing math facts online. An alternative to 

this would be to have students develop their own tool for practicing math problems. The students would 

need to decompose the types of questions they would be incorporating within the game. They would 

have to think about their own learning so that they could incorporate that understanding into the 

product. They develop a product that would work for them, and maybe for others. This may be time 

consuming, but the process incorporates more thinking and active learning elements than running 

through an endless series of questions online. 

Game design can take many forms, which provides a variety of opportunities for exploration 

(Jenson & Droumeva, 2016). The nature of game creation is that game building involves story-building, it 

can involve a variety of topics, and games do not need to tend towards a particular gender stereotype or 

form of expression.  

Computational Thinking & Project Based Learning 

Another strategy that can incorporate both mathematics and computational thinking is project-

based Learning (PBL). Project-based learning leads towards the creation of a product, a product that is 



personal and shareable (Liu & Hsiao, 2002). As with CT, the PBL process is as important as the content 

taught through PBL, “Students are engaged in a variety of activities from brainstorming ideas, gathering 

data, researching information, writing, creating art works, to programming and evaluating” (Liu & Hsiao, 

2002). The PBL process is comparable to computational thinking. The processes are constructivist in 

nature, with students leading the exploration of their learning. Students work towards a final product, 

but how they get there is up to them, with some likely facilitation. Encouraging students to own their 

learning is necessary for PBL to be successful, the same applies to CT. 

 

Computational thinking can give middle years students opportunity to see new ways to explore 

problems with a variety of new tools. CT could allow students to know and explore a new mathematics 

learning environment, a learning environment where they are undertaking relevant and useful work. A 

mathematics where students are able to show more than simply their ability to calculate, “Surely we 

need students to be first-rate problem-solvers, not third-rate human computers” (Wolfram, 2020). 



Computational Thinking, Teacher Experience and Learning 
 

 Computational Thinking (CT) is a practice that works in an environment of supervisory 

facilitation (Lye & Koh, 2014). The teacher’s role is not primarily to deliver content, but to scaffold 

concepts and provide guidance to students using tools of all kinds. Teachers can ensure that their 

environment includes the freedom and constructivist principles to help students develop artifacts 

through exploration of new and old ideas. The problem-solving nature of CT is well within the scope of 

teaching through constructivist principles. Educators of middle years and high school students provide 

this form of instruction regularly. The application of programming within the classroom specifically, is a 

part of computational thinking that may reside outside of most teachers’ skillsets (Caeli & Bundsgaard, 

2020; European Commission. Joint Research Centre., 2016; Floyd, 2020; Grover et al., 2015; Kong et al., 

2020; Mavroudi & Divitini, 2017). Research by Gülbahar and Kalelioğlu (2017) reported that many 

teachers who have a computer science background self-reported as insufficient computer science 

teachers. If a teacher with a computational background self-reported as inadequate, it stands to reason 

that a grade 7 generalist teacher would likely feel inadequate as well. 

For computational thinking to thrive in our classrooms, there needs to be investment into the 

training and education of all teachers in computational thinking and programming (Caeli & Bundsgaard, 

2020; Floyd, 2020; Mavroudi & Divitini, 2017). To ensure that students are empowered, first the 

teachers need to feel empowered to develop knowledge, skills and confidence through their own coding 

experiences (Floyd, 2020). As technology continues to evolve, teacher training around computational 

thinking and programming must be continuous. Knowledge must continually be refreshed as 

programming language popularity changes, new technologies become available, and the tools become 

more accessible (Hubwieser et al., 2015). 

Teachers must be given opportunities to gain experience with programming, and with the 

pedagogical content knowledge required for teaching computer science areas and effectively using 



computers as tools to further educational goals (Armoni, 2011). Teachers need opportunities to engage 

with CT in a constructivist environment themselves to ensure that they grasp the best methods for 

instruction. Armoni (2011) found that deficient pedagogical knowledge around constructivism affected 

teaching quality, and that students were less likely to engage with higher order thinking when taught 

with a more traditional process of knowledge transmission. If students are to engage with the higher 

order thought processes of CT, teaching must not just be about how to code, but how to think through 

the process.  

Though CT is a process that includes more than programming, teachers need to feel confident 

and comfortable with using technology for teaching. If CT is not well understood by the teacher, and 

technical skills remain intimidating, they will not want to teach with CT. As nations and educational 

bodies increasingly integrate CT into classroom instruction, there must be consideration of the 

additional expectations that are being placed on teachers (European Commission. Joint Research 

Centre., 2016; Floyd, 2020; Mavroudi & Divitini, 2017; Yadav et al., 2017). "Embedding computational 

thinking in K–12 teaching and learning requires teacher educators to prepare teachers to support 

students’ understanding of computational thinking concepts and their application to the disciplinary 

knowledge of each subject area" (Yadav et al., 2017). 

Professional Development 

Where CT is being implemented, professional development on CT, programming, and computer 

science is essential (Floyd, 2020). Teachers need time with programming and digital tools. There are 

several grassroots organizations that provide professional development for coding activities.  

Organizations like Canada Learning Code, Kids Code Jeunesse, and SaskCode provide teachers and 

school-based leadership opportunities to explore coding through online platforms, robotics kits, lessons 

packs, and teacher training (Canada Learning Code, 2018; Kids Code Jeunesse, 2021; SaskCode, n.d.).  



While grassroots workshops are an excellent place to start, there are some limitations to their 

impact (Kong et al., 2020). As schools, divisions and ministries of education continue to roll out the 

incorporation of CT in classrooms, they will need to ensure that teachers get the support they need. PD 

must be more than one-off workshops. Teachers need to be active participants, getting hands-on use of 

the tools available to them on a regular basis. Teachers need to be able to practice with the tools 

outside of the classroom through PD times. Teachers also need instruction about the pedagogical 

content knowledge, and technical tools available to them (Kong et al., 2020). Teachers have the 

tendency to get lost in the technical facets of CT and miss out on the opportunities to break the process 

down to its component parts and elements. 

Where CT skills are integrated into curriculum and practices, the provision of continuous teacher 

training and the development of a network of experts would ensure the implementation would be more 

successful. "There is broad consensus among experts and practitioners that the introduction of CT in 

school curricula at all levels is creating demand for large-scale in-service continuous professional 

development” (European Commission. Joint Research Centre., 2016). In England, as the new computing 

curriculum expanded across the country, they trained computer science master teachers to work with 

groups of teachers in their surrounding communities. Master teachers received 5-10 days of training 

over the course of six months. They were then responsible to help train pockets of teachers in their 

regions (European Commission. Joint Research Centre., 2016). This type of training could extend the 

introductions to the topics made through grassroots workshops.   

Teacher Education 

The study of computational thinking through pre-service teacher education could provide the 

necessary instruction to see computational thinking flourish in our classrooms.  In locations like Ontario, 

where CT is now part of the curriculum, the education program at the University of Western Ontario 

offers CT courses to teacher candidates (Floyd, 2020). Teachers entering the teaching field may have 



experience with technology, but many find teaching technical skills required for CT well outside their 

expertise. As CT is included in curriculum, teachers will need to develop a level of comfort with 

technology and technology-based learning. Teachers of all interest backgrounds will need to have their 

beliefs around the relationship between their subject area and technology challenged (Armoni, 2011). It 

is probably best to do this when they are new to it. More technology is available in the classroom, and 

teachers should receive a least a cursory look at the potentials of computational thinking and 

programming during their training.  Pre-service teachers should feel comfortable teaching with 

computational thinking, and without. They should have the opportunity to discuss and experience the 

use of technology to drive the learning of constructivist principles, and be aware of the limitations 

(Yadav et al., 2017). 

Ensuring that pre-service teachers have experience with CT can take on several forms. Computer 

lab times could ensure familiarization with CT, especially for teachers who want to specialize in 

computer science or other CT-centric areas (Armoni, 2011). Lye and Koh (2014) suggest that the optimal 

learning environment for CT is “a constructionism-based problem-solving learning environment, with 

information processing, scaffolding and reflection activities” that “could be designed to foster 

computational practices and computational perspectives” (Lye & Koh, 2014). A hands-on learning 

environment, with time and resources to practice coding, robotics, ‘tinkering’ and explicit instruction, 

would go a long way towards ensuring that teachers have the technical skills and pedagogical principles 

for incorporating computational thinking. A participatory environment where teachers can work 

together to explore tasks is one mode with which computational thinking could be explored, 

“Computational thinking and programming are social, creative practices.  They offer a context for 

making applications of significance for others, communities in which design sharing and collaboration 

with others are paramount.  Computational thinking should be reframed as computational 

participation” (Kafai, 2016).  Kafai, Lye and Koh explain that this collaborative ‘tinkering’ workspace is an 



optimal situation for learning CT as a student. Providing pre-service teachers with the same participatory 

environment and artifact building process to teach the foundations of CT would provide a foundation to 

ensure that constructivist principles around problem-solving are part of the teacher’s toolkit. 

 

Ensuring that pre-service, and in-service teachers have experience with computational thinking 

for any size of region is a large undertaking. However, this training is necessary for computational 

thinking and programming to expand. Various grassroots organizations have been encouraging the use 

of programming and various CT skills across grades within K-12.  As larger regions, like Ontario, have 

integrated CT into curricular expectations, the knowledge of teachers has not kept pace (Floyd, 2020), 

this is reflected in other spots around the world (Caeli & Bundsgaard, 2020). Divisions or departments of 

education will need to consider providing opportunities for teachers to gain experience with CT to 

ensure that CT is seen as a current, relevant, and progressive educational concept.



Conclusion 

 Computational thinking is a constructivist educational process that encourages and expands the 

ways in which tools and thinking are used for problem solving. The process incorporates computer-

based tools when they fit within the process. Though CT remains a broad and non-standardized area of 

learning, the lack of a specific definition does not take away from the usefulness that CT can bring to any 

area where problem solving is necessary. As computer-based tools continue to become more accessible 

and available to our students, the understanding of computer-based learning within schools will be 

transformed. By applying the principles of CT, mathematics education can expand to focus on a greater 

diversity of skills. Where data analysis or real-world problems arise across the curriculum, CT can be 

used to connect computers-based analysis to any subject area. CT is a process that provides agency to 

the student to explore their own data, to use methods of representation they see applicable, and to 

work with others to provide artifacts useful to them and others. Computational thinking has potential to 

engage students with the thinking skills and methods necessary to thrive within our evolving educational 

environment.   
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