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Abstract—We introduce a framework to design in-memory
decision tree machine-learning (ML) circuits using memristor
crossbars. Decision trees (DTs) offer many advantages over neu-
ral networks, such as enhanced energy efficiency, interpretability,
safety, privacy, and speed, along with reduced dependence on
extensive training data. We propose an adaptive multivariate de-
cision tree (AMDT) training algorithm, which constructs decision
trees that incorporate both univariate and multivariate features,
facilitating the creation of higher accuracy and energy-efficient
crossbar designs compared to the state-of-the-art (SOTA). Our
circuits are realized using pure memristor crossbars, requiring
just one memristor per cell and no transistors while employing
sneak-paths for flow-based in-memory computations. In compar-
ison to the SOTA, our approach produces designs that are, on
average, 4% more accurate and require 12.6% lower energy.

Index Terms—In-memory computation, memristors, flow-
based computing, decision trees, multivariate decision trees,
energy-efficient hardware.

I. INTRODUCTION

In-memory computing using memristor crossbars provides
solutions for multiple problems with existing computing de-
vices. The von Neumann computing architecture utilized in
almost all mainstream computing devices suffers from a bot-
tleneck between the memory and the compute units, where
the bandwidth between the two units, instead of the CPU
speed, determines the throughput of data-intensive tasks such
as machine learning [1]. Moor’s Law and Dennard Scaling,
which enabled impressive year-over-year improvements in
CMOS devices, has ended, leading to an uncertain future,
necessitating the search for novel computing devices. In-
memory computing using memristors is an attractive solution
for both the memory bottleneck and the device problem.

However, most popular in-memory memristor devices uti-
lize traditional CMOS circuit components, including tran-
sistors, alongside memristors to accelerate computations [2].
Using traditional CMOS circuit elements alongside memristors
dilutes some critical advantages memristor devices enjoy.
Specifically, adding a transistor to a crossbar cell increases
its size and makes it less energy efficient, and the presence of
traditional CMOS elements makes the circuits vulnerable to
radiation degradation [3]. This hybrid approach is necessary
to control the so-called ‘sneak paths’ that affect the final
computed value [4].

Another approach termed ‘flow-based computing’ has been
proposed that utilizes these pathogenic sneak-paths for compu-
tations and provides SOTA energy and space efficiency. Flow-
based memristor crossbar designs have been shown to provide

SOTA energy efficiency for circuits in multiple standard
circuits benchmarks, including RevLib benchmark and for
multiple machine learning tasks [5]-[7]. Flow-based circuits
for machine learning have been created using decision trees as
they are similar to the BDD (Binary Decision Diagram) based
approach for designing general-purpose circuits and provide
a straightforward conversion from ML model to in-memory
flow-based designs.

DTs have many desirable properties that make them suitable
for a variety of tasks. They have lower complexity compared to
neural networks and thus require less energy during inference,
making them ideal for use in energy-constrained environments
such as edge computing and mobile devices [8], [9]. DTs are
less vulnerable to adversarial attacks than neural networks and
can be employed in scenarios prioritizing safety, robustness,
privacy, and security [10], [11]. Furthermore, neural network
outputs are not easy to interpret, while the output generated
by DTs can be explained easily [12]. DTs also find usage
in situations where the speed and lower energy cost have
been used to select one of multiple powerful machine learning
algorithms to run on the input data [8].

However, existing work on creating flow-based circuits
for ML has utilized univariate decision trees and does not
provide an algorithm to create designs of higher accuracy
multivariate decision trees. A tradeoff for this higher accuracy
is in circuit size and energy utilization, where multivariate
nodes in the decision trees require complex designs, leading
to larger circuits and, consequently, higher energy utilization.
In this work, we propose a balancing of the two objectives,
namely creating higher accuracy flow-based designs and, at
the same time, ensuring lower energy utilization. To this end,
we propose an AMDT creation algorithm that intelligently
utilizes both multivariate and univariate decision nodes in the
creation of the trained decision tree. Our AMDT algorithm is
a generalization of univariate and multivariate decision trees
and can potentially produce pure univariate or multivariate
decision trees and thus choose the designs that improve both
the accuracy and the energy efficiency. We make the following
contributions in the paper:

e We propose a generalized adaptive decision tree genera-
tion algorithm that intelligently selects between univari-
ate and multivariate decision tree nodes, improving the
accuracy and efficiency of synthesized crossbar designs.

o We experimentally verify by testing the algorithm on 11
ML datasets that our AMDT circuits on average provide



more than 4% higher accuracy and utilize 12.6% less
energy compared to the SOTA.

II. RELATED WORK

Numerous decision tree hardware designs in the literature
focus on high throughput and energy efficiency. They achieve
throughput in the range of 10% inferences per second with
energy utilization in nJs per inference [7], [13]. However,
most designs use traditional CMOS circuit elements, including
ITIR cells, 6T2R cells, or conventional CMOS peripheral
circuitry for calculations [14], [15]. Furthermore, these lines of
work do not provide a method to find designs for multivariate
decision trees. In this paper, we present an algorithm for
generating adaptive decision trees that contain both univariate
and multivariate nodes and then create equivalent flow-based
designs for energy-efficient in-memory computations.

A. Decision Tree

Traditionally, DTs are constructed using univariate nodes,
where each internal node tests the value of a single feature
to partition the data into two distinct subsets. Due to the
simplicity of their decision nodes, existing work for energy-
efficient ML hardware has focused on univariate models [14],
[15]. For instance, Sinha and Raj [7] use the CART algorithm
to produce univariate decision trees. Subsequently, the tree is
converted into a Binary Classification Graph (BCG), which is
then further processed to create the flow-based crossbar design.
Due to univariate nodes in the decision tree, the resultant
crossbar design leaves some accuracy gains on the table.

Multivariate decision trees are designed to capture com-
plex interactions between multiple features, thereby poten-
tially improving predictive performance over simple univariate
DTs [16] and require complex circuitry for implementation.
The flexibility of multivariate decision trees is a significant
advantage, as they are not confined to the restriction that
each splitting hyperplane must be orthogonal to an attribute’s
axis, unlike univariate decision trees, and can thus provide
higher accuracy. The trade-off of the accuracy gain is in circuit
complexity for realizing the decision node in hardware. Our
approach improves both accuracy and energy efficiency and
includes both univariate and multivariate nodes for making
decisions. Several multivariate decision tree training methods
have been proposed in the literature. In our implementation, we
adopt a similar approach to [17] but use logistic regression [18]
for the splitting process, as elaborated in Section III-C.

B. Flow-based computing

Our designs utilize the flow-based computing paradigm for
performing in-memory computation using memristor cross-
bars [7]. In this paradigm, row and column wires of the
crossbar are abstracted as nodes, and the memristors act
as connections between the nodes. The synthesized crossbar
design consists of labels assigned to the memristors in the
crossbar. Each label corresponds to input bits and determines
the configuration of the memristor during run-time. A label
can be configured with the same value as the input, or it can

be configured with the negation (—) of the input value. The
input is loaded on the crossbars during run time according to
the memristor labels. An input value of 1 is configured as a
low resistance value, and 0 is configured with a high resistance
value. Then, a current is applied to the bottommost row. The
configuration of the memristors determines the current flow;
a memristor configured with low resistance will connect the
row and the column wires and allow current to flow through it;
a memristor configured with high resistance will prevent this
flow from happening. The presence of current in the top M
rows, where M is the number of classes, determines the output
of the classification. The memristors in the crossbar have to be
configured for each input, and since the configuration energy
required for the memristors is in the Femto Joules scale, it
makes the computation highly energy efficient [19]-[21].

III. METHOD

The goal of the paper is to create flow-based circuits for
ML using multivariate decision trees that are more accurate
than simple univariate decision trees while at the same time
being more energy efficient. In a typical multivariate decision
tree, all of the features are used in all of the nodes to make a
decision. This constant usage of all the features is unnecessary
and can lead to inefficient circuit designs. In our proposed
adaptive multivariate decision tree, we choose a fixed number
of features that provide the best decision at a node. This choice
of K features reduces the number of features that need to
be mapped into the circuit by removing unnecessary and un-
informative features. To further balance the issue of energy
efficiency and accuracy, we take an adaptive approach: at each
decision node, we consider the tradeoff determined by the
hyperparameter A of using univariate vs. K-variate nodes and
make an informed choice to select either of the two.

Algorithm 1 takes as input a training sample matrix X,
containing the feature vectors, the corresponding class label
matrix y, the number of features to use for multivariate
decisions K, and A which controls the number of K -variate
nodes in the decision tree. The algorithm outputs decision tree
T, where each decision node is either univariate or K -variate,
and the leaf node with the assigned class label. The algorithm
maintains a list of nodes that are being worked on and needs
further processing using the queue data structure. It is initial-
ized with the root node that contains the complete dataset. In
each iteration of the while loop, the best split obtainable using
a single feature is calculated; this step utilizes the Information
Gain criteria used by the popular ID3 algorithm [22]. Next,
the best split obtainable using K features is calculated (details
in Section III-A), followed by selecting the best K features,
and finally, training a logistic regression classifier to obtain a
split of the data that best matches the separated classes. Once
the best univariate and K -variate decisions are obtained, then
depending on the information gain and the A\ hyperparameter,
either of the two is selected for inclusion in the AMDT.
Finally, the data splits produced by the selected decision
are inserted into the queue for further processing if they
do not meet the stopping criteria. If the selected splits meet
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Fig. 1. (a) AMDT generated from our method for the Iris flower dataset, and (b) the corresponding binary classification graph (BCG) [7].

the stopping criteria, then they are assigned a label and not
processed further. We utilize the majority class proportion-
based stopping criteria proposed in [23] where after each split,
the purity of the two sample subsets is computed. If the purity
of a sample subset is less than a defined threshold 4, then the
child node corresponding to the sample subset turns into a
new parent node, with the sample subset requiring partition
again; otherwise, the child node turns into a leaf node, and
the sample subset will not be partitioned.

Once the AMDT is trained, we use the two mapping
algorithms presented in [7] to create the intermediate BCG
and then map it onto the crossbar to obtain the final crossbar
design. The AMDT and BCG for the Iris dataset are shown
in Figure 1. The crossbar design and the run time snapshot of
the execution are also shown in Figure 2. A more detailed
discussion of the steps involved in creating the AMDT is
discussed in the following subsections.

A. Class Separation

The nonlinear multivariate decision tree with multilayer
perceptrons at the internal nodes was proposed by Guo et
al. [24]. They also proposed a heuristic to group M > 2 classes
into two, which is necessary as the nodes in the tree are binary.
Thus they use a nested optimization problem where in the
inner optimization, gradient-descent is used to find the weights
that minimize the mean-square error as usual in training neural
networks and so find a good split for the given two distinct
groups of classes. In the outer optimization problem, the ex-
change heuristic is used to find the best split of M classes into
two groups through a local search with backtracking, with time
complexity O(M?). Loh and Shih [25] use an unsupervised 2-
means clustering algorithm to do a preliminary grouping of the
classes into two superclasses. We follow a similar strategy to
[24], [25] but use a simple and deterministic method for class
grouping. At each decision node, using Euclidean distances
we create two distinct subsets of similar size, the first one
includes the samples from the most frequent class along with
the samples from the classes exhibiting close proximity to

Algorithm 1 Adaptive multivariate decision tree training
Require: Dataset X, y; hyperparameters K and A
Ensure: Decision tree T’

1: Initialize tree T with root node N

2: queue.push(N)

3: while queue not empty do

4 N « queue.pop()

5s:  Find best univariate split S,, for NV

6:  Find K-variate split .Sy,

7. if InformationGain(S,) > A - InformationGain(S)
then

8 N.split < S,, {Select univariate split}

9: else

10: N.split < Sy, {Select K-variate split}

11:  end if

12:  Create child nodes C, Cs partitioned by N.split
13:  if C; does not satisfy stopping criteria then

14: queuve.push(Ch)

15:  end if

16:  if C5 does not satisfy stopping criteria then
17: queuve.push(Cs)

18:  end if

19: end while
20: return Decision tree 1T’

it, and the second set consists of samples from the remaining
classes. The algorithm dynamically determines a positive class
by identifying the class with the highest occurrence at the
decision node. Subsequently, it calculates the mean of the
positive class and measures the distances to the means of other
classes. Through a sorting and iterative grouping process, the
algorithm effectively divides the classes into a positive class
group and a negative class group.

B. Feature Selection

The core concept is that specific dimensions within the
instance subspace when reaching a particular decision node,
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Fig. 2. (a) Crossbar design for classifying the Iris dataset with labeled
memristors, obtained from the BCG from Figure 1 and (b) loading and
execution of the crossbar. Wires with a current in them have been shown
in green. A green class 2 wire indicates the classification output as 2.

TABLE I

COMPARISON OF OUR METHOD TO THE SOTA.
Method Process (nm) | Depth | Energy (nJ) Area (mm?) Accuracy
Intel X5560 [29] 45 6 2.04 x 107 - -
Nvidia Tesla M2050 [29] 40 6 1.10 x 107
Xilinx Virtex-6 [29] 40 6 3.51 x 10° -
ASIC [30] 65 - 1.87 x 10° 6.50
ASIC [31] 65 - 4.60 x 10° 2.30
ASIC IMC [13] 65 6 19.4 0.56
ACAM [14] 65 10 1.28 1.80
DT [7] (worst-case) 70 10 2.05 x 10— 523 x 10~° -
DT (MNIST) [7] 70 10 1.74 x 1072 | 9.40 x 104 0.82
AMDT (MNIST) 70 10 118 x 101 | 5.5 x 10~ 2 0.88

may remain constant and therefore be considered redundant.
Avoiding these features may increase the generalization ability
and reduce node complexity [26]. We perform the chi-squared
statistical test [27] similar to Kim et al’s CRUISE [28]
to evaluate the relevance and significance of each feature
concerning the target variable at each decision node and
select K best features based on their scores. The indices of
these selected features are extracted for subsequent use in the
logistic regression model training.

C. Data Fartitioning

A logistic regression model is trained on the reduced
sample matrix which contains only selected features K. The
use of logistic regression at each node within the algorithm
for data partitioning provides a transparent and interpretable
decision boundary formulation, as the estimated coefficients
and thresholds can be directly interpreted in terms of the
influence of each feature on the classification outcome [32],
and can be used in a straightforward manner to create flow-
based memristor crossbar circuit designs.

IV. RESULTS

We train the AMDT algorithm on multiple datasets from the
UCI machine learning repository and also the popular MNIST
dataset [33], [34]. The experiments are performed on an AMD
Ryzen 9 7950X 5.7 GHz CPU having 128 GB of RAM.

For hyperparameter tuning, a grid search is performed with
a range of [0,1) for A, [0.85,0.995] for ¢, and [1,10] for the
maximum tree depth. The value of the K parameter is set

TABLE II
ACCURACY AND ENERGY UTILIZATION COMPARISON BETWEEN
UNIVARIATE AND ADAPTIVE MULTIVARIATE DECISION TREES.

Accuracy Energy (pJ)

Dataset DT [7] AMDT Delta | DT [7] AMDT  Delta
Iris 0.9 0.93 0.03 0.58 0.3 - 0.28
Wine 0.92 1.00 0.08 1.34 0.56 - 0.78
Banknote 1.00 1.00 0 1.6 2.64 1.04
Car-evaluation 0.86 0.86 0 0.18 0.1 - 0.08
Tonosphere 0.96 0.99 0.03 1.52 1.08 - 0.44
Balance-scale 0.79 0.91 0.12 8.84 84 - 0.44
Indian-Diabetes 0.77 0.8 0.03 14.92 0.72 - 142
Tic-tac-toe 0.96 0.95 - 0.01 1.2 1.3 0.1

Monk1 0.8 0.92 0.12 0.84 0.28 - 0.56
Statlog-shuttle 1.00 1.00 0 5.8 1.38 -4.42
MNIST 0.86 0.88 0.02 118.12  118.13 0.01

Average 0.89 0.93 0.04 14.08 12.3 -1.82

to 2 during our experiments. While training, each feature of
the input is scaled to be between 0 and 2L _ 1, where L is
the bit length of the feature. We use a train-test split ratio
of 80:20. We use the memristors synthesized by Goux et al.
which have energy utilization and cell width of 10 fJ and 70
nm respectively [35]. Energy utilization of the crossbar design
is calculated by multiplying the number of programmable
memristors present on the crossbar by 10 fJ. The area is
calculated by multiplying the number of rows and the number
of columns by 4900 nm?.

As shown in Table I, on the popular MNIST dataset, SOTA
[7] achieves a test accuracy of 0.82 with a crossbar area of
9.40 x 10~*mm? consuming 1.74 x 10~2nJ of energy. On the
other hand, using AMDT the test accuracy increases to 0.88
with a crossbar area of 5.5 x 10~"2mm? consuming 1.18 x
10~ 'nJ of energy.

Table II shows the comparison between SOTA [7] and
AMDT on multiple datasets based on their highest accuracy
among the tested 1 to 8 bit length, energy consumption and
space utilization. As expected, in a multivariate environment,
the average test accuracy of AMDT outperforms the SOTA [7]
by 4%. We also manage to use 12.6% less energy, thanks
to the intelligent selection performed between univariate and
multivariate features in the AMDT algorithm.

V. CONCLUSION

The AMDT training algorithm presented in our work
enables the integration of both univariate and multivariate
decision nodes which leads to the creation of decision trees
that exhibit higher accuracy and superior energy efficiency
in crossbar designs when compared to the current SOTA
methodologies. These circuits utilize sneak paths and 0T1R
memristor crossbars, making them robust against resistance
drift and radiation degradation from which other decision tree
accelerator hardware suffer. We also experimentally verify that
our AMDTs produce flow-based designs that are more accurate
and energy-efficient compared to univariate DTs for multiple
machine learning datasets.
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