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PROBLEMS WITH A

COSMIC COINCIDENCE

Consider: o

Pm mO 3

—=——(1+42). 1

(14 2) W)
At z = 1032 if the above ratio was 1097 or 10%°, we would not
observe the present acceleration of the expansion or structures
would not have formed. The ratio py,/pa should be set at the

Planck scale with a precision of 96 decimal places.!
Seen the other way around, as a coincidence problem, one might
ask why the densities of matter and of the cosmological constant

are of the same order at present time (Zlatev, 1998).

Then one “tries” and abandons A for a dynamical DE.

LA similar reasoning, however, applies to any ratio of different densities.
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EXAMPLE OF DYNAMICAL DE

QUINTESSENCE

The simplest and most common way for a dynamical DE is a
canonical scalar field ¢:

1
L= 38" 0updue+ V(e), (2)
from which one can define density and pressure on a FLRW
background as:

1,

Po = 59"+ V(e), P,

_!

5% - V(9). )

Such simple model is also the basis for inflationary scenarios.

However, the coincidence is still there somehow “under the carpet”
(hidden in the potential).
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ORIGINS OF A

Introduced by Einstein (1917) in order to find a solution with
vanishing inertia at infinity (Einstein Static Universe).

The introduction of the cosmological constant by Einstein is
frequently reported to be judged by himself as “the biggest blunder
of my life". This seems to be a personal comment made by
Einstein to George Gamow and reported by the latter in a 1956
article on the Scientific American.

The dissatisfaction of Einstein about A can be read in a 1931
paper by Einstein himself, when he writes:

“Under these circumstances one should ask whether the
observational facts can be accounted for without the inclusion of
the theoretically, in all respect unsatisfactory A-term.”
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ORIGINS OF A

N "revives” today as the most successful model for the accelerated
expansion of the universe.

It is somehow special. There is a sort of “inevitability” of A:

[5. Weinberg, Photons and gravitons in perturbation theory: Derivation of
Maxwell’s and Einstein’s equations, Phys. Rev. 138 (1965), 8988—81002], [D.
Lovelock, The Einstein Tensor and Its Generalizations, Journal of Mathematical
Physics (1971) 12 (3) 498]

c* A
5= 167Gy /d xv/—8 (R = 2N) + Smatter [guv, V] - (4)

1 81 Gy
Rl“’ — EgMVR -+ /\gﬂy = T T/U/ . (5)
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/\, FROM A MATHEMATICAL VIEWPOINT

Lovelock's theorems:

@ D. Lovelock, The Einstein Tensor and Its Generalizations,
Journal of Mathematical Physics (1971) 12 (3) 498501,

e D. Lovelock, The Four-Dimensionality of Space and the
Einstein Tensor, Journal of Mathematical Physics (1972) 13
(6) 874876.

Given field equations in vacuum:
A =0, (6)

and the following hypothesis:
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LOVELOCK’S THEOREM

HYPOTHESIS AND THESIS

Q@ AW = AYF (symmetry)

Q AW = Alw(g,uw g,uu,pag;w,pa)
@ V, A" =0 (divergencelessness, V, is the covariant
derivative)

@ AM is linear in the second derivative of the metric.

Then:
AW = aGHY + bgh” | (7)

where a and b are arbitrary constants and:
| F— 12 1 v
G* = R* —Eg“R, (8)

is the Einstein tensor.
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RESURRECTION OF A

COSMOLOGY

Friedmann-Lemaitre-Robertson-Walker metric:
ds? = —dt? + a*(t)y;dx dx/ | (9)

Friedmann equations with A:

2  8rGy A K
H25;: 3 ptot+§__27 (10)

a 4-7TG A
—=— 2N (prot + 3prot) + 3 (11)

A positive A works as antigravity. It also can be seen as a perfect
fluid with equation of state:

WA= —=-—1. 12
A PA (12)
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ACCELERATED EXPANSION OF THE UNIVERSE

Type la supernovae are standard candles which allowed to extend
the cosmic distance ladder to large redshifts (z ~ 1) and from
which the accelerated expansion of the universe was discovered.

e A. G. Riess et al. [Supernova Search Team], Observational
Evidence from Supernovae for an Accelerating Universe and a
Cosmological Constant , Astron. J. 116 (1998) 1009
[astro-ph/9805201]

o S. Perlmutter et al. [Supernova Cosmology Project
Collaboration], Measurements of Omega and Lambda from 42
High-Redshift Supernovae , Astrophys. J. 517 (1999) 565
[astro-ph/9812133]
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ACCELERATED EXPANSION OF THE UNIVERSE

A. G. Riess et al. [Supernova Search Team], Observational Evidence from Supernovae
for an Accelerating Universe and a Cosmological Constant, Astron. J. 116 (1998)
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RECENT SUPERNOVAE TYPE IA DATA

D. Brout, D. Scolnic, B. Popovic, A. G. Riess, J. Zuntz, R. Kessler, A. Carr,

T. M. Davis, S. Hinton and D. Jones, et al., The Pantheon+ Analysis:

Constraints, [arXiw:2202.04077 [astro-ph.CO]].

Qp

Pantheon+ ACDM Constraints

Cosmological

SDSS DR16 (BAO)
Pantheon+ (Stat+Sys)

Planck 2018

N
S



THE COSMOLOGICAL CONSTANT
000000000000 e00000000000000000

N FROM THE LARGE-SCALE STRUCTURE

It was already clear before type la SN that a pure CDM model was
incomplete and that (perhaps) A was necessary.

From Efstathiou, Sutherland and Maddox (1990):

The cold dark matter (CDM) model for the formation and
distribution of galaxies in a universe with exactly the critical
density is theoretically appealing and has proved to be durable, but
recent work suggests that there is more cosmological structure on
very large scales... We argue here that the successes of the CDM
theory can be retained and the new observations accommodated in
a spatially flat cosmology in which as much as 80% of the critical
density is provided by a positive cosmological constant, which is
dynamically equivalent to endowing the vacuum with a non-zero
energy density...
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AN AND COSMOLOGY

If A'is the cause of the accelerated expansion, data require:
PA ~ Qpper ~ 1074 GeV* ~ 1072 m—2 . (13)

What is the problem with A? None, if you avoid to frame it within
particle physics.

If you do, some questions arise:
@ Huge discrepancy with the predictions coming from quantum
field theory (old cosmological constant problem);
e Why pp has the above tiny value? (new cosmological
constant problem).
The first question was raised by Zel'dovich in the framework of
Sakharov's induced gravity.?

2Y. B. Zel'dovich, JETP letters 6 (1967), 316-317; A. D. Sakharov, Dokl. Akad. Nauk SSSR (1967) 177,
70-71
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N AS THE WEIGHT OF VACUUM

Quantum vacuum:

e The Lamb shift (W. E. Lamb, R. C. Retherford, Physical
Review. 72 (1947) (3): 241243);

e The Casimir effect (H. B. G. Casimir, D. Polder, Physical
Review. 73 (1948) (4): 360372),

(see also R. L. Jaffe, Casimir effect and the quantum vacuum, PRD 72,
021301(R) (2005))

Our concern is however to understand whether and how vacuum
energy gravitates.

And if A can indeed be interpreted as vacuum energy.
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STANDARD ARGUMENT LEADING TO THE PROBLEM

In Minkowski space we have that

<Tw/> X Ny - (14)

Hence by the equivalence principle, in curved space one has:

<T;u/> = —Pvac8uv - (15)

The vacuum energy density becomes the cosmological constant.
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CALCULATION OF pPyac

SCALAR FIELD ON FLAT SPACE

For a massive non-interacting scalar field on flat space:

d3k ik*x T —iktx
q)(X) — / W(ake K + ake ,u) 5 (16)
with

we=kS=Vk2+m2. (17)

The vacuum expectation value of the energy-momentum tensor is:

3
<R»=/@%£@m&. (18)
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CALCULATION OF pPyac

PUTTING A CUTOFF

Considering a UV cutoff M:

1 M
0= o [ e -
T
ﬂ ]__|_m_2 1_|_m_2 _m_4|n M+M ]__|_m_2
1672 M2 2M?2 2M4 m m M2

M4 m?
=—(1+—+... | .(1
167r2< T ) (19)
The standard argument goes as: M = Planck mass, 50 pyac ~ 1070

GeV*. On the other hand, PA ~ 10747 GeV*. So we have a
discrepancy of 123 orders of magnitude!

Note that this problem would remain in dynamical DE models.
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INDUCED GRAVITY

The previous conclusion is based on an incomplete discussion of
the problem: the renormalization procedure is missing.

On the other hand, it can be taken as good in the framework of
induced gravity:

eisind[g] — /Dq)efsm[q)’g] . (20)

To lowest order:

1
Sinalg] =/d4xv—g (2 R—pA,ind+...> . (21
Kind
From here one can ShOWZ
1
~ M? ind ~ M* 22
2/{_/1nd b pA,ll’ld ) ( )

implying pA ind ~ Mf}u-
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THE PROBLEM WHEN USING A UV CUTOFF

For the pressure we can compute:

11 (M k*
P =7z | ks =
34n 0 k2—|—m2
lﬂ 1+m_2 ]__ﬁ +ﬂ|n M+M 1_|_m_2
31672 M2 2M? 2MA m m M2

1 M m?

So, at the leading order (p) = (p)/3, as radiation does. Indeed,
putting a cutoff spoils Lorentz invariance.

The logarithmic terms instead give the expected behaviour for
vacuum: (p) = —(p).
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RECOVERING THE VACUUM EQUATION OF STATE

DIMENSIONAL REGULARISATION

Using dimensional regularisation one gets:

4—d 1

Iz X d—2 jd—
(p) = Wi/o dkk?=2d9=2Qu

it r(=d/2) (m\°®
= s () 2

with g an arbitrary scale. Similarly

ot T(=dj2) (m\?
o= e () )

Now (p) = —(p) as expected.
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EXTRACT A FINITE RESULT

Considering d = 4 — € one can easily investigate the pole structure
of the Gamma function and see that:

m* [2 3 m?
= |-+ - —~v—| e 26
2 6472 [e oo <47T,u2>] * (26)
By eliminating the divergent term one has:
m* m?
=——In{— ] . 27
0 =gzt (72) (27)

In general one can show the same result for any free field, provided
a minus sign for the fermionic ones. Hence:

2

. 4 ml-
o E 251 g; Fin(— | . 28
(Ptot) 647r2 &m n(ﬂz) (28)
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PAuLt SuMm RULES

Pauli already observed in 1951 (ETH lectures) that even using a
UV cutoff, no weight for vacuum is obtained if the following
conditions are met:

Z(_1)2Sngn -0 ’Z(_ 25,,g m -0 Z 25,, —0.

(29)
Visser shows how these conditions provide a bridge between the
finiteness of the zero-point energy and Lorentz invariance. He also
speculates on the consequences of taking these relations to be
valid non-perturbatively, leading to the necessity of physics beyond
the standard model (M. Visser, Phys. Lett. B 791 (2019) 43
[arXiv:1808.04583 [hep-th]]).
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A MORE COMPLETE ARGUMENT

SEMICLASSICAL GRAVITY

In semiclassical gravity, quantum fields are considered on a
dynamical, but classical, geometry. Quantum effects have a
backreaction on the latter.

For the generating functional of the Green functions:
Z[J, g] — N eiSvaclel /D¢eism[¢,g]+;¢J_ (30)

The metric is a classical external field. For

Svac[g] = i fd4x\/ —gR:

Guv = K(Tpw) - (31)
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SEMICLASSICAL GRAVITY

DIVERGENCES AND RENORMALIZATION

On flat space bubble diagrams (vacuum-vacuum amplitudes) are
irrelevant. In the curved case, however, they couple to the external
graviton (g = n + h).

0-08

Adding vertices with external gravitons reduces the superficial
degree of divergence (quartic, quadratic, logarithmic). We have
then qualitatively new divergences which must be compensated by
geometric counterterms in the vacuum action.
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SEMICLASSICAL GRAVITY

GEOMETRIC COUNTERTERMS

Since h is dimensionsless, in order to preserve the dimension of the
diagram we must use derivatives of h and the mass of the field in
the bubble.

Svaclg] < 2N+ a1 Rmn? + aoRc?® + a3R? + auOR. (32)

Radiative corrections are then provided for the cosmological
constant (and also Newton's constant). These come only from

massive fields and are oc m? or m*.

The latter can be made compatible with observation by using a
suitable renormalization condition. So, no actual problem from this
side.
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COSMOLOGICAL CONSTANT INDUCED BY PHASE
TRANSITIONS

Consider a simple example:

1 loa
Tuw = 0,90, — g, Eg” 0,90, + V(¥)| . (33)
If the field rolls down to a minimum of its potential:

(Tw) = =V(Pmin)8uv - (34)

Then, we have a cosmological constant behaviour.
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ELECTROWEAK PHASE TRANSITION

After the electroweak phase transition we have (A ~ 0.1)

vt )\ v )\
V(H) = - —— )\ 2H? H3 H4

with m?, = Av? being the Higgs mass and v = (H). Then:

ind = —— MgV ve = —
Pind 4 H ) 4GE—’
lead to:
\/_mH
Pind =

66~ —1.2 x 10% GeV*.

(35)

(36)

(37)

Here Gr ~ 1.16 x 107 GeV 2 is Fermi's constant and my ~ 125
GeV.
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ELECTROWEAK PHASE TRANSITION

HiGGS POTENTIAL (PLOTS TAKEN FROM MARTIN’S REVIEW )

4 T T T T T T T T
gk ]
2L i
ek ]
0 (H)=v
=~ =~
= T o4 % i
x X
_2F i A 1
—4 —m/(4\) 4
4 () 0 res
L L R R L L R R
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
(H) (H)

Fig. 2. Effective potential of the Higgs boson before and after the electroweak phase transition. The left panel corresponds to a situation where the vacuum
energy vanishes at high temperature. As a consequence pyac is negative at temperature smaller than the critical temperature. This is the situation treated
in the text where the quantity —m*/(42) is explicitly calculated. On the right panel, the off-set parameter Vq is chosen such that the vacuum energy is
zero after the transition. As a consequence, it does not vanish at high temperatures.
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THE COSMOLOGICAL CONSTANT PROBLEM

Then:
PAobs = PAvac + PA,ind 5 (38)
with pa ind ~ 108 GeV* >> pp ops ~ 10747 GeV*.

The problem is then: the renormalization condition on pj yac has
to be chosen with a precision of 56 significant digits. This suggests
a sort of hierarchy problem between the electroweak scale and the
Hubble scale Hp.

Note that the same problem does not happen for G, because
-1 -1 -1 -1 2
Gops > Gipgyr 50 Gypg ~ Gyae ~ Mpy-

vac
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Cosmological perturbations
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SMALL FLUCTUATIONS

Observation of CMB reveals that the early universe (z larger than
1100) was close to homogeneity and isotropy, with relative
deviations of order 107°.

Since these are so small, we can treat them as small perturbations
around a perfectly homogeneous and isotropic FLRW background.

As for the late universe, a perturbative approach would allow us to
understand the evolution of the universe on very large scales, but
not to fully describe how structures form. This ultimately needs
powerful machines and numerical simulations.
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PERTURBED METRIC

Let:
ds” = g, dx"dx" = a*(n)(—dn? + 5jdx'dxl) . (39)
Define:
08 (X(X)) = guv(X(X)) — Buv(X) - (40)
The components of the full metric g, still are functions of the

background coordinates x. The choice of x(X) is arbitrary and
establishes a gauge:

_[1 + 21/}(777 X)] Wi(nv X)
guw = a*(n)
w; (1, x) [ + 2¢(n, x)] + xii(n, x)
(41)
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(GAUGE TRANSFORMATION OF PERTURBATIONS

In a system of coordinate x we define a perturbation of Q as:
0Q(x) = Q(x) — Q(x), (42)

where Q(x) is the background counterpart of Q. The crucial point
is that Q is not a geometric quantity, but a fixed function of the
coordinates. This makes the above splitting not covariant, and so
also 6 Q is not a geometric quantity.

Upon a change of coordinates x — %, Q(x) changes to Q(%)
according to its tensorial properties, but Q(x) simply turns into

Q(X). So, the perturbation changes as:
0Q(%) = Q(R) — Q). (43)

The gauge transformation is the change in the functional form of

0Q.



COSMOLOGICAL PERTURBATIONS
0000@00000000

(GAUGE TRANSFORMATION INDUCED BY COORDINATES
TRANSFORMATION

The change in the functional form of 0@ can be made explicit if
we consider a coordinate transformation:

x = X=x+¢(x), (44)

where £ is considered as small as @, in order to preserve the linear
order of the perturbations. Then:

bQx +€) —3Q(x) = Qlx +€) — Q(x). (45)
Since §Q and ¢ are small, §Q(x + £) = §Q(x). Therefore:

0Q(x) = 0Q(x) = L£Q(x), (46)

where L¢ is the Lie derivative along .
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THE PROBLEM OF THE GAUGE

Since the choice of the gauge is arbitrary, we might find one for
which:

g (X(X)) = & (%), (47)

and then conclude that there are no perturbations, even if g is a
different metric. Conversely, we might have g = g and choosing a
gauge such that:

B (x(X)) # Buv(X) (48)

concluding that there are perturbations, even if there are none.
The problem of the gauge is the very dependence of perturbations
on the gauge, which does not allow to define them unambiguously.
This issue is overcome by using gauge-invariant variables
(Bardeen, 1980).
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THE SCALAR-VECTOR-TENSOR DECOMPOSITION

We can write w; as follows:

w; = Oiw + 5; ‘ (49)

Here, w is the scalar part of w; and S; (which is divergenceless) is
the vector part of w;.
We can write ; in the following form:

1
Xij = <6,-8j — §5UV2> 21+ 0jAI + 0iA; + X} (50)

with A; divergenceless. The transverse part XZ-— cannot be
decomposed in any scalar or divergenceless vector. It constitutes a
tensor perturbation.
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SCALAR PERTURBATIONS AND THEIR
GAUGE-INVARIANT COMBINATIONS

The Bardeen’s potentials:

U=t [(wp)al| |0 =0+ M (w—u) - 392 (51)

The comoving curvature perturbation:

1_,» op 1_,
= — =V = — — =V 2
R=¢+Hv 3V H ¢ ¢+3(p—|—P) 3V H (52)

Here H = %g—f] (the conformal Hubble factor); v is the (total)
velocity perturbation and dp the (total) density perturbation.
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LINEARISED EINSTEIN EQUATIONS FOR SCALAR

PERTURBATIONS IN THE NEWTONIAN GAUGE

RELATIVISTIC POISSON EQUATION

Newtonian gauge: choose w = = 0. The perturbed metric is
written as:

800 = —32(1 + 2\U) s 80i — 0 s g,-j = 326"](1 + 2¢) s (53)

Relativistic Poisson equation (00 linearised Einstein equation):

3HO' — 3H2V + k2D = 47Ga? (pcde + pulb + pydy + pudy)
(54)

The model considered here is A + CDM (c) + baryons (b) +

photons (v) + neutrino (v). dx = dpx/px is the density contrast.
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EQUATION FOR THE ANISOTROPIC STRESS

Spatial traceless part of the field equations:

K2(® + V) = 127 Ga’ kil r!; (55)
This equation tells us that & = —W, unless a quadrupole moment
of the energy content distribution is present.
For example, when CDM dominated the universe then & = —W¥

but this is not the case in the early universe, because of neutrinos.

Even when CDM or DE dominates but the underlying theory of
gravity is not GR one might have ® # —W. One can probe the

value of ® 4+ W via weak lensing.
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EQUATION FOR TENSOR PERTURBATIONS

For:
goo = —a°, gi=0, gij=a(65+hj), (56)

one obtains:

hi" +2Hh] + k*h] = 167Ga’r] (57)

where 7r,-JT is the tensorial part of the anisotropic stress.

These are gravitational waves in the expanding universe.
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EQUATION FOR VECTOR PERTURBATIONS

For:
goo = —a°, goi =0, 8ij = 32(51’1 + h)j/) ) (58)
with: )
hy = 0iAi+0iAr,  BAT=0. (59)
One has:
Vl/ V/ _
hy" +2Hh) =0 (60)

With the Laplacian missing, the last equation is no more a wave
equation. With no vector sources, in the early, radiation-dominated
universe, for which % = 1/, one has:

1% 2
hi o 1/n°, (61)

and hence vector perturbations vanish.
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EQUATIONS FOR THE VARIOUS MATTER COMPONENTS

The linearized Einstein's equations are alone not enough for
completely describing the evolution of the perturbative quantities.

To those one adds the Boltzmann equations for the various species.
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Inflation
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PROBLEMS IN THE STANDARD MODEL OF COSMOLOGY

We have already encountered the flatness problem.

The horizon problem is an issue that appears when we calculate
the angular size of the particle horizon at recombination and notice
that it is only a small portion of the CMB sky.

How is it possible that the latter is so isotropic if no causal process
could have provided the conditions to be so?
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THE HORIZON PROBLEM

Conformal time

To
Last scattering surface
)
Recombination ¢
Trec
0 -
Reheating
Particle horizon
=]
=]
=
<
=]
=]
=
Causal contact
00

Tinitial = — -
ngularity

Big Bang s

Debono, Ivan and Smoot, George. (2016). General Relativity and Cosmology: Unsolved Questions and Future

Directions. Universe. 2.
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THE HORIZON PROBLEM

The proper particle-horizon distance is the following;:

t dt/ a da/
=0 [ e ®

whereas the angular diameter distance has the following form:

to / 1 5
h=0 [ = we O
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THE HORIZON PROBLEM

In an universe dominated by matter and radiation:

@ — Vv Qmoa + QI‘O Y QI‘O (64)
dA \/QmO + Q1“0 - \/Qm()a + QrO '

This ratio tends to zero for a — 0 and at recombination it is equal
to: 4

I (aree = 1073) = 0.018, (65)
da

which corresponds to about 1° in the CMB sky.

Therefore, we have roughly 47/(0.018)? ~ 10* causally
disconnected regions in the sky.
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SOLUTION

INFLATION

Assume H = H, constant before the radiation-dominated epoch:

a(t) = aje(t=t) (66)
Now: ;5
N
~n — —_ 1 .
chi ~ (e~ 1) (67)

Since da ~ a/Hy for small scale factors, we can conclude that:

d H
H _ OeN

— & 68
dA a,H/ ( )
and so, in order to have dg > da, we obtain the condition:
arH, N
m e (69)

N is called the number of e-folds.
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SINGLE SCALAR FIELD SLOW-ROLL INFLATION

Consider a canonical scalar field:

1
L= Eg’*"@w@ucﬂ + V(p) . (70)

In the background FLRW metric the energy density and pressure

are:

_ 70 12 7&;_ 1,7}-2_
pe=—Tlo=35"+V(p), Pp=30Ti=35=V(p). (11)
Moreover:

¢+3Hp+Vy, =0, (72)
and:
8rG a 8 G
2 _ 2 a_ _ _
e G IR O

(73)
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SLOW-ROLL CONDITION

In order for H to vary slowly:

o<1, (74)

Using Friedmann equation and the expression for H we can write
the above condition as:

P? < V(p) (75)

which is the first slow-roll condition. When the kinetic term of
the scalar field is negligible with respect to the potential one, one
has:

P, ~ —p, ~ —V(p) = constant . (76)

That is, the scalar field potential, when it dominates over the
kinetic term, behaves as a cosmological constant.
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SLOW-ROLL PARAMETERS

The condition of slow-roll is parametrized as:

aeal)

The derivative can be written as:

¢ =2He(e — 1), (78)
where
1g
=_=? 7
- (79)

is a second slow-roll parameter. The smallness of 1 gives us:

@)



INFLATION
000000000@0000

PRODUCTION OF PRIMORDIAL MODES

SPECTRAL INDICES

Quantum fluctuations in the inflaton field are amplified and turn
classical, providing the seeds for scalar and tensor perturbations:

K3Pr (k) H? K\ st
AZ =A% = = =As | — , (81
STORT T T B M2e|, ., (k) (81
K3Py(k)  2H2 k\ T
A2 =2A% = = =Ar (| — 82
! " m? M) | —am "\k 2

where the general k-dependence (given by the specific model of
inflation) is embedded in ns(k) and nt(k), which are known as
scalar spectral index and tensor spectral index.

These can be measured in the CMB.
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RELATION TO THE INFLATIONARY MODEL

One can determine:
nr = —2¢ (83)

and:

‘ ns — 1= —4e+2n=—6ey + 2ny (84)

And the tensor-to-scalar ratio:

AT (k) _ Ar
re = = — = 16e = —8nr (85)
AZ(k)  As
The energy scale of inflation:
3m2 Mg
V, = %r*As (86)
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OBSERVATIONAL RESULTS

For the scalar spectral index at 68% CL:

in k—0009j:0010 (87)
d?ng
=0.025+0.01
d(n k)2 0.025 + 0.013 , (88)
using the pivot scale k, = 0.05 Mpc~!. For the scalar amplitude at
68% CL:
In(10'°As) = 3.094 + 0.034 . (89)
For the tensor-to-scalar ratio:
r.oo2 < 0.10 s (90)

at 95% confidence level. The energy scale of inflation:

— (1.88 x 106 GeV)* (91)

010
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THE STAROBINSKY MODEL
(1979, 1980, 1983)

The Starobinsky model is:
f(R)Y=R+ —5 . (92)

As any f(R) theory, it can be framed into GR plus a canonical
scalar field. The potential is:

2
U(x) = %Ml%l/vﬂ (1 —e V23 MPI) (93)

The scalar spectral index and the tensor-to-scalar ratio are:

2 12
nSZI—N, r:m. (94)
Substituting N = 50 and 60, the predictions obtained are in
excellent agreement with the Planck constraints.
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PLANCK CONSTRAINTS
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