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The Pierre Auger Observatory
Studying the Universe’s highest energy particles

http://www.auger.org/

http://www.augeraccess.net

http://www.auger.org/
http://www.augeraccess.net
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The Pierre Auger Observatory
Cosmic Rays

Relativistic particles (mostly nuclei, ranging from protons
to uranium) constantly bombarding Earth.

Extensive air-showers when they hit Earth’s atmosphere.

The discovery of extensive air-showers is usually credited to
Pierre Auger who, in 1938, observed an unexpectedly high
rate of coincidences between counters separated by a few
metres.

The Pierre Auger Observatory has been designed to study
the highest energy cosmic rays.

The Observatory must be very large as the rate of events
at the very highest energies (∼ 1020 eV) is less than 1 per
km2 per century!

These very rare particles have mysterious origins, so that
studying them may open doors to problems in exotic
physics, astrophysics and cosmology.
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Cosmic Rays
Spectrum

http://www.physics.utah.edu/~whanlon/spectrum.html

http://www.physics.utah.edu/~whanlon/spectrum.html
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Cosmic Rays
Shower and detection

http://www.mpi-hd.mpg.de/hfm/CosmicRay/ShowerDetection.html

http://www.mpi-hd.mpg.de/hfm/CosmicRay/ShowerDetection.html
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The highest energy Cosmic Rays
Origin and the GZK limit

K. Greisen, Phys. Rev. Lett., 16(17):748750, 1966
G. T. Zatsepin and V. A. Kuzmin, Soviet Journal of
Experimental and Theoretical Physics Letters, 4:78, 1966

Reaction between energetic protons and cosmic background
radiation photons

p+ γ2.7K → ∆+ → p+ π0 or n+ π+

Limit on the distance from which such energetic particles
can have come: ∼ 50 Mpc at 1020 eV (note that the Milky
way has a size of ∼ 30 kpc).

Galactic magnetic field does not deflect them → cosmic
origin. Where are these powerful accelerators?



10



Correlation of the highest energy cosmic rays with
nearby extragalactic objects

The Pierre Auger Collaboration, Science 318, 938 (2007)



11



Active Galactic Nuclei

http://www.roe.ac.uk/~pnb/research.html

http://www.roe.ac.uk/~pnb/research.html
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Active Galactic Nuclei

http://www.auger.org/news/PRagn/about_AGN.html

http://www.auger.org/news/PRagn/about_AGN.html
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Active Galactic Nuclei
Remarkable features

T. Padmanabhan. Theoretical Astrophysics: Galaxies and
Cosmology. Cambridge Univ Pr, 2002.

Galaxies whose core (. 1 pc3) produces more radiation
than the entire rest of the galaxy! L = 1040 – 1047 erg/s
(L� = 3.846 · 1033 erg/s)

Central engine: a supermassive black hole fed by an
accretion disk.

MBH & 108 M�.

Very large bulk velocities, up to 104 km/s.

The supermassive black hole is very rapidly spinning.
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Active Galactic Nuclei
Some evidence for a central spinning black hole
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Active Galactic Nuclei
Some evidence for a central spinning black hole
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Active Galactic Nuclei
Some evidence for a central spinning black hole
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Kerr solution
Some information

R. P. Kerr., Phys. Rev. Lett., 11(5), 237238, 1963
B. Carter, Physical Review, 174(5), 1559-1571, 1968
Kerr Solution in Boyer-Lindquist coordinates:

ds2 = dt2 −
2Mr

(
dt− a sin2 θdφ

)2
r2 + a2 cos2 θ

−
(
r2 + a2 cos2 θ

)(dr2

∆
+ dθ2

)
−
(
r2 + a2

)
sin2 θdφ2

with

∆ ≡ r2 − 2Mr + a2 , M > 0 , a ∈ [0,M ]

R.H. Boyer and R.W. Lindquist., J. math. phys., 8:265, 1967.
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Kerr solution
Special distances

The condition ∆ = 0 (grr →∞) gives two special distances: the
event horizon

rH = M +
√
M2 − a2

and the Cauchy horizon

rC = M −
√
M2 − a2

Asking gtt = 0 you will find instead

r0 = M +
√
M2 − a2 cos2 θ

the so-called static limit
The spacetime region rH < r < r0 is called ergosphere. Here the
Penrose process may take place
R. Penrose, Riv. Nuovo Cim., 1:252276, 1969
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Kerr solution

http://www.oulu.fi/astronomy/astrophysics/pr/black_holes.html

http://www.oulu.fi/astronomy/astrophysics/pr/black_holes.html
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Kerr solution
Penrose Diagram

http://www.engr.mun.ca/~ggeorge/astron/blackholes.html

http://www.engr.mun.ca/~ggeorge/astron/blackholes.html


21



Kerr solution
Equatorial geodesics

For θ = π/2

dt

dτ
=

1

∆

[(
r2 + a2 +

2Ma2

r

)
ε− 2Ma

r
L

]
dφ

dτ
=

1

∆

[
2Ma

r
ε+

(
1− 2M

r

)
L

]
(
dr

dτ

)2

= ε2 +
2M

r3
(aε− L)2 +

a2ε2 − L2

r2
− ∆

r2
δ1

where τ is the proper time, δ1 = 0 for photons whereas δ1 = 1
for massive particles.
We are here interested in δ1 = 1. In this case, ε and L are the
particle specific energy and specific angular momentum
(specific means normalised to the mass→ equivalence principle).
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Kerr geodesics
Conditions on the particle angular momentum

Demanding dt/dτ ≥ 0, so that the particle does not go
“backward in time”

l ≤
(
x3 +A2x+ 2A2

2A

)
ε

We use hereafter the “normalised” variables l ≡ L/M , x ≡ r/M
and A ≡ a/M .
We also assume ε = 1 for a particle coming from infinity.
In this case, there are limiting specific angular momenta for
which the particles can achieve the horizon

−2
(

1 +
√

1 +A
)

= lL ≤ l ≤ lR = 2
(

1 +
√

1−A
)

Note the asymmetry.
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Kerr Black Holes as Particle Accelerators to Arbitrarily
High Energy

Is it possible to extract ultra-high energies from the ergosphere
of a rapidly rotating BH? Maybe yes, but with two conditions:

first, the BH must be extremal and, second, the scattering must
take place exactly on the horizon.
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The Energy in the centre of mass

For two particles of mass m in the centre of mass reference
frame in Minkowski space

pµtot = muµ1 +muµ2 = (Ecm, 0, 0, 0)

with uµ1 , uν2 four-velocities.
Using ηµνu

µuν = −1 we get

Ecm = m
√

2
√

1− ηµνuµ1uν2

The equivalence principle should allow ηµν → gµν , therefore

Ecm = m
√

2
√

1− gµνuµ1uν2

A. P. Lightman, W. H. Press, R. H. Price and S. A. Teukolsky,
Problem Book in Relativity and Gravitation (Princeton Univ.
Press, New Jersey, 1975)
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The Energy in the centre of mass
Schwarzschild case

With normalised units and ε1 = ε2 = 1:

E2
cm

2m2
=

2x2(x− 1)− l1l2(x− 2)−
√

2x2 − l21(x− 2)
√

2x2 − l22(x− 2)

x2(x− 2)

For x→ xH = 2 we get

Ecm(x→ 2) =
m

2

√
(l2 − l1)2 + 16

When l1 = l2 we have Ecm = 2m.
When l1 = 4 and l2 = −4 (the maximum angular momenta
allowed) we have Ecm = 2

√
5m.

With a rotating BH could we have a more efficient process?
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The Energy in the centre of mass
Kerr case

With normalised units and ε1 = ε2 = 1:

E2
cm

2m2
=

1

x(x2 − 2x+A2)

[
2A2(1 + x)− 2A(l1 + l2)− l1l2(x− 2)

+2x2(x− 2)−
√

2(A− l1)2 − l21x+ 2x2
√

2(A− l2)2 − l22x+ 2x2
]

This time, the horizon dwells at xH = 1 +
√

1−A2.
For A = 1 and x→ xH = 1

Ecm√
2m0

(A = 1, x→ 1) =

√
l2 − 2

l1 − 2
+
l1 − 2

l2 − 2

When l1 or l2 tend to 2, the centre of mass energy diverges.
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The allowed specific angular momenta

For A = 1, xH = 1 +
√

1−A2 = 1.
The condition for achieving the horizon [recall (dr/dτ)2 > 0]

−2
(

1 +
√

1 +A
)

= lL ≤ l ≤ lR = 2
(

1 +
√

1−A
)

becomes
−2
(

1 +
√

2
)

= lL ≤ l ≤ lR = 2

So l = 2 is a limiting case, but still allowed.
From the “forward in time” condition dt/dτ > 0 we have also

l ≤ x3 +A2x+ 2A2

2A
⇒ l ≤ x3 + x+ 2

2

So that for x = 1 we have l ≤ 2.
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Why extremality?

For a generic A, on the horizon we have

l ≤
x3
H +A2xH + 2A2

2A
=

2xH
A
≡ lH

On the other hand, in order to achieve the horizon we know

−2
(

1 +
√

1 +A
)

= lL ≤ l ≤ lR = 2
(

1 +
√

1−A
)

The formula for the centre of mass energy on xH for generic A is

Ecm
2m0

(x→ xH) =

√
1 +

(l1 − l2)2(4 + l2H)

16(l1 − lH)(l2 − lH)

It is not difficult to prove that lR ≤ lH . Therefore, only the case
A = 1 could provide a diverging Ecm.
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Criticism
Thorne’s limit

Thorne’s limit A . 0.9980± 0.0002
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Criticism
Divergence of the proper time and a new idea

∆τ = M

∫ xi

xf

dx
x3/2√

2x2 − l2x+ 2(A− l)2

For A = 1 and l = 2 we get

∆τ =
M

3
√

2

[
2
√
x(3 + x) + 3 ln

√
x− 1√
x+ 1

]xi
xf

diverging when xf → xH = 1.
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Type of orbit

For A = 1 and l = 2 the particles have to wait an infinite
amount of proper time.
What do they do in the meantime?
Consider

∆φ =

∫ xi

xf

dx

√
x[lx+ 2(A− l)]

(x− xH)(x− xC)
√

2x2 − l2x+ 2(A− l)2

You can see that ∆φ→∞ for x→ xH = 1 when A = 1 and
l = 2
The particle therefore commit infinite revolutions around the
black hole before scattering
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A new idea, from Grib and Pavlov
The multiple scattering

Given

Ecm
2m

(x→ xH) =

√
1 +

(l1 − l2)2(4 + l2H)

16(l1 − lH)(l2 − lH)

we would like l1 or l2 to achieve lH . Unless for A = 1, that is
not possible because the horizon is out of reach. For A = 1 we
have seen that the process is indeed possible, but it requires
infinite proper time as well.
A possible way out is the multiple scattering. The particles
have initial momenta

−2
(

1 +
√

1 +A
)

= lL ≤ l ≤ lR = 2
(

1 +
√

1−A
)

getting close to the horizon. There they scatter once, achieving
say lH − δ and scatter twice, getting very high energies.
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Disconnected motions

Start from the equation for (dr/dτ)2 written as:

x3

(
dx

dτ

)2

= 2 (A− l)2 − l2x+ 2x2

For sufficiently large angular momenta, i.e. l < lL or
lR < l < lH , the geodesics motion is characterised by two
disconnected motions:

an internal one, with an aphelion say xA

an external one with perihelion say xP

These motions are disconnected in the sense that the region
xA < x < xP is forbidden since (dx/dτ)2 < 0
The first scattering must take place in the internal region.
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Example of disconnected motion for the Schwarzschild
case
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Aphelion and Perihelion

Curiosity

From

x3

(
dx

dτ

)2

= 2 (A− l)2 − l2x+ 2x2 = 0

you can calculate that

xA,P =
l2 ±

√
l4 − 16(A− l)2

4

For l = lH you get

xA = xH xP =
x2

H

2− xH
=
l2H
4
xH

The internal orbit does not exist.
The trick is not to employ l = lH , but lH − δ. This would leave
some room outside the horizon.
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Aphelion and Perihelion for lH − δ

For l = lH − δ, the aphelion xA grows a bit whereas the
perihelion xP decreases a bit

xA = xH +
(2− xH)2

4xH(xH − 1)
δ2 +O(δ3)

xP =
x2

H

2− xH
−

2
√
xH√

2− xH
δ +O(δ2)

The particle has now a small room to live between the horizon
and xA.
Let

η ≡ (2− xH)2

4xH(xH − 1)
δ2 , η′ ≡

2
√
xH√

2− xH
δ

for simplicity.
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Centre of mass energy upon the second scattering

From l = lH − δ Grib and Pavlov find

Ecm ≈
m√
δ

√
2(lH − l2)

1−
√

1−A2

One realizes that if δ → 0, the energy in the centre of mass
system diverges.
So, if infinite energies are not the case in the single collision
event, but are they in the multiple ones?
No, achieving the horizon always requires infinite coordinate
time.
Nevertheless, the multiple scattering could provide much larger
energies.
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How much time from xH + η to xH?

Some calculations lead to

∆τ = M
x

3/2
H

√
η

√
2
(

x2H
2−xH − η

′ − xH
)1/2

+O(η2)

and

∆t =
MxH

√
2xH ln

(
η

xf−xH

)
√

(xH − 1)(2− xH)
(

x2H
2−xH − η

′ − xH
)1/2

+O(η2)

∆τ is finite and vanishes for η → 0 (the particle is already on
the horizon!)
The coordinate time presents a logarithmic divergence.
Extracting infinite energy from a rotating BH requires infinite
time.
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Centre of mass energy (very) close to the horizon

Scattering on the horizon requires infinite time. But we do not
really need it, as we shall see. Just stay close:

E2
cm

4m2
= 1 +

(l1 − l2)
2

2(2 − xH )(lH − l1)(lH − l2)

+α
(l1 − l2)

2
[
xH (xH − 1)(l1 + l2)

2 + 2A(l1 + l2)(4xH − l1l2) + (2 − xH )(l21l
2
2 − 4xH l

2
H )

]
2(2 − xH )3(lH − l1)3(lH − l2)3

+O(α
2
)

where

η =
(2− xH)2

4xH(xH − 1)
δ2 = α

When you ask l→ lH , you automatically demand also δ → 0
which implies α→ 0 and the evaluation of Ecm on the horizon
with consequent Ecm,∆t→∞.
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How close for a given Ecm?

Here is a generalisation of Grib and Pavlov’s formula:

E
2
cm =

m2

δ

[
2(lH − l2)

2 − xH

+
xH (xH − 1)(lH + l2)

2 + 2A(lH + l2)(4xH − lH l2) + (2 − xH )l2H (l22 − 4xH )

2(2 − xH )xH (xH − 1)(lH − l2)3

]

Consider A = 0.998, which implies xH ≈ 1.063 and lH ≈ 2.131,
and l2 = lL = −4.83.
The above formula becomes:

E2
cm =

14.937m2

δ
, ⇒ Ecm =

3.865m√
δ

Remember that δ cannot be taken to zero.
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How close for a given Ecm?

Consider scattering of protons, m ∼ 1 GeV.
Demanding an energy in the centre of mass E = 1012 GeV we
find √

δ ≈ 10−12 , ⇒ η ≈ 3.45 · 10−48

which is pretty consistent with our approximation, i.e. small δ.
Indeed, the scattering has to be very close to the horizon!
But it is not necessary for it to take place exactly on the
horizon. The fundamental fact here is that the divergence in ∆t
is logarithmic and therefore the smallness of η is unimportant.
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How much time to get to xH + η?
A little... ish

An approximate calculation for a particle coming from
xi = 102xH (approximatively where the disk is)

∆t ≈
√

2M
lHxH

√
xH − 1

√
l2H − 4η′ − 4xH

ln

(
102xH − xH
3.45 · 10−48

)
Given A = 0.998, xH ≈ 1.06 and lH ≈ 2.12, we obtain

∆t ≈ 2.93 · 103M

Restoring the proper units we have, in seconds

∆t ≈ 2.93 · 103GM

c3
sec

For a typical BH which is believed to dwell in the centre of an
AGN, M = 108 ·M� = 2 · 1038 kg. So we find

∆t ≈ 1.45 · 106 sec = 16.76 d
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And how much time to escape and come to us?

The particle has now to come to Earth, in order to be detected.
How much time does it take its travel to Earth?
This is easy because it is ultrarelativistic.
Now, because of the GZK effect, the relevant distance to an
AGN has to be . 75 Mpc. From this number we derive that

∆t ≈ 2.25 · 1013M ≈ 1.11 · 1016 sec ≈ 3.53 · 108 y

The time-scale for the scattering process is of the order of a
week, whereas the particle takes a wealth of time to arrive to
Earth.
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Am I correct?
Perhaps
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Conclusions

The main result we find may be summarised as

Ecm
m
∝ η−1/4 , ∆t ∝ −M ln η

which can be combined in order to obtain

∆t ∝M ln

(
Ecm
m

)
i.e. the time required for a scattering producing a centre of
mass energy Ecm/m is proportional to the order of magnitude
of the latter.
For example, if it takes one week for a proton to achieve an
energy of 1012 GeV, it would take ten days in order to achieve
an energy of 1016 GeV, i.e. the grand unification scale (GUT).
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Perspectives

We have discussed the scattering as a given fact, but we
need to investigate in detail the feasibility of the process.
That is, investigate a cross-section (which would certainly
depend on the accretion disk physics)

The escape function, i.e. the distribution of outcoming
angular momenta (from their values depend if a particle
may or not escape from the singularity)

Zasvlaskii’s paper: charged black holes may possibly act as
a counterpart of rotating ones for high energy scattering
processes (Q and A exchange their roles)

Another Zasvlaskii’s paper: general explanation of high
energy scattering processes
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Kerr solution
The Cauchy horizon

Let S be a space-like surface on a manifold M; D+(S) and
D−(S) are the future and the past of S, respectively.
When there are no closed time curves, then

D−(S) ∩D+(S) = ∅

S is a Cauchy surface if D−(S) ∩D+(S) = ∅ and

D−(S) ∪ S ∪D+(S) =M

In practice, all the events on the manifold are determined by
informations (initial consitions) on S (imagine the Cauchy
problem)
If D−(S) ∪ S ∪D+(S) 6=M, then there are regions not
determined by S. Their border is the Cauchy horizon.
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Kerr solution
Static limit

When you consider a particle at rest, then r, θ and φ are
constant. This implies

ds2 = gttdt
2

for which gtt ≥ 0.
The case gtt = 0 determines for Kerr metric

r0 = M +
√
M2 − a2 cos2 θ

and is called static limit because it is the closest distance at
which you may find a photon at rest.
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Kerr solution
Frame dragging

Write Kerr metric in the following form

ds2 =

(
gtt −

g2
tφ

gφφ

)
dt2 + grrdr

2 + gθθdθ
2 + gφφ

(
dφ+

gtφ
gφφ

dt

)2

You can see the angular velocity

Ω = −
gtφ
gφφ

=
2Mra

(r2 + a2 cos2 θ)(r2 + a2) + 2Mra2 sin2 θ

measured by an observer at infinity and induced by the metric.
This is the frame-dragging, or Lense-Thirring effect.
J. Lense, H. Thirring, Physikalische Zeitschrift 19, 156 (1918)
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Curiosity
Nomenclature

Strictly speaking, “helion” refers to the Sun.
For a black hole, more suitable terminology would be

Perimelasma - Apomelasma (from G. Landis)

Peribothra - Apobothra

Perinigricon - Aponigricon

The latter used in
R. Schodel et al, Nature 419, 694-696 (2002)


	Introduction
	AGN
	Spinning Black Hole
	Scattering
	A New Idea
	Conclusions and Perspectives
	Appendix

