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Introduction

What are Gravitational Waves?

Gravitational Waves (hereafter GW) are ripples in the
spacetime fabric propagating with the speed of light (within the
framework of General Relativity). They are generated by
accelerated masses.

The parallel with Electrodynamics and Electromagnetic Waves
(hereafter ED and EW) is particularly profound and useful. We
shall employ it extensively and because of this an overview of
ED is offered.

Think about the Coulomb potential among charges and EW. In
gravity we have, similarly, Newton potential and GW. Though,

mind that Newton’s theory is unable to predict GW. They are a
prediction of General Relativity (herafter GR) and other gravity
theories (which observation of GW helps us to discriminate).



Why are GW difficult to detect?

Gravity is a very weak interaction. As we shall see, the GW
amplitude is proportional to:

2
L L G0

ij X E@Dij , (1)

where D;; is the quadrupole mass tensor. We shall encounter
D;; again later. The important point now is that it depends on
the mass distribution of a system of orbiting bodies and G/c* is
a very small quantity:

SZ

g ~ 1074
4 kg - m

C

(2)

Hence we need large and rapidly moving masses in order to
have a detectable effect.
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Introduction

Sources of GW

Large and rapidly moving masses are found in binary systems of
Black Holes (hereafter BH) and Neutrons Stars (hereafter
NS).

Unfortunately (or fortunately, depending on the point of view),
they are also very far away and the GW signal decays as 1/7:

G 02

hij o< -5 Dii » (3)
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The Gravitational Wave Spectrum

Quantum fluctuations in early universe
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Introduction

Indirect detection

Hulse-Taylor pulsar (discovered in 1974)

PSRB1913+16

T = orbital period =7.751939106 hr
a = semi-major axis = 1.95 x 10° m
e = eccentricity =0.617131
m, = 1.44M, =2.8676 x 103 kg
m, = 1.39Mg =2.7661x 103 kg

* Periastron = 0.746 x 10° km

Apastron = 3.153 x 106 km
Inclination = 45°




Introduction

Reduction of the orbital period due to GW emission

This is the first NS-NS binary system discovered in which one
of the two NS is an observable pulsar.

The observability of one of the 2 NS (as a pulsar) allows to
determine the Keplerian and Post-Keplerian parameter, leading
to the discovery of the reduction of the orbital period.

GR calculations match perfectly this reduction, suggesting that
the binary system is losing energy via GW emission.



Introduction

Reduction of the orbital period due to GW emission
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Introduction

Merger

If the orbital period is diminishing, this means that the binary
system is shrinking. Eventually, the two NS will merge one into
another. Close to merger, we expect the GW signal to be the
largest possible.
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Introduction

Direct detections
LIGO-Virgo detections

All the following are direct detections of GW resulting from
BH-BH mergers:

» GW150914: First GW direct detection
GW151226
GW170104
GW170608
GW170814

The event GW170817 is the first GW signal coming from a
NS-NS merger. Its electromagnetic counterpart was also
observed as a Gamma Ray Burst (GRB 170817A), 1.7 seconds
after the GW signal.

v

v

v

v
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Introduction

Michelson Interferometer

LIGO = Laser Interferometer Gravitational-Wave Observatory

In the LIGO facility, a laser beam is -~
split to travel down two perpendicular

4-kilometre tunnels. The beams then
reflect back and forth before being

recombined at the detector. 4-km-long
arm

Beam
splitter

Light

detector
Laser
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How a GW changes the length of the arms

I Catching a wave
How a laser-interferometer observatory works

Before the wave DETECTOR During the wave DETECTOR
<>
e 3
P Beams in step B Beams out of step
p: 3
BEAM BEAM
SPLITTER MIRROR SPLITTER MIRROR
arnar— N PV VAR
(1) [>) Arm 1 Arm 1
~
£
<
GRAVITATIONAL WAVE = | 4
& Arm 2 lengthens
>0
— 1
MIRROR |
MIRROR memmm v
The sends outa beam @ thatis divided

bya beam splitter @. The half-beams produced follow
paths of identical length @, reflecting off mirrors to
recombine @, then travelin step to the detector ©.

Source: The Economist

Economist.com

When a gravitational wave arrives, it disturbs space-
time, lengthening (in this example) the light’s path
along arm 2; when the beams recombine and arrive
at the detector, they are no longer in step.
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Typical GW signal
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Strain (10‘21)
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Introduction

Importance of GW for Astronomy

Multi-messenger astronomy
GW provide a new window through which observe the Universe.

We have always gathered informations mostly by collecting
photons (i.e. via EW), and still do.

Some regions of the sky are however obscure, i.e. we do not
receive any EW signal from them but this does not mean that
nothing is there.

GW allow us to see e.g. BH-BH binaries, in their final moments

of existence. There is no EW counterpart to these events.
Other potential messengers are neutrinos and cosmic rays.
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Electrodynamics

Electrodynamics

Our starting point are Maxwell’s equations (ME):

V-E = ple (Gauss’s law) , (4)
VXE = —%—]? (Faraday-Neumman-Lenz law) , (5)
V-B =0 (Gauss’s law for magnetism) , (6)
VxB = ,uoeo?;f + poJ (Ampere’s law) . (7)

These are usually complemented by the Lorentz Force equation:

F=¢gE+vxB). (8)



Electrodynamics

Scalar and Vector potentials

Since B is divergenceless, we can write it in terms of a Vector
Potential:
B=VxA. 9)

Hence, Faraday’s law becomes:

0A

and being the field between parenthesis irrotational, it can be
written as a gradient of a Scalar Potential:

OA
B=-VV- 2" (11)



Electrodynamics

Potential formulation of ME

The definitions B=V x A and E = -VV — automatlcally
account for Gauss’s law for magnetism and for Faraday s law.
One can show that Gauss’s law can be written as:

9 A

(V-A) =

2
Vv
\Y —i—a 0

(Poisson’s equation) , (12)

and Ampere’s law can be written as:

2

0“A
VA — joeo—

ov
912 -V <V A+ HOE0 —= ot ) = —,LLQJ . (13)

We shall come back later to these equations.



Electrodynamics

Gauge Freedom

From the definitions B=V x A and E=-VV — %—‘:‘ it is easy
to see that the new potentials:

oA
A'=A+V), V/:V_E’ (14)
where )\ is a generic function, leave unchanged the electric and
magnetic fields.

These are Gauge Transformations and the invariance of the
electric and magnetic fields under them is called Gauge
Invariance. The freedom that allows us to choose any A that
satisfy the above relations is called Gauge Freedom.



Electrodynamics

ME in vacuum

Consider the source-free ME and apply the curl to the V x E
equation:

Vx(VxE)= a(V><B). (15)

ot

Using vector calculus and the other ME it is straightforward to
show that:

O0’E 9
—,LL()EQW—FV E=0. (16)
Similarly, for B:
2
B 2
—o€o 8t2 + V B=0. (17)

These are Wave Equations.



Electrodynamics

Electromagnetic waves

Electric and magnetic fields oscillate sustaining each other and
forming an Electromagnetic Wave. They are e.g. light,
radiowaves, microwaves, ~y-rays, X-rays,...

The speed of propagation of an EW is:

v = \/l% =c (18)
the speed of light.
From now on we employ:

= —6125; + V2, (19)

which is called D’Alembert Operator.



Electrodynamics

Plane-wave solutions:
E(r,t) = Ege!@ kT B(r,t) = Boe! @k | (20)

where k is the wavenumber and w is the angular frequency
of the wave and they are related by:

k| =w/c. (21)

In order to have the real electric and magnetic fields recall to
take the real part of the above expressions. Alternatively, you
can add the complex conjugate to the above expressions.

It is not difficult to show, using ME in vacuum, that Eq, Bg
and k are mutually orthogonal and that |Bg| = |Eg|/c.

So, EW are transversal and do not need a medium in order to
propagate.
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Electrodynamics

Energy of an EW

The energy flux carried by an EW is given by the modulus of
the Poynting Vector:

S— L(ExB)|k. (22)
Ko
For example, if Eg || X and By || § then we have:
Sy =0, S,=0, S,=cepcE],cos’*(wt—kz+¢). (23)
Averaged over many periods (7/w) one gets:

(S.) = eocFEZ, /2 . (24)



Electrodynamics

Spherical EW

Far from a system of charge we expect an EW to propagate

spherically. Hence:
Sxt. (25)

The EW power through a closed surface S is:

P:%SS-dA. (26)

Since the wave is spherical, choose S to be a sphere and thus
dA = r2dQfF. Then, we must have:

|E|x1/r, |Blxl/r = (\S|>o<1/r2, (27)

so that P does not depend on r, which means that energy can
be carried to r — oo and thus we have an EW.



Electrodynamics

EW in the potential formulation

Exploiting gauge freedom and choosing A such that:

ov
V-A= ~Hoco 5 (Lorentz gauge) , (28)

we obtain the following equations for the potentials:
OA = —pod OV =—p/eo . (29)

In absence of sources, these are again wave equations. Within
sources, they are Inhomogeneous Wave Equations.



Electrodynamics

Retarded potentials

The inhomogeneous wave equations can be formally solved in
terms of the Retarded Potentials:

_ 1 p(rlvtR) /
V() = /V oy, (30)
/
Afr,t) = Mo [ I0LER) 0 (31)

CAn fy v -1/

where the integration is performed over the volume V
containing charges and currents and:

I
tp=t— 2=l (32)
C

is the Retarded Time. This takes into account that the EW
signal travels with finite speed c.

31/74



Electrodynamics

Sources of EW

A static charge cannot radiate EW because its electric field
lines are radial and B = 0.

A charge moving with constant velocity also cannot radiate
because its electric field lines are again radial. Moreover, the
electric and magnetic field strengths fall as 1/72. Hence

(IS]) o< 1/r* and E o< 1/72.

The retarded potentials computed in this case are called
Liénard-Wiechert Potentials.

In order to produce EW we need an accelerating charge.
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Electrodynamics

Dipole Approximation
Assuming ' < r and d < c¢/w, i.e. the size of the distribution
of charges is much smaller than the EW wavelength, the
potentials can be approximated as:

V(r,t) ~ 47360 [? Lo I;Z(t(’) LI (dp:jt)(t‘))] . (33)
where

0= /Vp(r/’to)dvl 7 p(to) = /Vr/p(r/,to)dvl ) (35)

are the Monopole Moment (i.e. the total charge) and
Dipole Moment of the charge distribution and:
r
to=t——. 36
o=t-" (36)

33 /74



Electrodynamics

Fields in the Dipole Approximation

From the previous solutions we can compute the electric and
magnetic fields. Keeping only the o 1/r terms:

HO (n  a wop(to) sind -

E(r,t) = X2 _ 0

(r’ ) A7y [I' X (I' X p)] A7 r ) (37)
Mo pop(to) siné -

Blr1) = drre [Fx Bl = dre 1 ¢

(38)
They are orthogonal, as expected and the Poynting vector is:

pop(to)? sin? @
5= 6me 2 (39)

The irradiated power is then:

. 2
p _ Hob(to)”
6mc



Covariant Formulation of Electrodynamics
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Electrodynamics

Recap of Special Relativity

Relativity Principle: Physics is the same in reference frames
in relative uniform motion (inertial frames).

The speed of light ¢ is an invariant. Galileo transformations are
substituted by Lorentz Transformations.

Lorentz transformations contain the usual 3-dimensional

rotations and moreover also space-time rotations, better known
as Boosts.
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Electrodynamics

For example, a boost of velocity V in the X direction is written

as:
ct’ v =8 0 0 ct
| | -8 ~ 00 T
2 0 0 01 z
where v
= — 42
=", (12)
and
1
= (43)

V=i

is the Lorentz Factor.



Electrodynamics

Extension of the definition of vector: from 3-vectors, defined
under rotations:

2" = R'jx? | (i, =1,2,3) (44)
to 4-vectors:
o't = Aty Y (M? v=20,1,2, 3) (45)

defined under Lorentz transformations A¥,. The Einstein
summation convention is employed here: repeated high and low
indices are summed.

Position 4-vector in Cartesian coordinates:

o = (ct, 2,1, 2) (46)
Tensors are defined as:
TH = AF,AY TP (47)
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Electrodynamics

Minkowski metric

Minkowski metric 7,

M = A A 0o - (48)
In matrix form:
N = diag(—1,1,1,1) . (49)
Line element:
ds?® = N datde” = —Pdt? + da? + dy? + d2* . (50)

The line element is invariant under Lorentz transformations.
Raising and lowering indices:

Ty = N’ . (51)
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Electrodynamics

ME in 3 4 1 spacetime

Defining the Electromagnetic Field Tensor:

0 E./c Ey/c E./c
—E%/c 0 B. -B,

ul/ p—
U= g —p. o B | (52)
-E./c B, -—-B, 0
and the current 4-vector:
Jy = (ep, J*, Y, J7) (53)
one can show that the ME can be written as:
0" = poJ” (54)
O F* 4+ 0, F"* + 0,F " =0, (55)

(O = 0/0zH).



Electrodynamics

The 4-vector potential

Defining the Potential Four-vector:
At = (V/e, Ay, Ay, Az) (56)
the electromagnetic field tensor can be written as:
F = 9,A"” —0,A" . (57)
Gauge-invariance is now expressed as:
AF— AP+ O\ . (58)

Lorentz gauge:
0, A" =0. (59)

And ME can be written as:
OA* = —pgJ* . (60)
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Electrodynamics

Plane-wave solution for A, in vacuum
Plane-wave solution:

Ay, = e e 4 eZeka”z . (61)

The complex conjugate is introduced in order to make A, real.
e, is the Polarization Vector.
Using 0A,, = 0 we get:

k=0, (62)

i.e. the EW propagates with the speed of light. Using the
Lorentz gauge condition 0*A, = 0, we get:

ket =0, (63)

which gives us transversality. This latter condition tells us that

only 3 out or 4 components of e, are actually independent.
42 /74



Electrodynamics

Exploiting gauge freedom

Now, thanks to gauge freedom we can change A, to:

A, = e 4 eZefik"xV + O . (64)

But we still want to stay in the Lorentz gauge 8“AL = 0. This
demands that:

Ox=0, (65)
and we choose as solution:

ik, x?

\ = iee P (66)

so that the new 4-potential reads:

11 ikyaY 1% —iky,x?
A, =€ ™t feje (67)

with
e, = ey — ek . (68)
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Electrodynamics

Two polarizations
Since ¢ is arbitrary, we can choose it in order to fix a
component of eL as we please. Hence, only 3 —1 =2
components of the polarization vector e, are physically
independent. Take, for example:

k" = (k,0,0,k) , (69)

i.e. a wave propagating in the z direction. The condition
kte, = 0 gives us:
ep+e3=0, (70)

and gauge freedom allows us to establish:
ey =e3 — ek . (71)

Choosing € suitably we can make ey and es to vanish. Hence,

only e; and ey carry physical significance.
A4/ 74



Electrodynamics

The two polarizations represents physically the two degrees of
freedom with which the electric field can oscillate in the plane
perpendicular to the direction of propagation.

Light
source

Polarising filter
ol
ps - /

Polarised light
/ g

Unpolarised light



Electrodynamics

Helicity
Any plane wave 1 which is transformed into:
Y=y, (72)

by a rotation of 6 about the propagation axis is said to have
helicity h. For our EW with k* = (£, 0,0, k) then:

e; = R’,e, , (73)
with:
1 0 0 0
v _ | 0 cosf® sinf 0
By = 0 —sinf cosf 0 ’ (74)
0 0 0 1

a rotation about the z axis.
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Electrodynamics

Hence, applying the rotation we have:

ey = €p , e} = cosfey + sinfey , (75)
ey = —sinfe; + cos ey es = e3 . (76)
Defining;:
e+ =e1 F i€2 s (77)
we have: ‘
ey = ety (78)

Hence, an EW can be decomposed into two parts with helicity
41 and one with helicity zero. The latter however is not
physical since it can be made vanishing thanks to gauge
freedom.



Electrodynamics
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Gravitational Waves

General Relativity

Tensor are now defined with respect to any coordinate

transformation: Bt 5
! _ €z x loa
Einstein equations (EE):
1 81G
G“V = R“V — EguyR = 7Tuy . (80)

Highly non-linear and very difficult to solve for strong fields. In
this case we need Numerical General Relativity.

We shall treat them in the Weak-Field Limit only, linearizing
them. So, mind that the GW we are going to describe are also
subject to this regime.



Gravitational Waves

Linearized EE

Weak field:
G = N + s |huw| < 1. (81)

Keeping only the terms linear in A, one can show that:

Ry = (070,17 + 0,0,y — 0,017y — Ohyw) (82)

1
2
and the EE can be thus written:

167G

Oy = 050l = 0,0,y + 0B H Ty = === Sy, (83)

with S, =T — %UWT)‘A- Note that h#, = n#*h,,, since we
are in the weak-field limit.
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Gravitational V

General covariance

GR is characterized by General Covariance, i.e. EE are valid
in any reference frame. Thus, consider the coordinate
transformation:

ot — 't =2t + P (2) (84)

with small e#(x), so that the field remains weak. Since the
metric is a tensor, it transforms as:

oz'* oz'v
T — 22 po 85
oxP 81‘”9 (85)
And thus we have:
W = Py — Qv — Opey (86)

with e, = n,,€”. So, if hy, is solution of the EE, then h;w also
is. This is reminiscent of the gauge invariance of EM (put A,
instead of hy,).



Gravitational Waves

Harmonic coordinate system

In EM we exploit gauge invariance in order to obtain a wave
equation for A,. The Lorentz gauge is particularly appropriated
for this.

In GR we do something similar, by choosing the Harmonic
Coordinate System, for which:

9Ty, =0, (87)
and which in the weak-field approximation gives us:
Looa
ouhty, = 58,,h ) - (88)

This choice is equivalent to make a coordinate transformation
with:

1
Oe, = 9,hH, — 58,,]1’\ . (89)
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Gravitational Waves

Linearized Gravity Solution

The harmonic condition allows us to put the EE in the

following form:

167G

Dh’,u,l/ = - C4 S/.Ll/ ’ (90)

i.e. as an inhomogeneous wave-equation, similar to the one we
found for A,. We already know how to solve this:

A
hatt) = 5 [ LS v

o |x! — x|

being this the retarded potential and ¢ — |x’ — x|/c the retarded
time. This shows that gravity propagates with the speed of
light, differently from Newton’s theory where the action at a
distance is instantaneous.



Gravitational

The above solution for h,, contains, for example, Newton’s
theory. Suppose a static distribution of masses, with mass
density p(x’). Then:

Soo = —(— » (92)

is the only nonvanishing component of S, and

2G’
houl) = 25 [ L av. (93)

This is the expression for the Newtonian potential generated by
a distribution of masses (times 2 and divided by c?). For a
single point mass M, p(x’) = 6®)(x') and so:

2GM

c2r

h()o (X) =

. (94)

This is not a GW, of course.

Waves




Gravitational V

Linearized GW

We interpret as a GW solutions of the homogeneous wave
equation, in the harmonic gauge:

1
Dhﬂl/ =0 ) 8,U«h‘ull = §8Vh>\)\ ) (95)

because this has a general solution as a superposition of plane
waves which can propagate to infinity:

h'w/(l') _ euyeikAa:)‘ + e;yefik)\z)\ ’ (96)
with: )

kbt =0, kyet, = 51@& X, (97)
and ey, = e, is the Polarization Tensor. In general h,,
(and consequently e,,,) has 10 independent components.
However, this number is lowered to 6 due to the relation

ke, = %k‘,,e/\ A, coming from the harmonic gauge.
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Gravitational Waves

We have however a residual gauge freedom, because we can

choose another h;w, related to the former by

h:“, = hyy — Oyey — O (98)

with 1
Oe, = 9,hH, — 53,,1&A . (99)

This new h;w still solves EE and the harmonic gauge condition,
so it describes the same GW. Let’s choose:

et(z) = ighelre’ _ jermemilan® (100)
Then: N N

h;u/(:v) = e;u/e’kw + eﬁye_m” , (101)
with

€l = e + kucy + kuep . (102)

5

-~
~
N



Gravitational V

We have freedom of suitably choosing the four €,, making thus
4 out of the 6 components of e, to vanish. Hence, only 2 out of
10 components are physically significant. Consider:

k= (k,0,0,k) . (103)

Then k*e,, = %k:,,e’\A tells us that:

epo + €30 = —(—ego + €11 + exn +€33)/2 (104)
eor +e31 =0, ep2 +ez2 =0, (105)
eo3 + e33 = (—epo + €11 + ea2 + €33)/2 . (106)

Therefore:
eo1 = —e31, €o2 = —e32, €03 = —(epotes3)/2, ez =—ei1.
(107)
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Gravitational V

Moreover, the residual gauge freedom allows us to modify the 6
independent components as follows:

epo = eoo — 2keo e =eu, (108)
ey = ez, i3 = ez + ker (109)
eh3 = ea3 + key €4 = e33 + 2keg . (110)

We can choose ¢, such that all the components above vanish,
except for ey and eq2, which are the physical degrees of
freedom of a GW representing its polarizations.

Typically the following notation is used in the literature:

€11 = h+ s €12 = hX . (]_11)
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Gravitational W

GW polarization

GW polarization is more complicated than EW one because ¢,

is a tensor.
hy
hy
0] 0 E T 2 2n
2 2



Gravitational Waves

Helicity of a GW

Performing a rotation about the direction of propagation, as we
did for the EW case:

e,/uz/ = RupRuoepa , (112)
we get that:
660 = €00 , 6%3 — €33, (113)
fi= eiwfi , e = et20e, , (114)
with
f+ = e31 Fiezp = —ep1 £ ieg2 , (115)
e+ =e11 F i612 = —€922 + i612 . (116)

Hence, the physically significant components are those with
helicity +2.
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Gravitational Waves

Energy and momentum of GW

For EW we defined energy and momentum thought the
Poynting vector. What is the correspondent quantity in GR?

The energy-momentum of a GW can be computed by making
us of the Pseudo-Tensor of the Gravitational Field. We
do not enter in detailed calculations here (see e.g. Weinberg,
section 10.3 or Chapter 13 of Landau-Lifshitz), but simply state

the result: .

C
tuy = ——h>, hP s, . 117
Iz 397G PP A ( )
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Gravitational Waves

For a plane-wave GW propagating in the z direction:

c4kruk:,,

c4k:#k:,,
() = 81G

(’611|2 + ’612|2) =~ 161G (’€+|2 + |€*|2) :

(118)
The average is made over spacetime regions much larger than
1/k (this allows to kill all the imaginary exponentials, since are
oscillating functions).
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Radiation of GW

Let us recover the solution for h,, in presence of matter, i.e.

4 y / _ !/
(X, ) = G/S“ Gt = = xl/e) gy (119)

ra |x" — x|

Recall that this solution satisfies the harmonic gauge condition
Lo
ouhty, = §8Vh A\ - (120)
It is convenient to work with:
- 1

Py = hyw — 517Whﬁ ) (121)
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The solution for i_zm, is then:

ot
Bw(x,t):m/Tﬂ”(X’t b = X1/€) i (122)

X' — x|

i.e. the stress-energy momentum appears again!
The harmonic gauge condition for A, is now:

o', =0, (123)
which applied to the solution gives us:
o, T, =0, (124)

replacing the usual GR relation V,T%, = 0.
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Now we do basically what we did for EW. We go in the Wave
Zone, meaning ' < r and wr’ < ¢, and so expand:

1 1 x - x/
~-(1+ : (125)

|x/ — x| T r2

and

/

THV(X/,t—|X/—X|/C)%TMV<X/,t—r+x'x) , (126)
c cr

and we expand again the energy-momentum tensor about
to=t—r/c

x-x'

T (X't — |x' —x|/c) = T (X' to) + 0T, (X', o) , (127)

dropping higher order contributions.
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Let’s consider the T}, of a system of bodies and keep just the
dominant term in the previous expansion. This amounts to
assume that the velocities of the bodies are small v/c < 1.
Then we have:

] e
o 0) = / Ty (<, to)dV" . (128)

We now write the right hand side in a more suggestive form.
From 0,T", = n**0,T,, = 0 we get:

BjTij — 80TZ'0 =0, 8jT0j — aoToo =0. (129)
Multiply the first equation by z* and integrate over all space:

ao/ﬂoxkdv = /(ajﬂj)xkdv = /aj(ﬂjxk)dv — /ﬂkdv.
(130)
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Hence, dropping the surface term:

1 ,
/:nkdv =50 /(noxk + Tioz!)dV . (131)

From the other equation we have, multiplying by z*z!:

do / Tooz"zldV = / (8;To;)z"atav (132)
and integrating by parts we have:
do / TooxFzldV = — / (T + Tioz')dV . (133)
So, we can write:

16 kol
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The Typ component is the mass energy density uc?, then we can
write:

. 2G 0? ko
For our plane GW, propagating in the Z direction, we can then
write:
2G 0?2 e o o 2G

where we have introduced the Mass Quadrupole Tensor D;;.
Note that we have extracted from the full solution for A, only
the part corresponding to the GW.

So we need at least a quadrupole moment of the mass
distribution and we need it to be time-dependent in order to
produce GW.
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Energy loss via emission of GW

The energy flux in the direction Z can be computed as:

G ) )
ctoy = 36rch2 (Dn + D12) : (137)

This can be generalized to any direction, giving the
infinitesimal intensity of a GW into a solid angle df2:

G

- = (Dve)” do . (138)

dl

Averaging over all polarizations and integrating over the solid

angle we get: e G
...2

@t~ s i
It is a very small energy loss!

(139)
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Energy loss in GW in a binary system
Problems at the end of Chapter 13 of Landau-Lifshitz
Assuming circular trajectories:

_dEe 32G*m2m2(my + ma)

> 140
dt 45c572 (140)
From the virial theorem we know that:
Gm1m2
E=——"-—= 141
e (141)
and hence the orbital radius shrinks with time at the rate:
64G3
P mlmg(ml + mg) : (142)

5¢573
leading eventually to the merger of the two bodies.
Again, beware that these calculations are valid only in the
weak-field regime. In the actual merger, fields are very strong
and thus numerical General Relativity is needed.



Hulse-Taylor binary
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Chirp Mass

https://arxiv.org/pdf/gr-qc/9402014.pdf
The Chirp Mass is the combination:

(m1m2)3/5

= 143

which is relevant in the time-evolution of a GW waveform, at
the leading Post-Newtonian order:

daf 96 g3 (GM 1/3
7 57T = f (144)

where f is the frequency of the GW.
Measuring thus how the frequency evolves with time, we are
able to draw information on the mass of the binary system.
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