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The Expanding Universe
Edwin Hubble – Proc. Nat. Acad. Sci. 15 (1929) 168-173

http://astrosun2.astro.cornell.edu/academics/courses//astro201/hubbles_law.htm

http://astrosun2.astro.cornell.edu/academics/courses//astro201/hubbles_law.htm
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Fundamental Cosmological Probes

1 Cosmic Background Radiation
A. A. Penzias and R. W. Wilson – Astrophys. J. 142 (1965) 419-421

Lambda website: http://lambda.gsfc.nasa.gov/

2 Correlation in the relative position of large-scale structures
M. Tegmark et al. – Phys. Rev. D69 (2004) 103501

M. Tegmark’s home page: http://space.mit.edu/home/tegmark/

3 Baryon Acoustic Oscillations
D. Eisenstein et al. – Astrophys. J. 633 (2005) 560-574

M. White’s webpage: http://astro.berkeley.edu/~mwhite/bao/

4 Type Ia Supernovae
A. G. Riess et al. – Astron. J. 116 (1998) 1009-1038

S. Perlmutter et al. – Astrophys. J. 517 (1999) 565-586

Supernova Cosmology Project: http://www.supernova.lbl.gov/

http://lambda.gsfc.nasa.gov/
http://space.mit.edu/home/tegmark/
http://astro.berkeley.edu/~mwhite/bao/
http://www.supernova.lbl.gov/
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The Cosmic Background Radiation
The black-body spectrum

http://lambda.gsfc.nasa.gov/product/cobe/firas_image.cfm

http://lambda.gsfc.nasa.gov/product/cobe/firas_image.cfm
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The Cosmic Background Radiation
The temperature anisotropies

http://wmap.gsfc.nasa.gov/resources/featured_images_5yr_release.html

http://wmap.gsfc.nasa.gov/resources/featured_images_5yr_release.html
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The Cosmic Background Radiation
The angular power spectrum

D. Larson et al. – Fig. 1 – arXiv:1001.4635 [astro-ph.CO]
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The Large-Scale Structures
The Sloan Digital Sky Survey

http://www.sdss.org/

http://www.sdss.org/
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The Large-Scale Structures
The matter power spectrum

http://space.mit.edu/home/tegmark/sdss.html

http://space.mit.edu/home/tegmark/sdss.html
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Type Ia Supernovae
The expansion of the Universe is accelerating
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Relativistic Cosmology
Cosmological principle

A. Friedmann – Z. Phys. A 10 (1922) 377386

G. Lemâıtre – (1933) Gen. Rel. Grav. 29 (1997) 641-680

H. P. Robertson – Rev. Mod. Phys. 5 (1933) 62-90

A. G. Walker – Proc. Lon. Math. Soc. 2 42 (1937) 90127

Cosmological principle: The Universe is isotropic and
homogeneous:

ds2 = dt2 − a2(t)

(

dr2

1 − Kr2
+ r2dΩ2

)

,

ds2 = a2(η)

[

dη2 −

(

dr2

1 − Kr2
+ r2dΩ2

)]

,

a(t) is the scale factor, K is the spatial curvature.
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The Stress-Energy Tensor
The physical meaning of its components

L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields

S. Weinberg, Gravitation and Cosmology

B. F. Schutz, A first course in General Relativity

V. Mukhanov, Physical foundations of Cosmology

Hydrodynamical description of the Universe matter content.
In the Momentarily-Comoving-Reference-Frame (MCRF):

1 T 00 = ρ is the energy density

2 T 0i = T i0 is the energy flux (e.g. heat conduction)

3 T ij = T ji represents the flux of i momentum across a j
surface.

T ij for i 6= j describes forces parallel to the fluid interfaces, i.e.
viscosity
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The perfect fluid

Definition:
A perfect fluid possesses no heat conduction nor viscosity in the
MCRF.
This implies T i0 = 0 and T ij diagonal.

Tµν = (ρ + p) uµuν − pgµν ,

where p is the total pressure and uµ is the four-velocity of the
fluid element.
Isotropy and homogeneity require:

1 The three eigenvalues of T ij to be equal (p)

2 ρ and p to depend only on the time
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Friedmann Equations
Description of the expansion rates of the Universe

Expansion rate:

ȧ2 + K =
8πG

3
ρa2

(

ȧ =
da

dt

)

,

Acceleration rate:

ä

a
= −

4πG

3
(ρ + 3p) .

The Hubble parameter is H := ȧ/a. Or, in the conformal time,
H := a′/a (with a′ = da/dη).
Friedmann equations contain the energy conservation:

T µν
;ν = 0 ⇒ ρ̇ + 3H (ρ + p) = 0 .
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Cosmological Perturbations
The gravitational potential Φ

Scalar perturbations the longitudinal gauge:

ds2 = a(η)2
[

(1 + 2Φ) − (1 − 2Φ) δijdxidxj
]

.

Perturbed Einstein equations (without shear):

∆Φ − 3H
(

Φ′ + HΦ
)

= 4πGa2δρ ,

∆
(

Φ′ + HΦ
)

+
(

H2 −H′
)

Θ = 0 ,

Φ′′ + 3HΦ′ +
(

H2 + 2H′
)

Φ = 4πGa2δp .

General relation: δp = c2
sδρ + τδS.

Adiabatic perturbations: δS = 0.
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The ΛCDM Model

Basic equations (Ω := ρ/ρcritical):

H2

a2H2
0

= ΩΛ0 +
Ωm0

a3
+

ΩK0

a2
.

Φ′′ + 3HΦ′ +
(

H2 + 2H′
)

Φ = 0 .

Constraints coming from different probes:

Ωm0 = 0.285+0.020+0.010
−0.020−0.010

ΩK0 = −0.010+0.010+0.006
−0.011−0.004

w0 = −1.001+0.069+0.080
−0.073−0.082

Ωm0 ∼ ΩΛ0: cosmic coincidence
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Unification of Dark Matter and Dark Energy
Motivations

Problems:

The nature of the cosmological constant (or Dark Energy,
in general) and of Dark Matter

The cosmic coincidence, or the cosmological constant
problem.
S. Weinberg – Rev. Mod. Phys. 61 (1989) 1-23

What if Dark Matter and Dark Energy were aspects of the
same entity?
Motivation: we may gain new insight on Λ and shed new light
on the cosmological scenario. Often, watching things from other
points of view helps to better understand what is happening.
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Unification via Bulk Viscosity
The real fluid

A real fluid contains non-equilibrium terms

Tµν = (ρ + p) uµuν − pgµν + qµuν + qνuµ + πµν ,

viscosity, i.e. anisotropic stresses πµν , and heat fluxes qµ.
They are not compatible with the cosmological principle, but
the trace of πµν , say Π, is
→ Bulk Viscous Cosmology
Murphy (1973), Belinsky, Nikomarov and Khalatnikov (1979), Pavon, Bafaluy and Jou (1991),

Maartens (1995, 1996), Zimdahl (1996), Zimdahl and Fabris (2005),...

Now p plays the role of a total pressure

p = peq + Π

sub-divided into the equilibrium contribution and the
dissipative one.
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Description of Bulk Viscosity
The thermodynamics of the irreversible process

C. Eckart – Phys. Rev. 58 (1940) 267-269, ibid. 919-924

In Eckart theory, the entropy S is linked to Π

TnṠ = −θΠ ,

where the expansion factor is

θ = ∇µuµ = 3H .

By virtue of the second principle of thermodynamics, Π has to
be negative. The simplest choice in order to assure this is:

Π = −θξ < 0 ,

where ξ is the bulk viscosity coefficient.
Negative pressure contribution → UDM via bulk viscosity
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Unification Picture within Eckart Theory
B. Li and J. D. Barrow – Phys. Rev. D79 (2009) 103521

Assume peq = 0 and Π = −3αHρm. The background expansion
of the ΛCDM is nicely reproduced. But at the perturbative
level: severe problems with the ISW effect.
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Is the Problem within Eckart Theory?

W. Israel – Phys. Lett. A57 (1976) 107-110, Annals Phys. 100 (1976)

310-331

W. Israel and J. M. Stewart – Annals Phys. 118 (1979) 341-372

W. A. Hiscock and L. Lindblom – Annals Phys. 151 (1983) 466-496

Issues with Eckart theory:

1 Dissipative perturbations propagate at infinite speeds.

2 The equilibrium states in the theory are unstable.

Our question: would the results obtained by Li and Barrow
change upon using a causal theory?
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Israel-Stewart Transport Theory

W. Israel and J. M. Stewart – Annals Phys. 118 (1979) 341-372

Bulk viscosity evolution is governed by

τ Π̇ + Π = −θξ −
1

2
τΠ

[

θ +
τ̇

τ
−

ξ̇

ξ
−

Ṫ

T

]

,

where τ is the relaxation time and T is the temperature. Note
that the dot means

Π̇ := uµ∇µΠ ,

i.e. derivation along the fluid wordline.
Note that τ and ξ are, in general, not constant.
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The Temperature Evolution

Given general p = p(ρ, n) and T = T (ρ, n), where n is the
particle number density, Gibbs integrability condition implies

n
∂T

∂n
+ (ρ + peq)

∂T

∂ρ
= T

∂peq

∂ρ
.

Together with energy and particle number conservation it gives:

Ṫ

T
= −θ

[

∂peq

∂ρ
+

Π

T

∂T

∂ρ

]

.

Assuming T = T (ρ) and peq = peq(ρ) we obtain

1

T

dT

dρ
=

c2
s

ρ + peq

, ⇒
Ṫ

T
= −θc2

s

(

1 +
Π

ρ + peq

)

,

where c2
s := dpeq/dρ is the adiabatic speed of sound.
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Propagation of Perturbations in a Viscous Medium
The bulk viscous speed of sound

W. A. Hiscock and L. Lindblom – Annals Phys. 151 (1983) 466-496

It can be proven that the speed of sound related to bulk viscous
pressure perturbations has the form:

c2
b =

ξ

(ρ + peq)τ
,

and that it sums with the adiabatic c2
s :

c2
b + c2

s ≤ 1 ⇒ c2
b ≤ 1 − c2

s .

Therefore, there is no complete freedom in the choice of ξ and τ .
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Viscous Perturbations
The common part

Stress-energy tensor perturbations:

δT 0
0 = δρ ,

δT i
0 = (ρ + peq + Π) vi ,

δT i
j = −δi

j (δpeq + δΠ) ,

where vi := aδui. Einstein equations:

∆Φ − 3H
(

Φ′ + HΦ
)

= 4πGa2δρ ,

∆
(

Φ′ + HΦ
)

+
(

H2 −H′
)

Θ = 0 ,

Φ′′ + 3HΦ′ +
(

H2 + 2H′
)

Φ = 4πGa2 (δpeq + δΠ) ,

where we have considered the divergence of the (0 − i) equation
and defined Θ ≡ ∂iv

i.
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Perturbations in Eckart Theory

Being Π = −θξ, we simply have

δΠ = −δθξ − θδξ .

The perturbations of the expansion scalar is

δθ = δ (∇µuµ) ⇒ δθ = ∂µδuµ + Γµ
ρµδuρ + δΓµ

ρµuρ .

Working out we obtain

aδθ = ∂iv
i − 3

(

Φ′ + HΦ
)

,

with vi ≡ aδui.
Note how bulk viscosity mix up geometry with thermodynamics.
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Perturbations in Israel-Stewart Theory

Write the transport equation in the following way:

Π̇ +
1

τ
Π = −θ

[

f(ρ) +
Π

2
g(ρ) +

Π2

2
h(ρ)

]

,

where f(ρ) := ξ/τ = c2
b(ρ + peq) and

g(ρ) := 1 + (ρ + peq)
1

f

df

dρ
+ c2

s , h(ρ) :=
1

f

df

dρ
+

c2
s

ρ + peq

.

A general perturbation yields

1

a
δΠ′ + δ

(

Π

τ

)

=
Φ

a
Π′ − δθ

[

f(ρ) +
Π

2
g(ρ) +

Π2

2
h(ρ)

]

−θδρ

[

df(ρ)

dρ
+

Π

2

dg(ρ)

dρ
+

Π2

2

dh(ρ)

dρ

]

− θδΠ

[

g(ρ)

2
+ Πh(ρ)

]

.
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Assumptions for the Bulk Viscosity Parameters

Being the ΛCDM model the best description we have of our
universe, it is reasonable to demand that the viscous fluid
reproduce a similar background expansion.
We consider a fluid with peq = 0 and Π = −A, with A constant.
The energy conservation equation reads

ρ̇ = −3H (ρ + p) = −3H (ρ − A) ,

and its general solution is

ρ = A + C1a
−3 ,

where C1 is an integration constant.
In Eckart theory we infer that ξ = A/θ.
Key point: even if Π = −θξ = −A and A is a constant, δΠ 6= 0!
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ΛCDM Background for Israel-Stewart Theory

Inserting Π = −A and peq = c2
s = 0 in the transport equation

gives

τ =
A

θ

[

f(ρ) −
A

2

(

1 +
ρ

f(ρ)

df(ρ)

dρ

)

+
A2

2

1

f(ρ)

df(ρ)

dρ

]−1

.

We investigate the ansatz f = 1/γ, with γ constant, for which

τ =
γA

θ
(

1 − γA
2

) , c2
b =

1

γρ
.

In order to avoid causality issues, we must ask that

1 < γA < 2 .
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Bulk Viscosity Coefficients Perturbations

In Eckart theory, a formal perturbation of ξ = A/θ leads to

δξ = −
A

6H3
δ
(

H2
)

.

Note that δ
(

H2
)

∝ δρ, no velocity perturbation here!
Using the (0 − 0) Einstein equation to eliminate δρ:

δξ = −
Aa

9H3

[

∆Φ − 3H
(

Φ′ + HΦ
)]

.

In Israel-Stewart theory, the perturbation δτ can be calculated
in the same fashion as above, obtaining

δτ = −
Aa

9H3
(

1 − γA
2

)

[

∆Φ − 3H
(

Φ′ + HΦ
)]

.



Observation Cosmology Viscosity Viscous perturbations Results Conclusions

Results for the Eckart Case
Equation for the gravitational potential

Using

Θ =
∆ (Φ′ + HΦ)

H′ −H2
, δξ = −

Aa

9H3

[

∆Φ − 3H
(

Φ′ + HΦ
)]

,

we obtain a closed second-order differential equation for the
gravitational potential:

Φ̈ +
4H + Ḣa

Ha
Φ̇ +

H + 2Ḣa

Ha2
Φ = −

ΩAH2
0k2

2H4

(

Φ −
Φ̇a + Φ
Ḣ

H
a − 1

)

,

whose left-hand-side is identical, by construction, to the ΛCDM
one. Note the k2 in the right-hand-side term.
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Results for the Eckart Case
The gravitational potential evolution as a function of a

0.10 1.000.500.20 0.300.15 0.70

0.0
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0.4

0.6

0.8

1.0

a

F
�F
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k = 2 · 10−4, 10−3, 10−2 h Mpc−1 (solid, dashed, dot-dashed lines,

respectively).
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Results for the Eckart Case
The gravitational potential evolution as a function of k
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Function of the wavenumber k for a = 1 fixed.
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Results for Israel-Stewart Theory
Evolution equation for the gravitationl potential

From

˙δΠ = −
3

aγA
δΠ −

δθ

Hγ

(

1 −
γA

2

)

−
3θ

aγ2A

(

1 −
γA

2

)2

δτ ,

and the equation for δθ and δτ we get:

Φ̈ +
4H + Ḣa

Ha
Φ̇ +

H + 2Ḣa

Ha2
Φ =

3H2
0ΩA

2H2

(

δΠ

A

)

,

d

da

(

δΠ

A

)

= −
3

γAa

(

δΠ

A

)

−
(2 − γA)

2γAa

k2

H2

(

Φ −
Φ̇a + Φ
Ḣ

H
a − 1

)

.
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Results for Israel-Stewart Theory
Gravitational potential evolution as a function of a and γA = 1.9
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k = 0.0001, 0.001, 0.01 h Mpc−1 (solid, dashed, dot-dashed, respectively).
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Results for Israel-Stewart Theory
Gravitational potential evolution as a function of a and γA = 1.99
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k = 0.0001, 0.001, 0.01 h Mpc−1 (solid, dashed, dot-dashed, respectively).
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Results for Israel-Stewart Theory
Gravitational potential evolution as a function of a and γA = 1.999
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k = 0.0001, 0.001, 0.01 h Mpc−1 (solid, dashed, dot-dashed, respectively).
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Results for Israel-Stewart Theory
Gravitational potential evolution as a function of k
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Evolution in function of k and for a = 1. Here also γA = 1.9, 1.99, 1.999

(solid, dashed, dot-dashed, respectively).
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Results for Israel-Stewart Theory
When γA → 2

For γA → 2 the situation is particularly intriguing. The ΛCDM
model evolution of the gravitational potential is exactly
reproduced.
However, this is a limiting case where both the relaxation time
and ξ diverge. A very large τ characterises a so-called frozen-in

non-equilibrium state.
For γA → 2 indeed we have

(

δΠ

A

).

= −
3

2a

(

δΠ

A

)

,

which gives

δΠ = δΠ(a∗)

(

a

a∗

)−3/2

,

which is a rapidly decaying source term for the gravitational
potential equation.
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Comparison between the two Approaches
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Fixing a ΛCDM background expansion for Eckart theory leaves
little hope for the model (see the work by Li and Barrow). On
the other hand, Eckart theory is non-causal. It must be changed

for e.g. the Israel-Stewart one, which seems to give more
chances to the viscous unification picture.
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Conclusions and Prospects

1 Up to now, our main conclusion is that Israel-Stewart (IS)
theory may give better predictions than Eckart one.
Moreover, IS theory should be the one to be used, being
causal.

2 We have used special assumptions: τ = γξ, peq = 0 and
Π = −A with A constant. Though reasonable, they may be
quite restrictive.

3 IS theory is a transport theory. Perhaps it is not fair to
impose since the beginning an evolution for Π. We should
try and find it from the transport equation itself, assuming
ansatz’s just for τ and ξ.

4 The results we find for γA → 2 seem to be promising.
However, we have to deal with diverging τ, ξ. Is it possible
to avoid such situation?
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