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Review of the cosmological constant problem



Introduction Vacuum Attempted solutions

Outline

Introduction

Vacuum

Attempted solutions

Oliver F. Piattella Universidade Federal do Esṕırito Santo, Vitória, Brazil ITP Heidelberg (in sabbatic)
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Some Reviews

◮ S. Weinberg, The cosmological constant problem, Reviews of
Modern Physics, Vol. 61, No. 1, January 1989;

◮ S. Carroll, The cosmological constant, Living Rev. Relativity,
4, (2001), 1 ;

◮ J. Polchinski, The Cosmological Constant and the String
Landscape, hep-th/0603249;

◮ J. Martin, Everything you always wanted to know about the
cosmological constant problem (but were afraid to ask), C. R.
Physique 13 (2012) 566665 ;

◮ C. P. Burgess, The Cosmological Constant Problem: Why it’s
hard to get Dark Energy from Micro-physics, arXiv:1309.4133
[hep-th];

◮ A. Padilla, Lectures on the Cosmological Constant Problem,
arXiv:1502.05296v1 [hep-th].
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General Relativity

Einstein-Hilbert action plus a cosmological constant term:

S =
c4

16πGN

󰁝
d4x

√
−g (R − 2Λ) + Smatter [gµν ,Ψ] . (1)

Field equations:

Rµν −
1

2
gµνR + Λgµν =

8πGN

c4
Tµν . (2)

Λ was introduced by Einstein in order to model a static universe
(A. Einstein, Sitzungs. König. Preuss. Akad. (1917) 142-152). It has been
rejected afterwards being the expansion of the universe
observationally established. It revives today as the most successful
model for the accelerated expansion of the universe.
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General Relativity and the cosmological
constant from a mathematical viewpoint

Lovelock’s theorems:

◮ D. Lovelock, The Einstein Tensor and Its Generalizations,
Journal of Mathematical Physics (1971) 12 (3) 498501 ;

◮ D. Lovelock, The Four-Dimensionality of Space and the
Einstein Tensor, Journal of Mathematical Physics (1972) 13
(6) 874876.

Given field equations in vacuum:

Aµν = 0 , (3)

and the following hypothesis:
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Lovelock’s theorem
Hypothesis and thesis

1. Aµν = Aνµ (symmetry)
2. Aµν = Aµν(gµν , gµν,ρ, gµν,ρσ)
3. ∇µA

µν = 0 (divergencelessness, ∇µ is the covariant
derivative)

4. Aµν is linear in the second derivative of the metric.

Then
Aµν = aGµν + bgµν , (4)

where a and b are arbitrary constants and:

Gµν ≡ Rµν − 1

2
gµνR , (5)

is the Einstein tensor. The theorem holds in any dimensions.
(In the second paper Lovelock shows that the symmetry condition is

superfluous in 4 dimensions).
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Lovelock’s theorem
Lagrangian density

The Lagrangian density associated to Aµν = aGµν + bgµν is

L =
√
−g

m−1󰁛

p=1

apδ
α1

[β1
. . . δ

α2p

β2p ]
Π2p−1
r=1 Rαrαr+1

βrβr+1 + a0
√
−g , (6)

with m = n/2 if the number of dimensions n is even,
m = (n + 1)/2 if n is odd. For n = 4:

L =
√
−ga1δ

α1

[β1
δα2

β2]
Rα1α2

β1β2 + a0
√
−g =

√
−g(a1R + a0) , (7)

i.e. the Einstein-Hilbert action plus a cosmological term.
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Resurrection of the cosmological constant
Cosmology

Friedmann-Lemâıtre-Robertson-Walker metric (with flat spatial
hypersurfaces):

ds2 = −dt2 + a2(t)δijdx
idx j , (8)

Friedmann equations with Λ:

H2 ≡ ȧ2

a2
=

8πGN

3
ρtot +

Λ

3
, (9)

ä

a
= −4πGN

3
(ρtot + 3ptot) +

Λ

3
. (10)

The cosmological constant works as antigravity and behaves as a
perfect fluid with equation of state:

wΛ ≡ pΛ
ρΛ

= −1 . (11)
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Accelerated expansion of the universe

Type Ia supernovae are standard candles which allowed to extend
the cosmic distance ladder to large redshifts (z ∼ 1) and from
which the accelerated expansion of the universe was discovered.

◮ A. G. Riess et al. [Supernova Search Team], Observational
Evidence from Supernovae for an Accelerating Universe and a
Cosmological Constant , Astron. J. 116 (1998) 1009
[astro-ph/9805201]

◮ S. Perlmutter et al. [Supernova Cosmology Project
Collaboration], Measurements of Omega and Lambda from 42
High-Redshift Supernovae , Astrophys. J. 517 (1999) 565
[astro-ph/9812133]
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Accelerated expansion of the universe
From Riess’ paper
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Accelerated expansion of the universe
From Riess’ paper
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Latest Supernovae type Ia data
Pantheon Sample: D. M. Scolnic et al., Astrophys. J. 859 (2018) no.2, 101
[arXiv:1710.00845 [astro-ph.CO]].

Table 8.

Analysis Model w ⌦m ⌦⇤

SN-stat ⇤CDM 0.284± 0.012 0.716± 0.012

SN-stat oCDM 0.348± 0.040 0.827± 0.068

SN-stat wCDM �1.251± 0.144 0.350± 0.035

SN ⇤CDM 0.298± 0.022 0.702± 0.022

SN oCDM 0.319± 0.070 0.733± 0.113

SN wCDM �1.090± 0.220 0.316± 0.072

Notes: Cosmological constraints for the SN-only sample
with and without systematic uncertainties. Values are given
for three separate cosmological
models: ⇤CDM, oCDM and wCDM.

dataset mainly to be in-line with general community re-
producibility. We still use the binned distances to gen-
erate the systematic covariance matrix, which is used as
a 2d 40-bin interpolation grid to create a covariance ma-
trix for the full SN dataset. Diagonal uncertainties from
the individual distances can be added together with the
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Again from the Pantheon paper

Table 11.

Sample ⌦m ⌦⇤ ⌦K H0

CMB+BAO 0.310± 0.008 0.689± 0.008 0.001± 0.003 67.900± 0.747

CMB+H0 0.266± 0.014 0.723± 0.012 0.010± 0.003 73.205± 1.788

CMB+BAO+H0 0.303± 0.007 0.694± 0.007 0.003± 0.002 68.723± 0.675

SN+CMB 0.299± 0.024 0.698± 0.019 0.003± 0.006 69.192± 2.815

SN+CMB+BAO 0.309± 0.007 0.690± 0.007 0.001± 0.002 67.985± 0.699

SN+CMB+H0 0.274± 0.012 0.717± 0.011 0.009± 0.003 72.236± 1.572

SN+CMB+BAO+H0 0.303± 0.007 0.695± 0.007 0.003± 0.002 68.745± 0.684

Notes: Cosmological constraints from di↵erent combinations of probes when assuming the oCDM model.

Table 12.

Sample w ⌦m H0

CMB+BAO �0.991± 0.074 0.312± 0.013 67.508± 1.633

CMB+H0 �1.188± 0.062 0.265± 0.013 73.332± 1.729

CMB+BAO+H0 �1.119± 0.068 0.289± 0.011 70.539± 1.425

SN+CMB �1.026± 0.041 0.307± 0.012 68.183± 1.114

SN+CMB+BAO �1.014± 0.040 0.307± 0.008 68.027± 0.859

SN+CMB+H0 �1.056± 0.038 0.293± 0.010 69.618± 0.969

SN+CMB+BAO+H0 �1.047± 0.038 0.299± 0.007 69.013± 0.791

Notes: Cosmological constraints from di↵erent combinations of probes when assuming the wCDM model. The value of w = �1
corresponds to the cosmological constant hypothesis.
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The value of Λ from cosmology

So, there is strong observational evidence of Λ driving the
accelerated expansion of the universe. The amount of Λ energy
density in the universe is about 70% percent, hence:

ρΛ ≈ ΩΛρcr ≈ 10−47 GeV4 ≈ 10−52 m−2 . (12)

What is the problem with Λ?

◮ Huge discrepancy with the predictions coming from quantum
field theory (old cosmological constant problem);

◮ Why ρΛ has the above tiny value? (new cosmological
constant problem).

The first question was tackled already by Zel’dovich and Sakharov
(Y. B. Zeldovich, JETP letters 6 (1967), 316-317 ; A. D. Sakharov, Dokl.

Akad. Nauk SSSR (1967) 177,70-71).
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Vacuum
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Vacuum fluctuations

Vacuum fluctuations, or quantum zero point fluctuations, are
considered to exist because of:
◮ The Lamb shift (W. E. Lamb, R. C. Retherford, Physical

Review. 72 (1947) (3): 241243);
◮ The Casimir effect (H. B. G. Casimir, D. Polder, Physical

Review. 73 (1948) (4): 360372),

(although see R. L. Jaffe, Casimir effect and the quantum vacuum, PRD 72,

021301(R) (2005))

Our concern is however to understand whether and how this energy
gravitates. The standard approach is semi-classical gravity, i.e.

Gµν + Λgµν = 8πGNTµν + 8πGN〈Tµν〉 , (13)

where
〈Tµν〉 ≡ 〈0|Tµν |0〉 . (14)
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Vacuum fluctuations

In Minkowski space we have that

〈Tµν〉 ∝ ηµν , (15)

hence by the equivalence principle, in curved space one has:

〈Tµν〉 = −ρvac(x)gµν , (16)

and because of Bianchi identities ρvac has to be a constant. So,
the field equations become:

Gµν + Λeffgµν = 8πGNTµν , (17)

with
Λeff = Λ+ 8πGNρvac , (18)

the effective cosmological constant (whose measured value is
10−47 GeV4).
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Classical contributions

These come from fields which settle at the minimum of the
potential to which they are subject. Consider a simple example:

Tµν = ∂µΦ∂νΦ− gµν

󰀗
1

2
gρσ∂ρΦ∂σΦ+ V (Φ)

󰀘
. (19)

If the field rolls down to a minimum of its potential:

〈Tµν〉 = −V (Φmin)gµν . (20)

If we can set V (Φmin) = 0 there is no contribution to Λeff . Phase
transitions are therefore quite problematic because the position of
the minimum is shifted and V (Φmin) = 0 can be realised only
before or after the phase transition.
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Electroweak phase transition

Realistic cases are the electroweak phase transition and the QCD
transition. In the electroweak case (after the transition) we have
the potential (λ ≃ 0.1 is a coupling):

V (H) = −λv4

4
+

1

2
λv2H2 +

λ

2

v√
2
H3 +

λ

16
H4 , (21)

with m2
H = λv2 being the Higgs mass and v = 〈H〉. Then:

ρvac = −1

4
m2

Hv
2 , v2 =

√
2

4G 2
F

, (22)

lead to:

ρvac = −
√
2

16

m2
H

G 2
F

≈ −1.2× 108 GeV4 . (23)

GF ≃ 1.16× 10−5 GeV−2 is Fermi’s constant and mH ≈ 125 GeV.
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Electroweak phase transition
Higgs Potential (plot taken from Martin’s review)

Fig. 2. Effective potential of the Higgs boson before and after the electroweak phase transition. The left panel corresponds to a situation where the vacuum
energy vanishes at high temperature. As a consequence ρvac is negative at temperature smaller than the critical temperature. This is the situation treated
in the text where the quantity −m4/(4λ) is explicitly calculated. On the right panel, the off-set parameter V 0 is chosen such that the vacuum energy is
zero after the transition. As a consequence, it does not vanish at high temperatures.
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Quantum-mechanical contribution to Λeff
Simple example of a scalar field

Let us see the calculation of the zero-point energy-momentum
tensor for a massive non-interacting scalar field:

Φ(x) =

󰁝
d3k

(2π)3/2
√
2ωk

(ake
ikµxµ + a†ke

−ikµxµ) , (24)

with
ωk ≡ k0 =

󰁳
k2 +m2 . (25)

The energy-momentum tensor is:

〈Tµν〉 =
󰁝

d3k

(2π)32k0
kµkν . (26)
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Quantum-mechanical contribution to Λeff
Putting a cutoff

Consider a cutoff M → ∞. Then:

〈ρ〉 = 1

4π2

󰁝 M

0
dkk2

󰁳
k2 +m2 =

M4

16π2

󰀥󰁵
1 +

m2

M2

󰀕
1 +

m2

2M2

󰀖
− m4

2M4
ln

󰀣
M

m
+

M

m

󰁵
1 +

m2

M2

󰀤󰀦

=
M4

16π2

󰀕
1 +

m2

M2
+ . . .

󰀖
,(27)
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Quantum-mechanical contribution to Λeff
Putting a cutoff

and also for the pressure:

〈p〉 = 1

3

1

4π2

󰁝 M

0
dk

k4√
k2 +m2

=

1

3

M4

16π2

󰀥󰁵
1 +

m2

M2

󰀕
1− 3m2

2M2

󰀖
+

3m4

2M4
ln

󰀣
M

m
+

M

m

󰁵
1 +

m2

M2

󰀤󰀦

=
1

3

M4

16π2

󰀕
1− m2

M2
+ . . .

󰀖
.(28)

At the leading order (m/M → 0) 〈p〉 = 〈ρ〉/3, as radiation does,
so something is going wrong. Indeed, putting a cutoff spoils
Lorentz invariance. Considering just the logarithmic terms instead
gives the expected behaviour 〈p〉 = −〈ρ〉.
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Quantum-mechanical contributions
Dimensional regularisation

Using dimensional regularisation one gets:

〈ρ〉 = µ4−d

(2π)d−1

1

2

󰁝 ∞

0
dkkd−2dd−2Ωωk

=
µ4

2(4π)d−1

Γ(−d/2)

Γ(−1/2)

󰀕
m

µ

󰀖d

, (29)

with µ an arbitrary scale. Similarly

〈p〉 = µ4

4(4π)d−1

Γ(−d/2)

Γ(1/2)

󰀕
m

µ

󰀖d

, (30)

Now 〈p〉 = −〈ρ〉 as expected.
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Review of the cosmological constant problem



Introduction Vacuum Attempted solutions

Quantum-mechanical contributions
Renormalisation

Considering d = 4− 󰂃 one can easily investigate the pole structure
of the Gamma function and see that:

〈ρ〉 = − m4

64π2

󰀗
2

󰂃
+

3

2
− γ − ln

󰀕
m2

4πµ2

󰀖󰀘
+ . . . . (31)

By subtracting the divergent term we finally have:

〈ρ〉 = m4

64π2
ln

󰀕
m2

µ2

󰀖
. (32)

In general one can show the same result for any free field, provided
a minus sign for the fermionic ones. Hence:

〈ρ〉 = 1

64π2

󰁛

n

(−1)2Sngnm
4
n ln

󰀕
m2

n

µ2

󰀖
. (33)
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Quantum-mechanical contributions
Pauli Sum Rules

Pauli already observed in 1951 (ETH lectures) that even using a
UV cutoff the correct result is obtained if the following conditions
are met:

󰁛

n

(−1)2Sngn = 0 ,
󰁛

n

(−1)2Sngnm
2
n = 0 ,

󰁛

n

(−1)2Sngnm
4
n = 0 .

(34)
Visser shows how these conditions provide a bridge between the
finiteness of the zero-point energy and Lorentz invariance. He also
speculates on the consequences of taking these relations to be
valid non-perturbatively, leading to the necessity of physics beyond
the standard model (M. Visser, Phys. Lett. B 791 (2019) 43

[arXiv:1808.04583 [hep-th]]).
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The value of the cosmological constant and
the problem

Summing up all the contributions considered so far, we have:

ρvac =
1

64π2

󰁛

n

(−1)2Sngnm
4
n ln

󰀕
m2

n

µ2

󰀖
+ ρΛ + ρEWvac + ρQCD

vac + . . . .

(35)
We don’t know µ, so we could simply fine tune it and ρB in order
to give the observed result. The problem is that such a fine-tuning
is needed at each loop order, since the coupling constants are not
all smalls in the Standard Model. In other words, perturbation
theory doesn’t work here. Just taking the electroweak scale:

ρEWvac ≈ −1.2× 108 GeV4 . (36)

This has the wrong sign and it is in modulus way larger than the
observed value.
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Issues in the calculations

The result:

〈ρ〉 = 1

64π2

󰁛

n

(−1)2Sngnm
4
n ln

󰀕
m2

n

µ2

󰀖
, (37)

will still hold if:

◮ we take into account interactions?

◮ we consider nonzero spacetime curvature?

In Martin’s review it is shown that the answer is yes to both the
questions. For the first, the case λΦ4/4! (a self interaction scalar
field) is considered and the Gaussian effective potential approach
(which is non-perturbative).
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Attempted solutions
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Example of a small cosmological constant
J. Holland and S. Hollands, Class. Quantum Grav. 31 (2014) 125006

Here the authors solve exactly a 2D toy model (Gross-Neveu):

L = N

󰀗
i ψ̄γµ∂µψ +

g2

2
(ψ̄ψ)2

󰀘
, (38)

for the zero-point energy momentum tensor, finding:

〈θµν〉 = − 1

4πℓ2
e−2π/g2

ηµν +O(1/N) . (39)

The speculation is whether a similar result could hold also for the
Standard Model, giving an exponential suppression.
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Self-adjusting fields and Weinberg’s no-go
theorem

If there is some field φ such that:

□φ ∝ Tµ
µ ∝ R , (40)

and that it evolves to an equilibrium value φ0 such that
Tµ

µ(φ0) = 0. Then R = 0 and the Minkowski solution can be
enforced. In some sense the field “adjusts” itself to the huge
zero-point energy, eating it up.
Weinberg’s no-go theorem states that this is impossible without a
fine-tuning (see his review).
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Unimodular gravity

In unimodular gravity one demands that −g = 1 and it is not
dynamical. The field equations then become:

Rµν −
1

4
gµνR = 8πGN

󰀕
Tµν −

1

4
gµνT

󰀖
. (41)

Since the zero-point contribution is a trace, here it does not enter.
Taking Bianchi’s identities, one has:

∇µ (R + 8πGNT ) = 0 ⇒ R + 8πGNT = 4Λ , (42)

and so we rewrite the field equations as:

Rµν −
1

2
gµνR + Λgµν = 8πGNTµν . (43)
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Unimodular gravity

Unimodular gravity seems to work perfectly. So what are the
problems with that? According to Weinberg: In my view, the key
question in deciding whether this is a plausible classical theory of
gravitation is whether it can be obtained as the classical limit of
any physically satisfactory quantum theory of gravitation.

According to A. Padilla and I. D. Saltas, Eur. Phys. J. C 75 (2015)
no.11, 561, [arXiv:1409.3573 [gr-qc]] unimodular gravity is
equivalent to GR (so the CCP still exists, it is moved to the
Lagrangian multiplier that enforces −g = 1).

Opposite view by C. Barceló, R. Carballo-Rubio and L. J. Garay,
Annals of Physics 398 (2018) 9-23 address the above-mentioned
citation by Weinberg, in the positive sense.
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Sequestering mechanism
N. Kaloper and A. Padilla, Phys. Rev. Lett. 112 (2014) 091304 [arXiv:1309.6562
[hep-th]]

Sequestering action:

S = σ

󰀕
Λ

λ4µ4

󰀖
+

󰁝
d4x

√
−g

󰀗
M2

P

2
R − λ4Lm(λ

−2gµν ,Ψ)− Λ

󰀘
.

(44)
Variation:

1

λ4µ4
σ′

󰀕
Λ

λ4µ4

󰀖
=

󰁝
d4x

√
−g , (45)

4Λ

λ4µ4
σ′

󰀕
Λ

λ4µ4

󰀖
=

󰁝
d4x

√
−gλ4T̃α

α , (46)

M2
PG

µ
ν = −Λδµν + λ4T̃µ

ν , (47)

with λ4T̃µν = Tµν .
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Sequestering mechanism
N. Kaloper and A. Padilla, Phys. Rev. Lett. 112 (2014) 091304 [arXiv:1309.6562
[hep-th]]

The first condition implies that the spacetime volume is finite.
Combining the previous equations, one gets:

Λ =
1

4

󰁕
d4x

√
−gTα

α󰁕
d4x

√
−g

, (48)

and the field equations become:

M2
PG

µ
ν = Tµ

ν −
1

4
δµν

󰁕
d4x

√
−gTα

α󰁕
d4x

√
−g

, (49)

and the zero-point contribution drops out, similarly to what
happens in the unimodular gravity case.
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Other interesting tentatives

◮ S. W. Hawking, The Cosmological Constant Is Probably Zero,
Phys. Lett. 134B (1984) 403;

◮ R. D. Peccei, J Solá and C. Wetterich, Physics Letters B
(1987), 195;

◮ S. R. Coleman, Nucl. Phys. B 310 (1988) 643;
◮ M. J. Duff, The Cosmological Constant Is Possibly Zero, but

the Proof Is Probably Wrong, Phys. Lett. B 226 (1989) 36;
◮ Q. Wang, Z. Zhu and W. G. Unruh, Phys. Rev. D 95 (2017)

no.10;
◮ S. M. Carroll and G. N. Remmen, Phys. Rev. D 95 (2017)

no.12;
◮ S. Carlip, arXiv:1809.08277 [hep-th];
◮ L. Lombriser, arXiv:1901.08588 [gr-qc].
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