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SOME REVIEWS

» S. Weinberg, The cosmological constant problem, Reviews of
Modern Physics, Vol. 61, No. 1, January 1989;

» S. Carroll, The cosmological constant, Living Rev. Relativity,
4, (2001), 1,

» J. Polchinski, The Cosmological Constant and the String
Landscape, hep-th/0603249;

» J. Martin, Everything you always wanted to know about the
cosmological constant problem (but were afraid to ask), C. R.
Physique 13 (2012) 566665;

» C. P. Burgess, The Cosmological Constant Problem: Why it's
hard to get Dark Energy from Micro-physics, arXiv:1309.4133
[hep-th];

> A. Padilla, Lectures on the Cosmological Constant Problem,
arXiv:1502.05296v1 [hep-th].
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GENERAL RELATIVITY

Einstein-Hilbert action plus a cosmological constant term:

4
]_67'('G /d X\ — (R 2/\) + Smatter [g,ulla W] (1)

Field equations:

g;wR + Ag,u,u - TTMV . (2)

A was introduced by Einstein in order to model a static universe
(A. Einstein, Sitzungs. Kénig. Preuss. Akad. (1917) 142-152). It has been
rejected afterwards being the expansion of the universe
observationally established. It revives today as the most successful
model for the accelerated expansion of the universe.
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(GENERAL RELATIVITY AND THE COSMOLOGICAL
CONSTANT FROM A MATHEMATICAL VIEWPOINT

Lovelock's theorems:

» D. Lovelock, The Einstein Tensor and Its Generalizations,
Journal of Mathematical Physics (1971) 12 (3) 498501,

» D. Lovelock, The Four-Dimensionality of Space and the
Einstein Tensor, Journal of Mathematical Physics (1972) 13
(6) 874876.

Given field equations in vacuum:
AP =0, (3)
and the following hypothesis:
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LOVELOCK’S THEOREM

HYPOTHESIS AND THESIS

1. AW = AYF (symmetry)

ARV = A“V(g;m 8uv,ps gul/,pa)
3. VA" =0 (divergencelessness, V, is the covariant

derivative)
4. A" is linear in the second derivative of the metric.
Then
AYY = aGHY + bght” | (4)
where a and b are arbitrary constants and:
1
G = RW — Eg’“’R , (5)

is the Einstein tensor. The theorem holds in any dimensions.

(In the second paper Lovelock shows that the symmetry condition is superfluous-in 4 dimensions).
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LOVELOCK’S THEOREM

LAGRANGIAN DENSITY
The Lagrangian density associated to A*Y = aG*” + bg'” is
m—1
L=v-g Z aP(SF& T 6;;5]ﬂ$i;1RararHﬂr,3r+1 +av—§8, (6)
p=1

with m = n/2 if the number of dimensions n is even,
m=(n+1)/2if nis odd. For n = 4:

L= \/=8a1003 653 Ry ™™ + 20v/=8 = V=g(a1R + a0) , (7)

i.e. the Einstein-Hilbert action plus a cosmological term.
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RESURRECTION OF THE COSMOLOGICAL CONSTANT

COSMOLOGY

Friedmann-Lemaitre-Robertson-Walker metric (maximally
symmetric spatial hypersurfaces):

ds? = —dt? + ydx'dx! | (8)
Einstein (Friedmann) equations with A:
22
H = 2 T/otot 3 (9)
a ArG A
Pl N(Ptot + 3ptot) + 3 (10)

Here:
Ptot = pr ) Ptot = pr . (11)
X X
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PROPAGANDA 1

SEE ALSO HTTPS://ARXIV.ORG/ABS/1803.00070

UNITEXT for Physics.

Oliver Piattella

Lecture

Notes in
Cosmology

@ Springer
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EQUATIONS OF STATE

For a barotropic, perfect fluid:
Px = WyxPx - (12)

For example, pressureless matter (dust or baryons, in the jargon of
cosmology) with wy, = 0, or radiation (photons and neutrinos),
with wy, = 1/3.

The cosmological constant behaves as a barotropic perfect fluid
with equation of state:

W/\Ep—/\:—l. (13)
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ACCELERATED EXPANSION OF THE UNIVERSE

From the acceleration equation:

a 4Gy A
- = - [} 3 o ) 14
; 3 (Ptot + Ptt)+3 (14)

one sees that if pior + 3pror < 0, then > 0 and the universe
expands accelerating. The cosmological constant works as
antigravity.
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THeE ACDM MODEL

The standard model of cosmology includes: A, cold dark matter
(CDM), baryons (all the massive particles of the Standard Model),
neutrinos and photons (neutrinos are considered massless and
together with photons are dubbed “radiation”).

Friedmann equation of the ACDM model:

H2
= A+ Q(1+2)P+Q(1+23+Q1+2)*.  (15)
0
Sometimes the spatial curvature contribution included in the mix:
Qu(1+2)2. (16)
The density parameter is defined as:
87 G px
Q= —F—. 17
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ACCELERATED EXPANSION OF THE UNIVERSE

OBSERVATION

Type la supernovae are standard candles which allows to extend
the cosmic distance ladder to large redshifts (z ~ 1) and from
which the accelerated expansion of the universe was discovered.

» A. G. Riess et al. [Supernova Search Team]|, Observational
Evidence from Supernovae for an Accelerating Universe and a
Cosmological Constant , Astron. J. 116 (1998) 1009
[astro-ph/9805201]

» S. Perlmutter et al. [Supernova Cosmology Project
Collaboration], Measurements of Omega and Lambda from 42
High-Redshift Supernovae , Astrophys. J. 517 (1999) 565
[astro-ph/9812133]
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ACCELERATED EXPANSION OF THE UNIVERSE

FroM RIESS’ PAPER

~~" Expands to Infinity

Recoliapses ¢ fo
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ACCELERATED EXPANSION OF THE UNIVERSE

FroM RIESS’ PAPER

Table & Cosmological Results

1o constraint” 01 Qar =02
Method (high Hy Qar [N ) P2 >0) o <0) @ Qur Qur 'N
TMLCS+Snap.(15) B B [T 99.7%(3.00)  99.5%(280)  0.98%0.40 028+0.10 031%0.21 065 £0.22
TAMs+Snap.(15) . 105 e >99.9%(100)  >99.9%(3.90) -131£0.40 017009 048019 081018
MLCS+Snap.+ 072t 1T 99.5%(2.87) 99.8%(2.7a) 0.75£0.32  0.24+0.10  0.35£0.18  0.66 £0.21
AM;5+Snap. +97ck(16) . 1565032 104 . >99.9%(3.97)  >99.9%(3.80) -1.14£0.30 0.21£0.09 -0.41£0.17 0.80 £0.19
MLCS(9) 65,2130 119 99.6%(2.90)  99.4%(2.40) 092042 028010 038022 068 £0.24
AMys(9) 6385130 105 >99.9%(3.90) >99.9%(3.80) -1380.46 0161009 -0.52:0.20 088019
MLCS+97ck(10) 65.2+1.3'  0.0010%) 117 99.5%(2.80)  99.3%(270)  -0.74£032 0243010 -0.38+0.19 068 +0.22
AM;5+97ck(10) 637130 072403 1.04 >99.9%(3.80) > 99.9%(3.70) -1.1120.32 0.20£0.09 -0.44£0.18 0.84£0.20
Snap.(6) 63427 - 130 - 89.1%(1.60)  T8.9%(130)  -0.70+0.50  0.40:0.50 044 20,60
"0 >0

fComplete set of spectroscopic Ia.
“This uncertainty reflects only the statistical error from the variance of SNe la in the Hubble flow.
It does not include any contribution from the (much larger) SN I absolute magnitude error.
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LATEST SUPERNOVAE TYPE [IA DATA

PANTHEON SAMPLE: D. M. Scolnic et al., Astrophys. J. 859 (2018) no.2, 101
[arXiv:1710.00845 [astro-ph.COJ].

Table 8. 0CDM Constraints For SN-only Sample
T T T

Analysis | Model w Qm Qa

S ACDM 0.284+0.012 0.716 + 0.01

M 0.348£0.040 0.827+0.06 20
wCDM  —1.251 +0.144  0.350 + 0.035

ACDM 0.298 £0.022  0.702 £ 0.02

M 0.319+0.070  0.733 +0.11
wCDM  —1.090 £0.220  0.316 +0.072

0

0

Notes: Cosmological constraints for the SN-only sample
with and without systematic uncertainties. Values are given
for three separate cosmological 1.0
models: ACDM, oCDM and wCDM

o

dataset mainly to be in-line with general community re-
producibility.
erate the s

We still use the binned distances to gen-

ematic covariance matrix, which is used as

2 2d 40-bin interpolation grid to create a covariance ma- 00
trix for the full SN dataset. Diagonal uncertainties from 00 0.4
the individual distances can be added together with the
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AGAIN FROM THE PANTHEON PAPER

Table 11.

Sample Qi Qa Qx Hy

CMB+BAO 0.310 £ 0.008  0.689 £ 0.008 0.001 £ 0.003  67.900 £ 0.747
CMB+HO 0.266 £+ 0.014  0.723 £0.012 0.010 £0.003  73.205 £ 1.788
CMB+BAO-+H0 0.303 £0.007  0.694 +0.007 0.003 £0.002 68.723 & 0.675
SN+CMB 0.299 +0.024  0.698 +0.019 0.003 £ 0.006 69.192 + 2.815
SN+CMB+BAO 0.309 £ 0.007  0.690 £ 0.007  0.001 £ 0.002 67.985 + 0.699
SN+CMB+HO 0.274£0.012  0.717 £0.011  0.009 £ 0.003  72.236 & 1.572
SN+CMB+BAO-+HO | 0.303 +0.007 0.695 £ 0.007 0.003 +0.002 68.745 + 0.684

Notes: Cosmological constraints from different combinations of probes when assuming the 0CDM model.

Table 12.

Sample w Qi Ho

CMB+BAO —0.991£0.074 0.312£0.013 67.508 +1.633
CMB+HO0 —1.1884+0.062 0.265+0.013 73.3324+1.729
CMB+BAO-+H0 —1.11940.068 0.289 £0.011  70.539 4 1.425
SN+CMB —1.026 £0.041 0.307 £0.012 68.183 4+ 1.114
SN+CMB+BAO —1.014+0.040 0.307 £ 0.008 68.027 £ 0.859
SN+CMB+HO —1.056 £ 0.038  0.293 £0.010 69.618 £+ 0.969
SN+CMB+BAO+HO | —1.047 +0.038  0.299 £ 0.007 69.013 £ 0.791

Notes: Cosmological constraints from different combinations of probes when assuming the wCDM model. The value of w = —1
corresponds to the cosmological constant hypothesis.
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THE VALUE OF A FROM COSMOLOGY

So, there is strong observational evidence of A driving the
accelerated expansion of the universe. The amount of A energy
density in the universe is about 70% percent, hence:

PA = Qpper = 107 GeV* ~ 10752 m2 . (18)

What is the problem with A?
» Huge discrepancy with the predictions coming from quantum
field theory (old cosmological constant problem);
» Why pa has the above tiny value? (new cosmological
constant problem).
The first question was tackled already by Zel'dovich and Sakharov
(Y. B. Zeldovich, JETP letters 6 (1967), 316-317; A. D. Sakharov, Dokl.
Akad. Nauk SSSR (1967) 177,70-71).
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VACUUM
e e e
+ + + ..oz PV
Vacuum loop + Vacuum loop +
Vacuum loop one ext. graviton two ext. gravitons

Credit: Figure taken from J. Polchinski, The Cosmological Constant and the String Landscape, hep-th/0603249.
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VACUUM ENERGY IS THERE

Vacuum fluctuations, or quantum zero point fluctuations, are
considered to exist because of:

» The Lamb shift (W. E. Lamb, R. C. Retherford, Physical
Review. 72 (1947) (3): 241243);

» The Casimir effect (H. B. G. Casimir, D. Polder, Physical
Review. 73 (1948) (4): 360372),

[although see R. L. Jaffe, Casimir effect and the quantum vacuum, PRD 72,
021301(R) (2005)]
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LAMB SHIFT

Credit: Figure taken from J. Polchinski, The Cosmological Constant and the String Landscape, hep-th/0603249.
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VACUUM ENERGY IS THERE

DOES IT GRAVITATE?

Our concern is however to understand whether and how this energy
gravitates. The standard approach is semi-classical gravity, i.e.

1 A
Ruw — Egu,,R + Neguy = 811G (Tyw) | (19)

where ~
( A ) = (out,0|T,,|in,0)
=" {out,0|in, 0)

(20)

Note the following:
» Quantum field theory on curved spacetime: fixed geometry,
effect of gravity on quantum fields (e.g. Hawking effect).
» Semi-classical gravity: dynamical geometry, backreaction of
quantum fields. Approximation of quantum gravity.
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VACUUM FLUCTUATIONS

In Minkowski space we have that

A

(Tyw) X M (21)
hence by the equivalence principle, in curved space one has:
<7A_;w> = —Pvac(X)gW s (22)

and because of Bianchi identities pyac has to be a constant. So,
the field equations become:

1
R,uv - Eg,uz/R + Aeffg,uz/ = 8mGy T,Lw ) (23)
with
/\eﬁ = /\B + 87rGvaac 5 (24)
the effective cosmological constant (whose measured value is
10747 GeV*).
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CLASSICAL CONTRIBUTIONS

These come from fields which settle at the minimum of the
potential to which they are subject. Consider a simple example:

1
Tiw = 0,90, — g | 58779,90,% + V(®)| . (25)

If the field rolls down to a minimum of its potential:
<-i_,ul/> = _V(q)min)g,u,l/ . (26)

If we can set V(®p,in) = 0 there is no contribution to Aeg. Phase
transitions are therefore quite problematic because the position of
the minimum is shifted and V/(®.,in) = 0 can be realised only
before or after the phase transition.
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ELECTROWEAK PHASE TRANSITION

Realistic cases are the electroweak phase transition and the QCD
transition. In the electroweak case (after the transition) we have
the potential (A~ 0.1 is a coupling):

vt A v A

V(H) = -~ )\ H? + = H? H4 27
(H) = =+ 30H + 5o+ o (27)

with m?, = Av? being the Higgs mass and v = (H). Then:

L 5 5 2 V2
Pvac = —ZmHV s VS = @ s (28)
lead to: \/_
_ mH 8 4

pac = 15 G2 ~ —1.2 x 108 GeV (29)

Gr ~ 1.16 x 107° GeV~2 is Fermi's constant and mpy ~ 125-GeV.
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ELECTROWEAK PHASE TRANSITION

HiGGs POTENTIAL (PLOT TAKEN FROM J. MARTIN’S REVIEW)

4 T T T T T T T T
2r ] [
0' (H)=v
=~ =~
X L T o4 % ]
r [ x U
—&r ] 2 4
_af —m /(4N - L
F o 0' (H)=v
L L L L L L
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
(H) (H)

Fig. 2. Effective potential of the Higgs boson before and after the electroweak phase transition. The left panel corresponds to a situation where the vacuum
energy vanishes at high temperature. As a consequence py,c is negative at temperature smaller than the critical temperature. This is the situation treated
in the text where the quantity —m®/(4x) is explicitly calculated. On the right panel, the off-set parameter Vy is chosen such that the vacuum energy is
zero after the transition. As a consequence, it does not vanish at high temperatures.
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QUANTUM-MECHANICAL CONTRIBUTION TO A.g

SIMPLE EXAMPLE OF A SCALAR FIELD

Let us see the calculation of the zero-point energy-momentum
tensor for a massive non-interacting scalar field:

d3k ikPx, T —ikFx
¢(X) = / W—zm(ake 4 ake ‘u) y (30)

with

we= ko= Vk24+m?. (31)

The energy-momentum tensor is:
. d3k
(T) = / iz (32)
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QUANTUM-MECHANICAL CONTRIBUTION TO A.g

PUTTING A CUTOFF

Consider a cutoff M — oco. Then:

M
@):i/ dkk?\/ k2 + m? =

2
A 0

]__|_m_2 ]__|_m_2 _m_4|n M+M ]__|_m_2
M2 2M?2 2M4 m m M2

M <1+ m +> ,(33)

M4
1672

~ 1672 M2
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QUANTUM-MECHANICAL CONTRIBUTION TO A.g

PUTTING A CUTOFF

and also for the pressure:

_1 1 M K*

_3 7T \/k2+m2
LM m 3m M M m_2
31672 M? 2M2 m m M2

At the leading order (m/M — 0) (p) = (p)/3, as radiation does,
so something is going wrong. Indeed, putting a cutoff spoils
Lorentz invariance. Considering just the logarithmic terms instead
gives the expected behaviour (p) = —(p).
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QUANTUM—MECHANICAL CONTRIBUTIONS

DIMENSIONAL REGULARISATION
Using dimensional regularisation one gets:
4—d 00
P 1 d—2 jd—2
= ——= dkk?™°d 7 Quw
<p> (27T)d_1 2/0 k

pt o T(=d/2) (m\?
2(4m)9-1 T(-1/2) (ﬁ) ’

(35)

with g an arbitrary scale. Similarly

pt T(=dj2) (m\?
= st () =)

Now (p) = —(p) as expected.
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QUANTUM—MECHANICAL CONTRIBUTIONS

RENORMALISATION

Considering d = 4 — € one can easily investigate the pole structure
of the Gamma function and see that:

m* [2 3 m?
=———|-4+=—v5-1 e
2 6472 [6 toToon (47r,u2>] * (37)
By subtracting the divergent term we finally have:
m* m?
=——In{— | . 38
0 =g (72 (38)

In general one can show the same result for any free field, provided
a minus sign for the fermionic ones. Hence:

1 4 m>
() = gz (1o n </T> | (39)
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QUANTUM—MECHANICAL CONTRIBUTIONS

PAuULI SUM RULES

Pauli already observed in 1951 (ETH lectures) that even using a
UV cutoff the correct result is obtained if the following conditions
are met:

Z(_1)2Sngn =0 72(_1)25"gnmr21 =0 72(_1)2S"gnmﬁ =0.

(40)
Visser shows how these conditions provide a bridge between the
finiteness of the zero-point energy and Lorentz invariance. He also
speculates on the consequences of taking these relations to be
valid non-perturbatively, leading to the necessity of physics beyond
the standard model (M. Visser, Phys. Lett. B 791 (2019) 43
[arXiv:1808.04583 [hep-th]]).
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THE VALUE OF THE COSMOLOGICAL CONSTANT AND
THE PROBLEM

Summing up all the contributions considered so far, we have:

1 m2
Pvac = m Z(_l)zsngnmﬁln (M > +p/\+pvac +p\%gD T
n

(41)
Just taking the electroweak scale:

~ —1.2 x 108 GeV* . (42)

p VaC

This has the wrong sign and it is in modulus way larger than the
observed value.
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ISSUES IN THE CALCULATIONS

The result:
1 25, 4 mr21
(p) = 6472 Z(_l) gnMmpIn ? ) (43)

will still hold if:
> we take into account interactions?
» we consider nonzero spacetime curvature?

In Martin's review it is shown that the answer is yes to both the

questions. For the first, the case A\®*/4! (a self interaction scalar
field) is considered and the Gaussian effective potential approach
(which is non-perturbative).
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WITH CURVATURE
SEE ALSO N.D. Birrell, P.C.W. Davies, Quantum Fields in Curved Space, Cambridge
Univ. Press, 1982

The effective action becomes (considering the backreaction of a

scalar field):
Ng 1
— A B R
( * 87TGB> * < * 167rGB)

b Gl
e L G B

i.e. the same m4 In( 2 /112) behaviour as found in the Minkowski
case.

OLIVER F. PIATTELLA

where

THE COSMOLOGICAL CONSTANT PROBLEM



VACUUM
0000000000000000080

WITH CURVATURE
SEE ALSO N.D. Birrell, P.C.W. Davies, Quantum Fields in Curved Space, Cambridge

Univ. Press, 1982

Moreover we get:

5 2m*(1/6 - ¢) {,,iﬁl[“'"(,:_j)]}’ (46)

~ (4m)"2n(n—2) 2

which renormalises Newton's constant:

Gp
___ 5B 4
¢ =1 16rGB (47)
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WITH CURVATURE

SEE ALSO N.D. Birrell, P.C.W. Davies, Quantum Fields in Curved Space, Cambridge
Univ. Press, 1982

And finally:

1 1
a(x) = ﬁRa/B%Raﬂ'yé - mRaﬁRaB

2
—%(é—g)mur%(é—g) R?, (48)

that are modifications of GR.
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EXAMPLE OF A SMALL COSMOLOGICAL CONSTANT

J. HOLLAND AND S. HOLLANDS, CLASS. QUANTUM GRAv. 31 (2014) 125006

Here the authors solve exactly a 2D toy model (Gross-Neveu):

L=N|igy o+ (W) (49)

for the zero-point energy momentum tensor, finding:

1 —27
(Ouw) = I 2€ 2n/g" N + O(L/N) . (50)

The speculation is whether a similar result could hold also for the
Standard Model, giving an exponential suppression.
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[e]e] Je]e]e]ele]e]e)

SELF-ADJUSTING FIELDS AND WEINBERG’S NO-GO
THEOREM

If there is some field ¢ such that:
O¢ oc TH, x R, (51)

and that it evolves to an equilibrium value ¢g such that

T#,(¢0) = 0. Then R =0 and the Minkowski solution can be
enforced. In some sense the field “adjusts” itself to the huge
zero-point energy, eating it up.

Weinberg's no-go theorem states that this is impossible without a
fine-tuning (see his review).
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[e]e]e] le]e]ele]e]e)

UNIMODULAR GRAVITY

In unimodular gravity one demands that —g =1 and it is not
dynamical. The field equations then become:

1 1
R/_“/ — Zg/“/R = 87TGN <Tp]y — Zg‘w T> . (52)

Since the zero-point contribution is a trace, here it does not enter.
Taking Bianchi's identities, one has:

Vu(R+8rGyT)=0 = R+8rGyT =4A, (53)

and so we rewrite the field equations as:
1
R — EgWR +Aguw =8mGn T, - (54)
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[e]e]e]e] e]ele]e]e)

UNIMODULAR GRAVITY

Unimodular gravity seems to work perfectly. So what are the
problems with that? According to Weinberg: In my view, the key
question in deciding whether this is a plausible classical theory of
gravitation is whether it can be obtained as the classical limit of
any physically satisfactory quantum theory of gravitation.

According to A. Padilla and I. D. Saltas, Eur. Phys. J. C75 (2015)
no.11, 561, [arXiv:1409.3573 [gr-qc]] unimodular gravity is
equivalent to GR (so the CCP still exists, it is moved to the
Lagrangian multiplier that enforces —g = 1).

Opposite view by C. Barceld, R. Carballo-Rubio and L. J. Garay,
Annals of Physics 398 (2018) 9-23 address the above-mentioned
citation by Weinberg, in the positive sense.
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SEQUESTERING MECHANISM

N. Kaloper and A. Padilla, Phys. Rev. Lett. 112 (2014) 091304 [arXiv:1309.6562
[hep-th]]

Sequestering action:

A 4 M% 4 -2 __uv
520()\4—,u4) —|—/d XV —g [TR_)\ Lm(Agh, W) —A

(55)
Variation:
1 A 4
>\4M4al <)\4H4> = /d x\/—g, (56)
4N A 4 45
/\4M4UI ()\4N4) = /d x/—g\' TS, (57)
M3 GH, = —No*, + \*TH, | (58)

with M T, = T
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SEQUESTERING MECHANISM

N. Kaloper and A. Padilla, Phys. Rev. Lett. 112 (2014) 091304 [arXiv:1309.6562
[hep-th]]

The first condition implies that the spacetime volume is finite.
Combining the previous equations, one gets:

Ao LS dxv—gTa

and the field equations become:
d4 Ta
mwﬁﬂy-MfXV (60)

[dxv—g

and the zero-point contribution drops out, similarly to what
happens in the unimodular gravity case.
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HIDING THE COSMOLOGICAL CONSTANT
S. Carlip, Phys. Rev. Lett. 123, 131302 (2019) [arXiv:1809.08277 [hep-th]]

Here it is described a mechanism by which the effect of a huge
cosmological constant might average out on macroscopic scales.
The cosmological constant, even if it is huge, is hidden within the
spacetime foam.

Apparently there are problem with the evolution of such a
configuration, i.e. the cosmological constant does not stay hidden
(OFP, Does the cosmological constant stay hidden?,
[arXiv:2007.02637 [gr-qc]]).
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OTHER INTERESTING TENTATIVES

» S. W. Hawking, The Cosmological Constant Is Probably Zero,
Phys. Lett. 134B (1984) 403;

» R. D. Peccei, J Sold and C. Wetterich, Physics Letters B
(1987), 195;

» S. R. Coleman, Nucl. Phys. B 310 (1988) 643;

» M. J. Duff, The Cosmological Constant Is Possibly Zero, but
the Proof Is Probably Wrong, Phys. Lett. B 226 (1989) 36;

» Q. Wang, Z. Zhu and W. G. Unruh, Phys. Rev. D 95 (2017)
no.10;

» S. M. Carroll and G. N. Remmen, Phys. Rev. D 95 (2017)
no.12;

» L. Lombriser, Phys. Lett. B 797 (2019), 134804
[arXiv:1901.08588 [gr-qc]].
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PROPAGANDA 2
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International PhD program in Astrophysics, Cosmology and
Gravitation
A joint program of 14 institutions in 9 countries
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https://ppgcosmo.cosmo-ufes.org/
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