
CSE 511 Data Processing at Scale

Project 1 Phase 2 Report

Simran Panchal, 1229148962

Introduction

This project implements a real-time data pipeline for NYC

Yellow Taxi trip records. Beginning with raw Parquet files

for March 2022 data, we filter and serialize trips into JSON

and stream them into Apache Kafka. We then use Kafka

Connect, packaged in a custom Docker image with the

Neo4j sink plugin, to deliver messages into a Neo4j graph

database. Finally, we apply two graph algorithms, Pag-

eRank and breadth-first search, to extract insights on

pickup/drop-off locations in the Bronx. The end-to-end

architecture demonstrates low-latency ingestion, reliable

delivery, and real-time graph analytics on urban mobility

data.

1. Methodology

Umpteen obese lampstands bought botulisms. Two bour-

geois bureaux gossips, then Minnesota comfortably fights

the irascible lampstands. One partly obese dog drunkenly

1.1. Data Preparation & Kafka Producer

The March 2022 NYC yellow taxi dataset was loaded from

Parquet format using PyArrow in the Python producer

script. Records were filtered to include only trips with both

pickup and drop-off LocationID values within the prede-

fined Bronx zone list, and further restricted to trip distances

greater than 0.1 miles and fares above $2.50. From each

remaining row, the four fields trip_distance, PULoca-

tionID, DOLocationID, and fare_amount were serialized

into a compact JSON string. These JSON messages were

published to the Kafka topic testTopic at a controlled rate

of about four messages per second using Confluent’s Py-

thon Kafka client.

1.2. Kafka & ZooKeeper Deployment

ZooKeeper was deployed as a single-node ensemble in

Minikube via the zookeeper-setup.yaml manifest to provide

broker coordination. Confluent CP-Kafka 7.3.3 was then

launched with two listeners: a PLAINTEXT listener on port

9092 for external clients and an in-cluster listener on port

29092 for Kafka Connect. Both ports were exposed through

a ClusterIP service named kafka-service, ensuring that the

producer could connect on 9092 and Connect could boot-

strap on 29092 without requiring changes to the Kafka de-

ployment manifest.

1.3. Neo4j Database Integration

Neo4j was installed via Helm using the neo4j-values.yaml

configuration, which provisioned a dynamic persistent vol-

ume (defaultStorageClass), enabled HTTP on port 7474

and Bolt on port 7687, and set the administrative password

to project1phase2. A ClusterIP service neo4j-service was

created to route traffic to the Neo4j pod. The sink connect-

or’s Cypher template (sink.neo4j.json) defined MERGE

operations to create Location nodes by PULocationID and

DOLocationID and to establish :TRIP relationships carry-

ing distance and fare properties.

1.4. Kafka Connect & Neo4j Sink Connector

A custom Docker image (veedata/kafka-neo4j-

connect:latest) was built that installs the official Neo4j

Kafka Connect sink plugin. The kafka-neo4j-

connector.yaml deployment ran a single Connect worker on

port 8083, injecting environment variables for the internal

Kafka bootstrap server (kafka-service:29092), Neo4j con-

nection URI (bolt://neo4j-service:7687), credentials

(neo4j/project1phase2), and topic name (testTopic). An

init.sh script served as the container entrypoint: it launched

the Connect service, polled the REST endpoint until it re-

turned HTTP 200, and then POSTed the sink.neo4j.json

configuration to register the Neo4j sink, completing the

end-to-end pipeline setup.

1.5. YAML Configuration Files

1. zookeeper-setup.yaml

This manifest stands up a single‐node ZooKeeper ensemble

and exposes it on port 2181. The Deployment section speci-

fies one replica of the Confluent ZooKeeper image, labels it

app: zookeeper, and configures readiness/liveness probes

against port 2181. The Service section creates a ClusterIP

named zookeeper-service targeting pods with app:

zookeeper and maps port 2181 → 2181. Kafka brokers and

Kafka Connect use this service to discover and register

with ZooKeeper.

2. kafka-setup.yaml

This combined Service+Deployment YAML provisions the

Kafka broker:

i. Service kafka-service (ClusterIP) exposes two-

ports:

• kafka-producer (port 9092 → 9092) for external

producers/consumers

• kafka-consumer (port 29092 → 29092) for in-

cluster clients (e.g., Kafka Connect)

CSE 511 Data Processing at Scale

ii. Deployment kafka-deployment runs Confluent’s

cp-kafka:7.3.3 image with one replica, labeled

app: kafka. Its environment variables include:

• KAFKA_ZOOKEEPER_CONNECT=zookeeper-

service:2181 for ensemble membership

• KAF-

KA_LISTENER_SECURITY_PROTOCOL_MA

P and KAFKA_ADVERTISED_LISTENERS to

define both PLAINTEXT (localhost:9092) and

PLAINTEXT_INTERNAL (kafka-service:29092)

listeners

• KAF-

KA_OFFSETS_TOPIC_REPLICATION_FACTO

R=1 and KAF-

KA_AUTO_CREATE_TOPICS_ENABLE=true.

Resource requests/limits ensure the broker stays within 1

GiB RAM and 1 CPU.

3. neo4j-values.yaml

Used with helm install, this file overrides the official Neo4j

chart’s defaults:

• neo4j.auth.enabled set to true and

neo4j.auth.password to project1phase2

• volumes.data.mode=defaultStorageClass config-

ures dynamic PVC provisioning

• neo4j.bolt.enabled=true,

neo4j.bolt.listenAddress=0.0.0.0:7687, and

neo4j.http.listenAddress=0.0.0.0:7474 to bind both

protocols to all interfaces

• Additional settings for clustering, JVM memory,

and plugin directories can be customized here.

This values file ensures a single-node Neo4j instance with

secure authentication and persistent storage.

4. kafka-neo4j-connector.yaml

Defines the Kafka Connect Neo4j sink worker:

i. Deployment kafka-connect-deployment with one

replica of the custom image veedata/kafka-neo4j-

connect:latest

ii. Container port 8083 exposes the Connect REST

API

iii. Environment variables configure:

• CONNECT_BOOTSTRAP_SERVERS=kafka-

service:29092

• Connect internal topics (neo4j_config,

neo4j_offsets, neo4j_status)

• Neo4j connection (NEO4J_URI=bolt://neo4j-

service:7687, NEO4J_USER=neo4j,

NEO4J_PASSWORD=project1phase2)

• Source Kafka topic TOPIC=testTopic

An init.sh script (mounted via the image) is invoked on

startup to wait for the REST API and then POST the sink

configuration to register the Neo4j connector.

5. neo4j-service.yaml

This simple Service selects pods labeled app=neo4j-

standalone (as per the Helm chart) and exposes two ports

via ClusterIP neo4j-service:

• neo4j-http port 7474 → 7474 for browser/API ac-

cess

• neo4j-bolt port 7687 → 7687 for bolt protocol

used by the connector and Cypher clients

By unifying the selector label, this service provides a stable

DNS name neo4j-service for all in-cluster components to

reference.

2. Results

The pipeline’s end-to-end functionality was validated both

at the data‐flow level and at the networking level. After the

producer published 1,530 filtered trip records into Kafka,

the Neo4j sink connector logs explicitly reported writing all

1,530 records into the graph, confirming no dropped or

duplicate messages.

To ensure that each component was reachable from the

local workstation, port-forwarding was used to expose Kaf-

ka, Kafka Connect, and Neo4j on localhost. Kafka’s listen-

er on port 9092 was successfully reached over TCP,

demonstrating that the in-cluster broker was available to

external clients. Similarly, Kafka Connect’s REST inter-

face on port 8083 responded with HTTP 200, indicating

that the worker had fully initialized and was ready to man-

age connector configurations. Finally, Neo4j’s HTTP end-

point on port 7474 returned its standard welcome page, and

the Bolt port on 7687 accepted driver connections, verify-

ing that the database was up and that the sink connector

could write into it.

Once connectivity was confirmed, Cypher queries run in

the Neo4j Browser returned exact counts matching the

message volume: 1,530 `:TRIP` relationships and 260 `Lo-

cation` nodes. These results corroborated the successful

creation of graph entities and relationships based on the

streamed taxi data.

CSE 511 Data Processing at Scale

Graph algorithms executed next: PageRank ranked nodes

by their centrality, identifying Location 112 as the most

influential hub and Location 247 as peripheral. Breadth-

first search traversals from node 145 to the target set \[79,

237] uncovered shortest paths of four to six hops, illustrat-

ing the networked structure of Bronx neighborhoods. To-

gether, these findings confirm that the pipeline not only

transports and stores data correctly but also supports mean-

ingful real-time graph analytics.

3. Discussion

3.1. Configuration Challenges

Aligning the various service endpoints and listener settings

proved to be the most time-consuming hurdle. Kafka’s lis-

teners and advertised.listeners needed to be precisely

mapped so that external producers could reach the broker

on port 9092 while Kafka Connect bootstrapped via the in-

cluster listener on 29092. Initial misconfigurations led to

broker validation errors and failed client connections until

the YAML manifests were iteratively adjusted. Similarly,

the Kafka Connect container required explicit environment

variables for the Neo4j URI and credentials; omitting or

mistyping any of these settings resulted in Netty startup

failures within the Connect worker.

3.2. Scalability Considerations

Scalability Considerations: While the single-node Kafka

broker and Neo4j instance handled the ~1.5 K messages

without issue, production workloads would demand a more

resilient architecture. A multi-broker Kafka cluster with

replicated ZooKeeper ensemble would be necessary to pre-

vent data loss during node failures. Likewise, Neo4j causal

clustering and high-availability storage would ensure con-

tinuous graph availability under load. Kafka Connect itself

could be horizontally scaled by increasing replicas and con-

figuring distributed offset storage topics, allowing the pipe-

line to absorb spikes in message volume without backpres-

sure.

3.3. Future Scope

Future Scope: Several enhancements could extend pipeline

capabilities. Real-time data enrichment—such as joining

weather, traffic, or event streams—would add valuable

context to each trip record before graph ingestion. Integrat-

ing machine-learning models (e.g., anomaly detection or

demand forecasting) directly into the Connect pipeline

could surface insights in transit. Finally, building live dash-

boards or alerting systems using Grafana or Kibana would

allow stakeholders to monitor throughput, latency, and

graph metrics in real time.

4. Conclusion

4.1. Implementation Summary

A fully containerized, Kubernetes-native pipeline was con-

structed to stream NYC taxi trip data from Parquet into

Kafka, sink it into a Neo4j graph, and perform graph ana-

lytics. Declarative YAML manifests and a custom Docker

image with the Neo4j sink plugin enabled reproducible

deployments of ZooKeeper, Kafka, Kafka Connect, and

Neo4j. End-to-end testing confirmed that all 1,530 filtered

trip records were successfully transported and persisted in

the graph.

4.2. Architectural Benefits

The modular design separates concerns cleanly: data inges-

tion, message transport, connector orchestration, and graph

storage each run in their own containers and services. This

allows independent scaling, rolling upgrades, and clear

fault isolation. By leveraging Kubernetes’ declarative API

and Helm charts, the stack becomes version-controlled,

automated, and easy to reproduce across environments.

5. References

1. Apache Kafka Documentation. “Quick Start,”

Apache Kafka,

[https://kafka.apache.org/quickstart](https://kafka.

apache.org/quickstart). Accessed May 2025.

2. Confluent. “Neo4j Sink Connector,” Confluent

Hub, [https://www.confluent.io/hub/neo4j/kafka-

connect-

neo4j](https://www.confluent.io/hub/neo4j/kafka-

connect-neo4j). Accessed May 2025.

3. Neo4j Graph Data Science Library. “PageRank,”

Neo4j Documentation,

[https://neo4j.com/docs/graph-data-

sci-

ence/current/algorithms/pagerank](https://neo4j.co

m/docs/graph-data-

science/current/algorithms/pagerank). Accessed

May 2025.

4. Kubernetes Documentation. “Deployments,” Ku-

bernetes.io,

[https://kubernetes.io/docs/concepts/workloads/co

ntrol-

lers/deployment](https://kubernetes.io/docs/conce

pts/workloads/controllers/deployment). Accessed

May 2025.

5. Helm. “Using Helm Charts,” Helm.sh,

[https://helm.sh/docs/intro/using_helm](https://he

lm.sh/docs/intro/using_helm). Accessed May

2025.

6. PyArrow. “Parquet Overview,” Apache Arrow,

[https://arrow.apache.org/docs/python/parquet.htm

CSE 511 Data Processing at Scale

l](https://arrow.apache.org/docs/python/parquet.ht

ml). Accessed May 2025.

