SYDNEY GRAMMAR SCHOOL

NAME MATHS MASTER

2024 Annual Examination

Form IV Mathematics

Monday 4th November, 2024 Session A

General Instructions

- Working time 2 hours
- Attempt all questions.
- Write using black pen.
- Calculators approved by NESA may be used.

Nine Questions — 108 Marks

- Each question is worth 12 marks.
- Relevant mathematical reasoning and calculations are required.
- Record your answers on the writing paper provided.
- Start each question on a new page.

Collection

- Write your name and master on this page and on each page of writing paper.
- Arrange your solutions in order.
- Staple the sheets of writing paper together.

Classes

4A: KCCT	4B: RCF	4C: MCW	4D:	WJM	4E:	BR
4F: PC	4G: YH	4H: WJW	41:	LRP/AHSH	4J:	PKS

Checklist

14 sheets of writing paper per boy

Candidature: 205 pupils

Writer: YH

QUESTION ONE (12 marks) Start a new page.

(a) Solve:

(i)
$$(x-3)(x+6) = 0$$

(ii)
$$x^2 = 16$$

(b) Simplify
$$3x \times \frac{x}{3}$$
.

(c) Express
$$10x^{-3}$$
 using positive indices.

(e) Solve
$$2x + \frac{x}{2} = 1$$
.

(f) Factorise:

(i)
$$a^2 - 25$$

(ii)
$$6x^2 - x - 2$$

- (g) Consider the polynomial $P(x) = 6x^5 5x^3 + x^2 11$.
 - (i) State the degree of the polynomial.
 - (ii) State the constant term of the polynomial.

(i) three heads

QUESTION TWO (12 marks) Start a new page.	
(a) Find the equation of the line parallel to $y = 4x - 11$, passing through the point (1,2). Give your answer in gradient-intercept form.	2).
(b) If $\log_3 x = 5$, find the value of x .	_1
(c) Consider the polynomials $P(x) = x^3 - x + 5$ and $Q(x) = x + 1$.	
(i) Find the value of $P(2)$.	1
(ii) Simplify the expression $P(x) + Q(x)$.	1
(d) Use the quadratic formula to solve $2x^2 - x - 2 = 0$.	1
(e)	
Score 1 2 3 Frequency 2 3 6	
For the data shown in the table above, find the:	
(i) range	_1
(ii) median	_1
(f) A boat is 200 metres away from the base of a vertical cliff. From the top of the cliff t boat can be seen at an angle of depression of 25°.	he
(i) Sketch a diagram of the scenario, showing all given information.	1
(ii) Find the height of the cliff Give your answer correct to the nearest metro	7

(g) Three fair coins are tossed and the results recorded. Find the probability of obtaining:

(ii) at least one tail

1

 $|\mathbf{2}|$

1

QUESTION THREE (12 marks) Start a new page.

- (a) Consider the scores 1, 2, 5, 8.
 - (i) Find the mean of the scores.
 - (ii) Find the standard deviation of the scores correct to two decimal places.
- (b) Solve $2^x = \frac{1}{4}$.
- (c) Find the remainder when $P(x) = x^3 5x^2 + 3$ is divided by x 2.
- (d) (i) Sketch the graph of y = sin θ for 0° ≤ θ ≤ 360°. Clearly label all key features.
 (ii) Hence, or otherwise, solve the equation sin θ = 1 for 0° ≤ θ ≤ 360°.
- (e) Sketch the graph of $y = \log_3(x-2)$, clearly indicating any intercepts and asymptotes.
- (f) Let $\log_2 x = a$ and $\log_2 y = b$, where $b \neq 0$. Express the following in terms of a and b:
 - (i) $\log_2 xy$
 - (ii) $\log_2\left(\frac{x^2}{y}\right)$
 - (iii) $\log_y x$

QUESTION FOUR (12 marks) Start a new page.

- (a) Solve $\cos \theta = \frac{1}{2}$ for $0^{\circ} \le \theta \le 360^{\circ}$. $|\mathbf{2}|$
- (b) Consider the parabola given by the equation y = x(x 6).
 - (i) State the equation of its axis of symmetry. 1
 - 1 (ii) Hence, find the coordinates of its vertex.
- 3 (c) 40°

In the diagram above, the angle θ is obtuse. Find the value of θ correct to the nearest degree.

(d) The mass M kg of a decaying radioactive substance is given by the equation

 $M = 800 \times 10^{-t}$.

where t is time measured in hours. How long will it take to reach a mass of $30 \,\mathrm{kg}$? Give your answer as an exact value.

- (e) Two fair six-sided dice, one red and one blue, are rolled. Find the probability that:
 - (i) The same number appears on both dice.

(ii) Different numbers appear on the two dice.

1

 $|\mathbf{2}|$

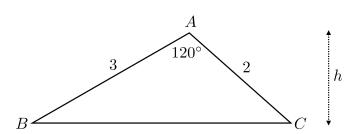
(iii) The number on the red die is greater than the number on the blue die.

1

 $|\mathbf{2}|$

QUESTION FIVE (12 marks) Start a new page.

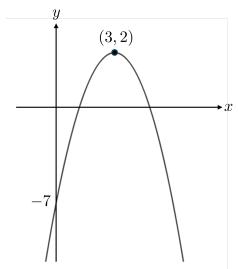
(a)



In the triangle above, AB = 3, AC = 2, $\angle BAC = 120^{\circ}$ and h is a perpendicular height of the triangle. Find the exact values of the following:

- (i) the area of $\triangle ABC$
- (ii) the length BC
- (iii) the height h

(b) 2



Find the equation of the parabola in the diagram above.

- (c) Consider the graph of the curve given by the equation $y = \frac{1}{x+1} 2$.
 - (i) Find its y-intercept. x + 1
 - (ii) Find its x-intercept.
 - (iii) Sketch the graph of the curve, clearly labeling any intercepts with the axes. Include any asymptotes and their equations on your graph.
- (d) Find the centre and radius of the circle given by the equation $x^2 4x + y^2 + 6y + 2 = 0$.

QUESTION SIX (12 marks) Start a new page.

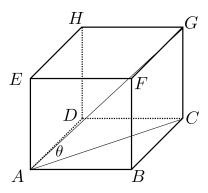
- (a) Solve $\tan \theta = -0.3$ for $0^{\circ} \le \theta \le 360^{\circ}$. Give your answers correct to the nearest degree.

1

1

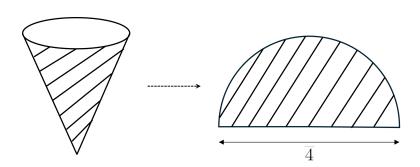
2

(b)



The cube in the diagram above has side lengths of 1 cm. The space diagonal AG meets the plane ABCD at angle θ . Find θ correct to the nearest degree.

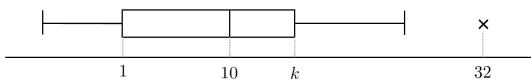
(c)



The net of the curved surface of a cone is a semicircle with diameter 4 cm.

- (i) State the slant height of the cone.
- (ii) Find the radius of the cone.
- (iii) Find the exact volume of the cone in terms of π .
- (d) Solve $2\log_3 x + \log_3\left(\frac{6}{x}\right) = 4$.

(e)



The box plot above is not drawn to scale. Given that 32 is an outlier, find the maximum possible integer value of k.

QUESTION SEVEN (12 marks) Start a new page.

(a) Solve
$$2\sin 3\theta = \sqrt{3}$$
 for $0^{\circ} < \theta < 180^{\circ}$.

 $|\mathbf{2}|$

 $|\mathbf{1}|$

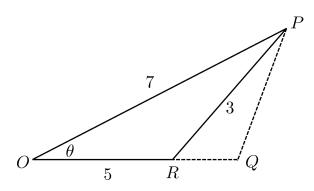
2

- (b) Consider the polynomial $P(x) = 4x^3 21x + 10$.
 - (i) Find a linear factor of P(x).
 - (ii) By using long division, or otherwise, fully factorise P(x).
 - (iii) Hence, solve P(x) = 0.
- (c) Bag A contains 4 red balls and 3 yellow balls. Bag B contains 25 red balls and 5 yellow balls. A bag is selected at random and a ball is drawn from it.
 - (i) Draw a tree diagram illustrating the possible outcomes with their probabilities.
 - (ii) Find the probability that bag A was selected given that a red ball was drawn.
 - (iii) How many red balls must be added, and to which bag, such that the events of selecting bag A and drawing a red ball are independent?
- (d) A single translation can be applied to the graph of $y = 3^x$ so that the new graph passes through the point (-3, 9). Answer the following clearly in words:
 - (i) Which vertical translation achieves this result?
 - (ii) Which horizontal translation achieves this result?

QUESTION EIGHT (12 marks) Start a new page.

(a) Find all possible values of the gradient m so that the graphs of y = mx + 1 and $y = \frac{1}{x}$ do not intersect.

(b)



In the diagram above, $\angle POR = \theta$ and OR is extended to Q so that $\angle OPQ = 60^{\circ}$.

(i) Find θ correct to the nearest minute.

 $|\mathbf{2}|$

(ii) Show that 7PQ - 3RQ = 15.

 $\overline{2}$

(c) If $4^x = 2^{x+2} + 12$, find the value of 8^x .

3

|3|

(d) Consider the polynomial $P(x) = a(x+1)^3 - b(x-1)$, where a and b are constants. Given that P(x) is divisible by x and has a remainder of 16 when divided by x-1, find the remainder when P(x) is divided by x+2.

|3|

2

2

QUESTION NINE (12 marks) Start a new page.

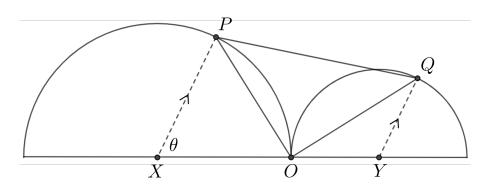
(a) The standard deviation σ of the scores $x_1, x_2, x_3, \dots, x_n$ is given by:

$$\sigma = \sqrt{\frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + (x_3 - \bar{x})^2 + \dots + (x_n - \bar{x})^2}{n}},$$

where \bar{x} is the mean of these scores. If \bar{x} and σ are equal, show that:

$$2n\sigma^2 = x_1^2 + x_2^2 + x_3^2 + \dots + x_n^2.$$

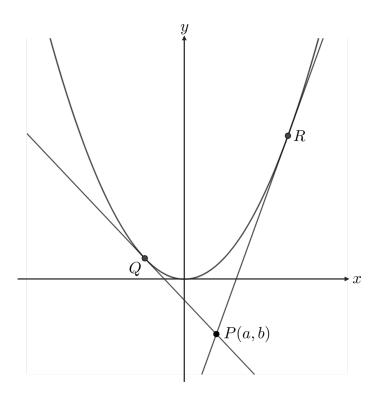
(b)



In the diagram above, the semicircle centered at X has a radius of R, while the semicircle centered at Y has radius of r. Points P and Q are chosen on the semicircles so that PX is parallel to QY. Let $\angle PXO = \theta$, where $0^{\circ} < \theta < 180^{\circ}$.

- (i) Find the area of the trapezium PQYX in terms of R, r and θ .
- (ii) Find the maximum possible area of $\triangle POQ$.

(c)



Two non-vertical lines pass through P(a,b) and intersect the parabola $y=x^2$ exactly once each at points Q and R as shown above.

- (i) Write down the equation of the line with gradient m passing through P(a,b).
- $egin{bmatrix} 1 \ \hline 2 \ \hline \end{bmatrix}$

(ii) Find the required conditions on a and b so that $\angle RPQ = 90^{\circ}$.

- 2
- (d) Consider the remainder when $P(x) = x^2 + x + 1$ is divided by $x \alpha$. Find the value of α so that this remainder cannot be obtained when any polynomial formed from any horizontal translation of P(x) is divided by $x \alpha$.

END OF PAPER -

