CHEMISTRY (CODE - 043) SAMPLE QUESTION PAPER - 1 CLASS XII

Time: 3 hours Max. Marks: 70

Q.N	VALUE POINTS	MARKS
	SECTION - A	
1	(c)	1
2	(d)	1
3	(a)	1
4	(a)	1
5	(d)	1
6	(a)	1
7	(a)	1
8	(b)	1
9	(d)	1
10	(c)	1
11	(a)	1
12	(c)	1
13	(d)	1
14	(c)	1
15	(d)	1
16	(a)	1
	SECTION - B	
17	(a) On prolonged heating with HI, glucose gives n-hexane.	1
	(b) Glycosidic linkage	
	OR	1
	(a) L configuration	1
	(b) Amino acids have an amino (-NH ₂) group, basic in nature and accepts a proton and	
	COOH group loses a proton forming a dipolar ion, called the Zwitter ion. In this form, amino	1
	acids behave both as acids and bases so they are amphoteric in nature	<u> </u>
18	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	½ x 4
	From the above isomers, none will exhibit optical isomers.	
19	(a) 4 times	1
	(b) 1/4th	1

20	$K = \frac{[A]_0 - [A]}{}$	1/2
	$t = \frac{0.10 - 0.075}{0.0030} = 8.33 \text{ s}$	1/2
	$1 - \frac{1}{0.0030} = 8.55 \text{ s}$	1
21	(a) More is s character, more is electronegativity, more is polarity. C-Cl bond in cyclohexyl chloride is sp ³ hybridized having less s character as compared to C-Cl bond in chlorobenzene which is sp ² hybridized.	1
	(b) To be miscible with water, the solute - water force of attraction must be stronger than solute - solute and water- water forces of attraction. Alkyl halides are held by dipole dipole interactions and strong H- bonds exist between the water molecules. The new forces of attraction between the alkyl halides and water molecules is weaker than the alkyl halide - alkyl halide and water - water forces of attraction. So alkyl halides are immiscible in water.	1
	SECTION - C	
22	$P_{02} = 10 \text{ x}(20/100) = 2 \text{ atm x } 760 = 1520 \text{ mm}$	1/2
22	$P_{N2} = 10 \times (79/100) = 7.9 \text{ atm } \times 760 = 6004 \text{ mm}$	1/2
	$P = K_{H} \times X$	1
	$X_{02} = 1520 / 3.30 \times 10^7 = 4.61 \times 10^{-5}$	1/2
	$X_{N2} = 6004 / 6,51 \times 10^7 = 9.22 \times 10^{-5}$	1/2
23	56 g of Fe requires 2 x 96500 C of electricity 2.8 g — 2 x 96500 x 2.8 / 56 = 9650 C	1
	Q=It , t = 9650 / 2 = 4825 s	1
	Faraday's second law W1/W2 = E1/E2	
	2.8 / W2 = (56/2)/(65.3 /2)	
	W= 3.265 g	1
24	(i) Sodium phenoxide to o-hydroxybenzoic acid OH NaOH NaOH 1) CO2 2) H Sodium phenolate 2-hydroxybenzoic acid or Salicylic acid	
	(ii) Acetone to propene	
	$\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \text{Acetone} \end{array} \begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \text{CHoh} \end{array} \begin{array}{c} \text{CH}_3 \\ \text{CHoh} \\ \text{CH}_3 \\ \text{2-Propanol} \end{array} \begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \text{Propene} \end{array}$	(3 x 1)
	(iii) Phenol to chlorobenzene	
	OH CI	
	Zn dust Cl ₂ , FeCl ₃	
	(iv) Anisole to 4-Methoxytoluene	
	OCH ₃ +CH ₃ Cl Anhyd. AlCl ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ 4-Methoxy-toluene (Minor) (Major)	

	(a) Caliadia asid	1/
25	(a) Salicylic acid	1/2
	Reagents NaOH , CO2 , H+	1/2
	Kolbe's reaction	1
	(b) Phenol	1
26	(a) +3	1/2
	(b) d ² sp ³ , octahedral	1
	(c) paramagnetic	1/2
	(d) dichlorido bis(ethane-1,2 diamine) iron(III) chloride	1
27	(a) In aniline, the lone pair of electrons on the N- atom is delocalized over the benzene ring	1
	due to resonance so less available for donation.	1
	(b) because it gives mixture of products so difficult to separate.	
	(c) + R effect of NH ₂ group increases electron density at ortho and para position.	1
28	(a) -NO ₂ shows -I and -R effect .IT has tendency to attract the electron towards itself so it	1
	decreases the electron density between C-X bond.	
	(b) due to symmetrical structure it better fits in the crystal lattice so m.pt is more.	1
	(c) By products are suplhur dioxide and HCl both are in the gaseous state.	1
	SECTION - D	
29	(a) Relative lowering of V.P = P° -P/ P° = 0.061 / 17.5 = 0.00348	1
29	OR	
	Vapour pressure of the solution = V.P of solvent - Lowering of V.P	1
	= 17.5 - 0.061 = 17.439 mm og Hg	
	(b) Relative lowering of V.P = P° -P/ P° = X(sugar) = 0.00348	1
	(c) P°-P/P°= X(sugar)	
	$\underline{P^2}-\underline{P} = \underline{W_B \times M_A}$	1/2
	P° M_{B} WA	
	$17.5 - P = 25 \times 18$	1/2
	17.5 450 180	
	P = 17.40 mm of Hg	1
20	(a) A = 100 so T = 100 C=150 so G = 150	
30	Total nucleotides = 100+100+150+150 =500	1
	(b) They studied the nucleotide composition of DNA. It was the same so they concluded	
	that the samples belong to the same species.	1
	(c) A = T = 20% But G is not equal to C so double helix is ruled out.	
	The bases pairs are ATGC and not AUGC so it is not RNA	2
	The virus is a single helix DNA virus	_
	OR	
	According to Charagraff rule, all double helix DNA will have the same amount of A and T as	2
	well as C will be the same amount as G. If this is not the case then the helix is single	_
	stranded.	
	SECTION - E	
		1 x 5
31	A: (a) La_2O_3 is more ionic and Lu_2O_3 is covalent , as the size decreases covalent character	
	increases.	
	(b) As the size decreases from La to Lu , bond strength decreases so stability also decreases.	
	(c) 5f electrons have poor shielding effect so nuclear charge is more .	
	(d) Lanthanoid contraction	
	(e) because of formation of chromate ion CrO ₄ ²⁻ ion.	
	B:	
	(a) $Mn^{+2} + 4 H_2O$	

(b) Mn ⁺³ is stronger O.A as it changes from Mn ⁺³ to Mn ⁺² results in half filled d ⁵ config but	
	1 x 5
• •	
(a)	
$\Lambda_{m} = \frac{1000 \times K}{1000 \times K} S \text{ cm}^2 \text{ mol}^{-1}$	1
M M	
$\Lambda_{m} = \frac{1000 \times 5.25 \times 10^{-5}}{10^{-5}} \text{S cm}^2 \text{mol}^{-1}$	
25 / 25	1
	1
$^{0}_{m} \text{ HCOOH} = \lambda^{0} \text{ HCOO}^{-} + \lambda^{0} \text{ H}^{+}$	1
$= (50.5 + 349.5) \text{ S cm}^2 \text{mol}^{-1}$	_
	1
$\alpha = \Lambda_m / \Lambda_m^{\circ}$	1/2
$\alpha = 210/400$	1/2
= 0.525	
(b) Dry cell is used in transistors	
At anode: $Zn(s) \rightarrow Zn^{2+} + 2e^{-}$	
At cathode : $MnO_2 + NH_4^+ + e^- ightarrow MnO(OH) + NH_3$	1
OR	
(B)	
(a) Molar Conductivity (Λ m): It may be defined as the conductance of a solution containing	
1 mole of electrolyte such that the entire solution is placed is between two electrodes one	1
centimeter apart.	
400	
	1
² mol.	
8	
NCI.	
NC1	
	1/2
$c^{1/2}/(\text{mol}/L)^{1/2}$	
Molar conductivity increases with decrease in concentration or increase in dilution as the	
	1/2
the number of ions do not increase appreciably on dilution and only mobility of ions	
increases due to decrease in inter-ionic attractions. Therefore Λm increases a little as	
shown in the graph by a straight line. For weak electrolytes the number of ions as well as	
mobility of ions increases on dilution so there is sharp increases in Λ m.	1
(b)	
	Cr³3 is extra stable because of half filled t_2g level. (c) No. Enthalpy of atomisation of Zinc is 130kJ/mol because it has no unpaired electrons in d subshell so the interatomic interaction is weaker than Cu. (d) Sulphuric acid because hydrochloric acid is oxidised to chlorine (e) Chromium and Molybdenum (A) (a) $A_m = \frac{1000 \times K}{M} \text{S cm}^2 \text{ mol}^{-1}$ $A_m = \frac{1000 \times 5.25 \times 10^{-5}}{2.5 \times 10^{-5}} \text{S cm}^2 \text{mol}^{-1}$ $= 210 \text{ S cm}^2 \text{mol}^{-1}$ $= 210 \text{ S cm}^2 \text{mol}^{-1}$ $A_m = \frac{1000 \times 5.25 \times 10^{-5}}{2.5 \times 10^{-5}} \text{S cm}^2 \text{mol}^{-1}$ $= 210 \text{ S cm}^2 \text{mol}^{-1}$ $= 210 \text{ S cm}^2 \text{mol}^{-1}$ $A_m = \frac{1000 \times 5.25 \times 10^{-5}}{2.5 \times 10^{-5}} \text{S cm}^2 \text{mol}^{-1}$ $= 210 \text{ S cm}^2 \text{mol}^{-1}$ $A_m = \frac{1000 \times 10^{-5}}{2.00 \times 10^{-5}} \text{S cm}^2 \text{mol}^{-1}$ $= 210 \text{ S cm}^2 \text{mol}^{-1}$ $A_m = \frac{1}{400} \text{S cm}^2 \text{mol}^{-1}$ $A_m = \frac{1}{400} \text{mol}^{-1}$ $A_m = \frac{1}{400} \text{S cm}^2 \text{mol}^{-1}$ $A_m = \frac{1}{400} \text{mol}^{-1}$ $A_m = \frac{1}{400} \text{mol}^{-1}$ $A_m = \frac{1}{400} \text{mol}^{-1}$ $A_m = \frac{1}{400} mo$

	Here $E_{cell} = E_{cell}^0 - \frac{0.0591}{n} \log \frac{[Cu^{2+}]}{[Ag^+]^2}$	
	Here $E_{\text{cell}}^{\text{o}} = 0.46 \text{ V}, n = 2$	
	$[Ag^{+}] = 0.001M = 1 \times 10^{-3} M,$ $[Cu^{2+}] = 0.1M$	
	$E_{\text{cell}} = 0.46 - \frac{0.0591}{2} \log \frac{0.1}{(10^{-3})^2}$	
	$E_{\text{cell}} = 0.46 - \frac{0.0591}{2} \log 10^5 = 0.46 - \frac{0.0591}{2} \times 5 \log 10$	
	$E_{\text{cell}} = 0.46 - 0.0591 \times 2.5 \times 1 = 0.46 - 0.14775 = 0.31225V$	
	$E_{cell} = 0.312 V$	
33	(A) (a)	
	CH ₃ CH ₂ CH ₂ —C—OCH ₂ CH ₂ CH ₂ CH ₃ Dil.H ₂ SO ₄ Butyl butanoate[A] Hydrolysis	
	CH ₃ CH ₂ CH ₂ COH + CH ₃ CH ₂ CH ₂ OH Butanoic acid [B] Butan-1-ol [C]	3
	$CH_3CH_2CH_2CH_2OH \xrightarrow{[O]} CH_3CH_2COOH$	
	[Butan-1-of (oxidation) Butanoic acid [B]	
	$\frac{\operatorname{Conc} H_2 \operatorname{SO}_4}{\operatorname{CH}_3 \operatorname{CH}_2 \operatorname{CH} = \operatorname{CH}_2}$	
	Dehydration (-H ₂ O) But-1-ene	
	(b)	
	(i) Because the -COOH group present in aromatic carboxylic acids is an electron	1
	withdrawing group causing deactivation of the benzene ring and anhydrous $AlCl_3$ get bonded with the carboxyl group.	1
	(ii) Because of -I and -R effect of the nitro group.	
	OR	
	(B) (a)	
	$ \begin{array}{cccc} O & CH_3 & NO_2 \\ \parallel & & & & & \\ \end{array} $	
	$\overset{\circ}{\text{C}}$ —CH ₃ $\overset{\circ}{\text{C}}$ —N—NH——NO ₂	3
	$ \underbrace{2,4\text{-DNP}}_{} \longrightarrow $	
	(A) (i) I ₂ /NaOH COOH	
	KMnO ₄ /H ⁺ (ii) H ⁺	
	COOH (B)	
	Yellow ppt (C)	
	(b) Benzoic acid (C) is more acidic than acetophenone (A) because of resonance stabilization	
	of carboxylate ion.	
	(c)	1
	COCH ₃	
	+ CH ₃ - CO Cl Acetyl Chloride Acetyl Chloride + HCl	1
	Benzene 1-Phenylethanone or Acetophenone	