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Abstract: 

Formalization of mathematics and automated theorem proving (ATP) have long been core topics in logic and AI. 

Recent years have seen a rapid infusion of statistical learning methods into proof search, premise selection, and 

formalization workflows; alongside this, philosophers and methodologists have examined how such systems alter 

mathematical practice. This review synthesizes key journal literature on (1) formalization environments and datasets, (2) 

machine-learning and hybrid approaches to ATP, and (3) practical and theoretical limits that remain. We concentrate on 

peer-reviewed journal contributions and long-form reviews to provide a firm scholarly grounding. Major conclusions are: 

(a) learning-assisted methods materially improve ATP performance on large formal libraries but do not eliminate 

fundamental logical limits; (b) hybrid architectures (learning + symbolic verification) are currently the most promising 

route to useful automation; and (c) concerns about data scarcity, interpretability, computational cost, evaluation 

methodology, and epistemic questions for mathematics persist and require coordinated technical and philosophical work. 
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I INTRODUCTION 

Mathematics formalization—the process of translating informal mathematical reasoning into 

machine-checkable formal representations—underpins modern interactive theorem provers (ITPs) and 

automated theorem provers (ATPs). Historically, ATPs were predominantly symbolic search engines with 

carefully engineered heuristics; from roughly the 2010s onward, machine learning has been introduced to 

guide search, rank premises, and suggest proof steps, yielding measurable empirical gains on large formal 

corpora [1–4]. This article reviews peer-reviewed, journal-level work and long-form reviews that 

document those advances and reflect on their limits. 

 

II. FORMALIZATION INFRASTRUCTURES AND EMPIRICAL DATASETS 

 

Large formal libraries (Mizar, Flyspeck, HOL Light, and others) supply the corpora on which 

learning methods are trained and evaluated. Journal publications have documented how machine-assisted 

workflows exploit those libraries: Kaliszyk & Urban describe how Flyspeck was coupled to external ATPs 

and machine-learned premise selection methods to produce push-button proofs for a substantial fraction 

of Flyspeck theorems [1]. Follow-on work formalized strategies for mining and re-using millions of 

derived lemmas to enlarge the effective search space while keeping retrieval tractable [3]. These efforts 

established data-driven workflows (export dependency information, represent formulas for learning, 

integrate learned advisors into ITPs) that underpin nearly all subsequent ML+ATP work [1,3]. The 

existence, scale, and provenance of formal corpora therefore shape what learning methods can achieve in 

ATP; this connection has been documented in several journal papers and reviews [1–4]. 
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III. FAMILIES OF LEARNING-BASED METHODS IN ATP: 

Research articles, available literature and long reviews identify three broad families of approaches. 

3.1 Learning for premise selection and retrieval.  

Premise selection—choosing a small, relevant subset of axioms/lemmas from a very large 

library—is perhaps the most mature ML application in ATP. Kernel- and corpus-analysis methods, and 

later neural embedding/graph-based encoders, have been shown (in journal reports) to increase ATP 

success rates by making the search tractable in large theories [2,3]. Representative journal-level 

evaluations demonstrate that learned filters substantially increase the proportion of theorems an ATP can 

solve in constrained time budgets [2,3]. 

3.2 Learning to guide symbolic search.  

Rather than replace symbolic proof engines, many systems use learned models (logistic/forest 

classifiers, neural nets, GNNs) to guide which inference rule, clause, or tactic to apply next. Journal articles 

and detailed surveys show that integrating learned guidance into symbolic search workflows improves 

performance across benchmarks derived from real formal libraries [1–4]. 

3.3 Hybrid and verification-first architectures.  

A prevailing pattern in the literature is the hybrid pipeline: a statistical component proposes 

candidate steps or premises and a symbolic checker (the prover/ITP kernel) verifies correctness. This 

separation—statistical generation followed by formal verification—preserves mathematical standards 

while allowing machine learning to propose creative or nontrivial steps. Long reviews summarize this 

architecture as the pragmatic path forward for robust automation [4]. 

 

IV. MEASURED PROGRESS AND REPRESENTATIVE RESULTS 

Journal reports and monographic reviews present concrete empirical gains: 

Learning-assisted pipelines enabled automatic proofs of nontrivial fractions of large libraries: Kaliszyk & 

Urban report substantial automated proof coverage for Flyspeck when premise selection and ATP 

combination are used [1]. 

Improvements in lemma mining and reuse show that expanding the set of “usable” lemmas—

chosen by learned usefulness measures—boosts automatic proving on subsequent conjectures [3]. 

Long-form, peer-reviewed reviews summarize the progress of learning-guided SAT/QSAT and 

ATP integration and document that ML methods substantially improve solver heuristics in practice while 

also highlighting methodological caveats (overfitting, dataset contamination) [4]. 

These journal studies supply the strongest empirical evidence that ML meaningfully improves ATP 

performance on existing formal corpora, while also documenting the need for careful evaluation protocols. 

[1,3,4] 

 

V. PRACTICAL AND CONCEPTUAL LIMITS 

 

Despite clear progress, peer-reviewed work and methodological reviews identify persistent 

limitations and principled boundaries. 

5.1 Data limitations and distributional fragility. 

Formalized mathematics corpora—even Flyspeck or Mizar—are small relative to natural-language 

corpora used to train general LLMs; many theorems and proof patterns are rare, which challenges 

generalization. Journal analyses show that premise-selection and lemma-mining methods help but cannot 

fully substitute for deep, varied training distributions; performance often degrades on novel problem 

distributions or on theorems substantially different from training examples [1–4]. 

5.2 Correctness, verification, and brittleness. 



     Scipioneers Journal of Science and Technology (SJST) 

 

Volume 01, Issue 01, Oct.-Dec., 2025 
34 

Statistical generators can propose plausible but incorrect steps. The hybrid pattern ensures that 

only formally correct proofs are admitted, but the conversion of generated output into machine-checkable 

objects is error-prone and can mask subtle failures of the generator (typos, type mismatches, hidden 

assumptions). Journal accounts emphasize that the separation of generation and verification is necessary 

but not sufficient: robust pipelines must also handle partial proofs, tactic failures, and representation 

mismatches [1,4]. 

5.3 Interpretability and mathematical value. 

Philosophical and methodological journal articles discuss whether machine-found proofs provide 

human-accessible mathematical insight. Even when an ATP produces a valid proof, it may be 

combinatorial, unilluminating, or rely on many small lemmas rather than the concise, conceptually 

enlightening arguments mathematicians prefer. Work in philosophy of science and computational 

epistemology highlights this mismatch between formal correctness and mathematical value, arguing that 

acceptance depends on the mathematical community’s willingness to treat machine-generated output as 

explanatory evidence [5,6]. 

 

5.4 Computational and reproducibility constraints. 

State-of-the-art learned guidance often requires substantial compute (training encoders, running 

heavy search). Journal reviews of ML for SAT/QSAT and ATP note the practical barrier this poses to 

reproducibility and broad adoption; resource-efficient variants and shared benchmarks are advocated as 

remedies [4]. 

5.5 Theoretical/Foundational limits. 

No ML system can bypass formal limits set by logic and computability: Gödel’s incompleteness 

and undecidability results imply that within any sufficiently expressive formal system some true 

statements are unprovable; complexity theoretic hardness bounds also limit automatability in general. 

Journal philosophical treatments emphasize that ML-assisted proving operates inside these formal 

constraints and cannot “defeat” them—what it can do is make particular classes of proofs easier to find or 

verify [5]. 

 

VI. DIRECTIONS RECOMMENDED BY JOURNAL LITERATURE: 

Peer-reviewed sources converge on several avenues likely to yield meaningful progress: 

1. Hybrid, verifiable systems. Continue coupling statistical proposal mechanisms with strong 

symbolic kernels to maintain correctness guarantees [1,4]. 

2. Better representations. Journal research on graph and semantic encodings of formulas suggests 

improved generalization and premise retrieval performance if representations capture variable renaming 

invariances and deeper semantic relations [2,3]. 

3. Data curation and augmentation. Systematic lemma mining, synthetic proof generation (with 

verification), and carefully curated benchmarks are recommended to reduce scarcity and distributional 

gaps [3]. 

4. Evaluation reform. Adopt contamination controls, richer metrics (novelty, concision, human 

acceptance) and shared reproducible benchmarks [1,4]. 

5. Interdisciplinary scrutiny. Philosophy and methodology journals recommend integrating 

sociotechnical analysis—examining how mathematicians will adopt, inspect, and accept machine-

produced proofs—into technical research agendas [5,6]. 

 

 

 

VII. CONCLUSION 
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By enhancing premise selection, lemma reuse, and heuristic guiding for symbolic engines, machine 

learning into ATP pipelines significantly boosts performance on big, formal datasets. However, there are 

still technical issues (such as data shortages, fragility and computational expense); scientific literature 

emphasizes that advancement will be gradual and that independent verification and meticulous evaluation 

are necessary to maintain mathematical standards. Researchers must integrate enhanced models, reliable 

testing processes, deeper illustrations, and community-focused review procedures if the area is to go from 

striking results from experimentation to widespread mathematics influence. 
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