
LESSON PLAN

Create your own solar oven

In this activity, students will design and build their own solar oven, learning how to harness solar energy and explore the greenhouse effect..

Recommended age for this game

Learning Objectives

- Understand the greenhouse effect and how solar energy can be harnessed for cooking.
- Explore renewable energy concepts and sustainability.
- Develop problem-solving and teamwork skills by designing and building a functional solar oven.

Co-funded by the European Union

STEM in

Materials and tools needed

- Large cardboard boxes (1 per group)
- Aluminum foil
- Black construction paper
- Plastic wrap or a clear plastic sheet
- Tape and glue
- Scissors or box cutters
- Ruler
- Thermometer (optional, to measure the temperature inside the oven)
- Marshmallows, chocolate, and graham crackers (to make s'mores)

Guidance for Teachers

Activity description

Students will design and build a solar oven that uses sunlight to cook or heat food, allowing them to learn about solar energy, heat absorption, and the greenhouse effect.

Co-funded by the European Union

STEM in

Guidance for Teachers

Preparation

- Gather and prepare materials for each group.
- Create a sample solar oven to demonstrate the final product.
- Choose a sunny day for this activity or set up heat lamps for an indoor alternative.

Implementation steps

 INTRO: Discuss the greenhouse effect and the importance of renewable energy. Explain also how solar ovens work, emphasizing the concepts of reflection, absorption, and insulation.

DESIGN AND CONSTRUCTION: Students line the inside of a cardboard box with aluminum foil (for reflection). Place black construction paper at the bottom (to absorb heat). Cover the top with plastic wrap to trap heat inside the box.

Co-funded by the European Union

STEM in

Guidance for Teachers

• TESTING THE SOLAR OVEN: Place marshmallows, chocolate, and graham crackers inside the oven to make s'mores.

Allow the ovens to sit in direct sunlight or under heat lamps for 15-20 minutes.

Observe and record how long it takes for the chocolate to melt or the marshmallows to soften.

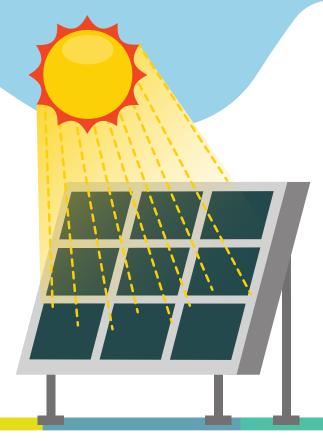
Follow-up and reflection

- Discuss the effectiveness of each group's design and any adjustments they would make.
- Relate the activity to real-world solar cooking and its applications in sustainability.

Co-funded by the European Union

Student Activities

Activity description	Expected outcome	Technology integration
Design and build a solar oven	Students understand solar energy concepts and how heat can be harnessed.	Use design software (e.g., Tinkercad) for planning the oven.
Test the oven by cooking s'mores	Students observe heat absorption and the greenhouse effect in action.	Use a thermometer app to measure internal temperature changes.
Analyze and improve oven design	Students develop critical thinking skills by making iterative improvements.	Create a presentation using Canva to share their results.



Co-funded by the European Union

Reflective questions for students

- What worked well in your solar oven design, and why?
- How does the color of the materials affect heat absorption?
- What changes would you make to improve the efficiency of your oven?
- How can solar cooking benefit communities with limited access to electricity or fuel?

Co-funded by the European Union

Differentiation ideas

Advanced Students

- Challenge them to design a dual-chamber oven to cook two items at once.
- Introduce scientific measurements, like tracking temperature changes at regular intervals.

Students with special needs

- Pre-cut materials for easier assembly.
- Provide visual instructions or step-by-step guides.
- Pair them with a supportive peer for collaborative

learning.

Tips

- Choose a sunny day and a clear outdoor area for testing.
- Remind students to handle materials like scissors and box cutters safely.
- Encourage teamwork and experimentation to improve designs.

Additional materials and references

- Video How to make a homemade Solar Oven
- Blog <u>Science Experiments for Kids-Renewable</u> <u>Energy</u>
- Interactive simulation <u>How can you cook using the</u> <u>Sun's energy?</u>

ං CC BY-SA 4.0 DEED

Co-funded by the European Union