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Abstract

Perpetual futures—93% of crypto derivatives volume—rely on funding

rates as their primary arbitrage mechanism to anchor prices to spot markets.

Using the Terra, FTX, and SVB collapses as natural experiments, we document

that similarly severe crises produce opposite effects on arbitrage functionality.

Applying global games, we model arbitrageurs’ stay-or-exit decisions as

functions of public signals (spot volatility) and private signals (adverse

selection costs), identifying a volatility threshold where adverse selection’s

effect on open interest flips from stabilizing to destabilizing—triggering

coordination on exit. Only during Terra’s collapse did Ethereum volatility

exceed this threshold (1.8%/hour); open interest fell 65%, funding rates

ceased correcting the basis, and arbitrage broke down. Our findings show that

arbitrage breakdowns emerge from endogenous coordination run thresholds,

bridging limits-to-arbitrage theory with global games coordination.
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1 Introduction

Perpetual futures (perps), constituting approximately 93% of the crypto derivative’s

trading volume, with daily flows often exceeding $100 billion1, are a type of

derivative contract that enables traders to speculate on the price of an asset—like

Bitcoin, Ethereum, or other cryptocurrencies—without needing to buy or own the

underlying asset itself. The market’s scale is substantial: Bitcoin and Ethereum

together represent approximately 70% of total perpetual futures open interest,

with combined positioning exceeding $125 billion in 2025 and annual trading

volume surpassing $58 trillion in 2024. Yet leverage creates fragility: amplified

exposure can precipitate coordination-driven runs through cascading liquidations.

Understanding when and why such runs occur requires examining the unique

structure of these instruments.

Unlike traditional futures contracts, perpetual futures don’t have an expiration

date, meaning traders can hold their positions indefinitely Shiller (1993), as long

as they maintain the required margin. Because of no expiration date, there is

no guaranteed date when the futures price would converge to the spot price.

The fundamental mechanism anchoring perpetual futures to spot markets is

the funding rate 2—a periodic cash flow between long and short positions that

incentivizes arbitrageurs when the perpetual deviates from the underlying Angeris

et al. (2023). When futures trade above spot, long positions periodically fund shorts,

and vice versa, thereby closing the price deviations between perp and spot. In

essence, the funding rate is the primary arbitrage mechanism in perpetuals.

In well-functioning markets, funding rates effectively enforce price parity He

et al. (2022). However, during periods of market stress, this mechanism may fail.

Using the global games framework Goldstein and Pauzner (2005); Morris and Shin
1https://business.cornell.edu/article/2025/02/perpetual-futures-contracts-and-cryptocurrenc
y/

2https://www.binance.com/en/support/faq/detail/360033525031
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(2001) and Ethereum perpetuals as a laboratory, we test the determinants of run

behavior—and hence limits to arbitrage—in perpetual futures markets during stress

episodes. We focus on open interest—the total number of outstanding contracts

that remain unsettled—which captures the aggregate leveraged exposure of market

participants, including arbitrageurs. Specifically, we examine the marginal effect of

adverse selection costs on open interest, conditional on underlying market forces.

We show that a threshold level of spot volatility exists beyond which adverse

selection in perpetual futures markets becomes destructive to open interest: even

short breaches of this threshold trigger persistent deleveraging, generating a run-

like collapse. This dynamic imposes limits to arbitrage Shleifer and Vishny (1997):

once open interest contracts, funding rates cease to adjust to the futures–spot basis.

In short, volatility-driven runs on open interest weaken the arbitrage mechanism.

We exploit major collapse episodes in cryptocurrency markets as plausibly

exogenous shocks and natural experiments to study runs in perpetual futures

markets: the collapse of the Terra stablecoin ecosystem, the failure of the crypto

exchange FTX, and the run on Silicon Valley Bank (SVB). These stress episodes

are remarkably similar in duration and severity, each destroying comparable

market value within a week 3. Terra and FTX collapsed within three days, while

the SVB episode unfolded over two days. To establish baseline, we first show

that the funding rate remains uniform in pre-crash periods but becomes volatile

and drops sharply once the crash begins. These patterns are consistent across all

stress episodes examined. The evidence suggests that the arbitrage mechanism

responsible for closing the futures–spot basis weakens during periods of market

stress. Post-crash, funding rates revert toward pre-crisis levels, indicating that

arbitrage activity recovers sufficiently to restore basis discipline.

Next, we examine funding-rate elasticity across market regimes. Funding-rate

elasticity measures how closely the funding rate responds to the futures–spot
3($40B Terra, $32B FTX, $42B SVB)
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basis and is estimated as the coefficient from regressing funding rates on the

basis. A theoretical elasticity of one corresponds to full arbitrage pass-through,

under which funding rates adjust proportionally to deviations between perpetual

and spot prices.We therefore use funding-rate elasticity as an empirical measure

of arbitrage effectiveness. Prior to the Terra collapse, the estimated elasticity is

approximately 0.64, indicating partial but stable arbitrage activity. During the May

7–9 Terra crash, elasticity collapses to 0.38, consistent with a sharp deterioration

in arbitrage effectiveness. Post-crash, elasticity rebounds to 0.91, suggesting a

rapid restoration of arbitrage discipline once market stress subsides. In contrast,

during the FTX and SVB stress episodes, funding-rate elasticity remains high and

in several windows exceeds one. Pre FTX and SVB crashes, we see a stable and

near-proportional relation between funding rate and the basis. During the crash

period, the funding mechanism remained highly elastic but was subject to a level

shift— funding rates increased (futures were trading above(SVB), below(FTX)

spot), and the arbitrage mechanism was closing the basis. Post-crash, funding rates

became negative (Terra and SVB), but funding elasticity became stable, consistent

with a restoration of equilibrium.

Our central finding is therefore an anomaly across otherwise comparable stress

events. While the Terra collapse is associated with a breakdown in funding-rate

elasticity and hence a failure of arbitrage mechanism, the FTX and SVB episodes

preserve arbitrage effectiveness despite similarly severe market stress. This di-

vergence highlights that not all market crashes impair arbitrage mechanism in

perpetual futures markets. To understand the cause of the anomaly, we examine

open interest surrounding the crash episodes. We find that the three crisis events

exhibit starkly different open interest dynamics that align precisely with their

differential arbitrage effectiveness patterns. During the Terra collapse, open inter-

est experienced a catastrophic collapse. From a stable pre-crash level averaging

$58.7 million in notional value, open interest briefly spiked to $66 million before
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plummeting to just $21 million—a 65% decline that persisted throughout the

post-crash period with minimal recovery. This provides an evidence of a run on

open interest and is suggestive of a fundamental breakdown in market-making

and arbitrage infrastructure. In sharp contrast, the FTX bankruptcy and SVB failure

displayed remarkable resilience in open interest despite their comparable or even

greater systemic importance. During the FTX crisis, open interest increased only

marginally from $9.5 million to over $13 million, and exceeded pre-crisis levels.

The SVB episode showed even greater stability, with open interest fluctuating by

just $0.75 million during the crash period. These differential patterns in market

participation directly map to our funding-rate elasticity findings: arbitrage effec-

tiveness collapse during Terra’s episode coincides with the run on open interest,

while maintained effectiveness during FTX and SVB reflects the persistence in

open interest to intermediate basis divergences.

To examine the causes of runs on open interest, we employ the global games

framework Goldstein and Pauzner (2005); Morris and Shin (2001), examining the

impact of information costs and market volatility on open interest. In this context,

information costs manifest as adverse selection costs—the compensation market

makers demand for expected losses when trading against better-informed coun-

terparties Glosten and Milgrom (1985). Information asymmetry creates strategic

complementarities among market participants: when adverse selection costs are

high, each investor rationally anticipates that others may possess superior informa-

tion about fundamental value shifts, leading to coordinated run on open interest

Brunnermeier and Pedersen (2005)). In our empirical estimation, the fundamental

is the resilience of the spot market, which we proxy with short-horizon spot

volatility σt that acts as a public signal, so that increases in σt are interpreted as a

deterioration in underlying fundamentals. Adverse selection costs reflect a private

signal about the informativeness of spot trades. Open interest is the aggregate

outcome of individual stay-or-exit decisions. The interaction between volatility and

4



adverse selection costs in our model, therefore, provides an empirical analogue of

the global-games coordination mechanism.

Our estimates imply a volatility threshold σ∗ such that, when volatility is below

σ∗, marginal increases in adverse selection costs are absorbed by open interest.

Once volatility exceeds σ∗, however, the marginal effect of higher adverse selection

costs turns negative: additional informational frictions are associated with a sharp

decline in open interest. In this high-volatility region, small increases in adverse

selection costs trigger run on open interest, consistent with a global-games–style

run equilibrium.

We find that adverse selection costs exhibit dramatically different patterns across

the three crisis episodes. During the Terra collapse, median adverse selection costs

surged from $1,434 to $12,911 per hour, a ninefold increase. The FTX bankruptcy

generated even higher absolute adverse selection costs (median: $14,562 during

crash). While the median exceeded Terra’s, the persistence and uniformity differed

markedly—costs rapidly normalized post-crisis to $980, below pre-crisis levels of

$1,989. This V-shaped recovery indicates that once the FTX fraud was revealed,

information asymmetry actually decreased relative to the pre-crisis period as

uncertainty resolved into common knowledge. The SVB failure presents a striking

contrast: despite triggering a regional banking crisis, adverse selection costs barely

moved, declining slightly from $486 to $456 during the crisis phase.

If volatility or other market forces were driving a run on open interest, these

variables should load strongly and consistently on open interest across all events.

Instead, we uncover a distinctive pattern during the Terra crash, adverse selection

costs become significant only conditional on volatility, with volatility (σ∗) threshold

of approximately ≈ 1.8% per hour at which adverse selection costs do not impact

open interest. Below this volatility level, adverse-selection costs are associated

with higher open interest. But once volatility spikes past σ∗, the sign flips, and

adverse selection costs put negative pressure on open interest, consistent with
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deleveraging that we find. In contrast, FTX and SVB episodes do not exhibit a

statistically or economically meaningful σ∗, suggesting that not all crashes cross

into the run region consistent with the global-games framework Goldstein and

Pauzner (2005).

The robustness of this run mechanism is further validated through an out-of-

sample test using the 2021 China regulatory crackdown, an event that introduced

sudden, policy-driven information asymmetry. Consistent with the findings during

Terra collapse episode, the crackdown’s initial phase (Phase I) saw a sharp collapse

in funding elasticity and a significant 45% decline in open interest, accompanied

by the robust identification of a statistically significant coordination threshold

(σ∗ ≈ 4.6%/hour) which was breached by realized volatility only during this

phase of high information asymmetry. Crucially, the σ∗ threshold was statistically

insignificant during the subsequent phases of the China crackdown (Phases II, III,

and IV), mirroring the results of the FTX and SVB periods where the coordination-

driven run was not triggered and open interest remained stable. This replication

across an independent, policy-driven shock confirms that the run on perpetuals is

dependent on this endogenous coordination threshold, providing strong support

for limits to arbitrage Shleifer and Vishny (1997).

In the final part of the paper, we examine the impact of the run on the funding

mechanism. We show that when open interest collapses, the pass-through from

basis to funding rate—our measure of arbitrage effectiveness—declines sharply. In

other words, runs on open interest not only shrink positions but also weaken the

arbitrage functionality. This behavior is reminiscent of run equilibria and should

be relevant for equity, FX, and commodity futures markets during stress episodes.

This connects the global-games run mechanism directly to the functioning of the

core pricing anchor mechanism in derivatives.

The rest of the paper is organized as follows: Section 2 provides the literature

review. Section 3 presents data and summary statistics. Section 4 presents empirical
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methodology and results. Section 5 presents results. Section 6 presents robustness

tests. Section 7 concludes.

2 Literature Review

The arbitrage mechanism anchoring perpetual futures to spot markets is crucial for

market efficiency, yet it is inherently vulnerable to the classic "limits to arbitrage"

documented in financial theory. The earliest work by Grossman and Stiglitz (1980)

established that fully efficient markets are impossible if information acquisition

is costly, creating a fundamental limit on how closely prices can track fundamen-

tals. More formally, Shleifer and Vishny (1997) showed that capital constraints

on arbitrageurs, such as funding constraints, can cause asset prices to deviate

persistently from fundamental value. The idea of perpetual futures was formalized

in academic literature by Shiller (1993), but the practical application of Shiller (1993)

concept lay dormant until cryptocurrency exchanges operationalized perpetual

futures, sparking a new wave of research in this direction. While recent research

on perpetuals Ackerer et al. (2024); He et al. (2022); Gornall et al. (2024) establish

the general effectiveness of the arbitrage mechanism, they leave open the question

of how and why it fails during systemic crises, a gap this paper aims to fill.

The central mechanism investigated in this paper is the endogenous failure of

arbitrage driven by coordination runs, a concept pioneered in the literature on

bank and debt runs. This framework, formalized by Morris and Shin (2001) and

applied to banking by Goldstein and Pauzner (2005), models agents’ decisions

(to stay or run) as strategic complements, where individual action is dependent

on the perceived actions of others. In these Global Games (GG) models, a unique

coordination threshold (σ∗) exists, based on the interaction between a public signal

(market stress) and private signals (information costs). When the public signal
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crosses this threshold, strategic complementarities flip, leading to a coordinated

and destructive withdrawal of capital. This paper extends this framework to

model the arbitrageurs’ ’stay-or-exit’ decision in the perpetual futures market, by

providing reduced-form model to capture the public signal of the run threshold.

In conventional asset classes (FX, commodities, etc.), perpetual futures have not

been traded in practice, but analogous principles exist. The closest parallel is the

forward/futures pricing parity enforced by arbitrage. For example, in FX markets,

Covered Interest Parity (CIP) ensures that the forward exchange rate is tied to the

interest rate differential between currencies – any deviation is quickly arbitraged

away under normal conditions. Du et al. (2018) document how CIP famously failed

during the 2008 crisis, with forward prices diverging from parity by dozens of

basis points as credit risk and funding constraints impeded arbitrage. We extend

this literature by examining the same mechanism in the crypto derivative market.

De Blasis and Webb (2022) compare the contract design and microstructure of

Bitcoin quarterly futures versus perpetual futures. They document episodes where

arbitrageurs could exploit mispricings between the two markets, but as crypto

markets matured, those opportunities became less frequent. Kim and Park (2025)

provide a theoretical framework for setting the funding rate process optimally and

discusses path-dependent funding and hedging for exchanges to ensure the perp

price stays aligned with the underlying.

Streltsov and Ruan (2022) focus on how the introduction of perpetuals changes

market behavior. Using natural experiments, they found that when exchanges

added perpetual futures, trading activity surged and those markets attracted more

informed traders. Alexander et al. (2020) examine BitMEX Bitcoin futures (both

the perpetual swap and fixed-maturity quarterly futures) and find that the BitMEX

perpetual plays a dominant role in price discovery for Bitcoin, often leading the

spot market. Their results also suggest the periods of information inefficiency,

where futures and spot diverge, profitable hedging and arbitrage opportunities are
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created. Broadly, several papers have explored the role of arbitrage in digital assets

Liu et al. (2023); Joshi (2025); Makarov and Schoar (2020); Lyons and Viswanath-

Natraj (2023). We extend the literature by examining the arbitrage mechanism in

perpetual futures during periods of systemic stress. Most importantly, we extend

literature on classical limits to arbitrage Shleifer and Vishny (1997); Grossman and

Stiglitz (1980) by showing that capital constraints can be an endogenous result of

coordination failure, and we provide an empirical application of Global Games

coordination thresholds Goldstein and Pauzner (2005); Morris and Shin (2001) to

the perpetual futures market.

3 Data & Sample Construction

We utilize minute-by-minute trade and perpetual futures data for the Ethereum/USDC

pair from Kaiko, a leading provider of cryptocurrency data Makarov and Schoar

(2020). The data spans 2020 through 2023, encompassing multiple stress episodes.

We use data for the Kraken exchange because its hourly funding AsiaNext Exchange

(2024) provides us with a setup to examine high-frequency data. We compute

market microstructure variables from ETH–USDC trade data and aggregate them

hourly. Following Hasbrouck (1993), the realized volatility of Ethereum prices,

σETH,t, is obtained using a 24-hour rolling window of hourly close-to-close price

changes. This estimator adjusts for the bias induced by bid-ask bounce and pro-

vides an estimate of the efficient price volatility. This approach builds on the model

of Roll (1984) but directly estimates the volatility of the efficient price rather than

the spread. The variable is measured in USD and is computed as:

σETH,t =
√

Var(∆Pt) + 2,Cov(∆Pt,∆Pt−1), ∆Pt = ln

(
Closet

Closet−1

)
. (1)
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We compute hourly momentum, Momt, as the logarithmic price change from

the previous hour, capturing short-term return persistence.

Momt = ln

(
Closet

Closet−1

)
, (2)

Order flow imbalance, OFi,t, measures net buying pressure as the signed

volume imbalance within each hour,

OFi,t =

∑
j∈t qj Vj∑
j∈t |Vj|

, (3)

where qj ∈ {+1,−1} indicates buyer- or seller-initiated trades and Vj is the trade

volume.

3.1 Estimation of Adverse Selection

The measure of information asymmetry follows Glosten and Harris (1988) frame-

work to compute adverse selection, which estimates the adverse-selection com-

ponent of the bid–ask spread by regressing price changes on trade direction and

trade size. Accordingly, we denote the unobserved true price of the asset by mt. It

represents the price of the asset assuming a fully competitive market maker and

no inventory costs or clearing fees. Innovations in mt, therefore, result from public

news or information arrival through order flows. More formally,

mt −mt−1 = et +QtZt, (4)

with Qt = 1(−1) for a buyer- (seller-) initiated trade. In Equation 4, et represents

the impact of public news, and Zt is the market maker’s compensation for bearing
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the adverse selection risk. Hence, Zt is the adverse selection component of the

bid-ask spread. The observed prices reflect factors such as the market maker’s

monopoly power, inventory costs, and clearing fees. To account for these factors,

Glosten and Harris (1988) include a second component in their specification, called

the transitory component. Formally,

Pt = mt +QtCt, (5)

where the dependence of the transitory component on the trade direction reflects

the fact that market makers buy low and sell high.

Larger trades increase the bid-ask spread through both components. Therefore,

we allow Zt and Ct to depend on the volume, Vt. Glosten and Harris (1988) assume

a linear dependence to facilitate the estimation.

Zt = z0 + z1Vt

Ct = c0 + c1Vt

Substituting these into Equation 5 and taking the first difference gives

Pt − Pt−1 = c0(Qt −Qt−1) + c1(QtVt −Qt−1Vt−1) + z0Qt + z1QtVt + et. (6)

We estimate the parameters in Equation 6 for every trading hour. We observe

all the variables in Equation 6 in our data and can estimate the parameters, c0, c1, z0,

and z1 through OLS regressions.4 Using the estimated parameters, ĉ0, ĉ1, ẑ0, and

ẑ1, we calculate Ĉt and Ẑt for each trade. Our measure of the adverse selection
4Contrary to Glosten and Harris (1988), we can observe the trade direction (Qt) in my data.
Furthermore, the rounding error in prices is negligible in my setup, given the minuscule tick
size on Exchanges (0.00000010 for BTC/USD pair). Therefore, we do not resort to the maximum
likelihood method to estimate the parameters.
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component of the bid-ask spread for the trading hour h is

Adverse Selectionh =
∑
t∈h

Ẑt

All variables are computed hourly and lagged one period when used as predictors

in the model.

3.2 Summary Statistics

Table 1 reports summary statistics for Ethereum spot and perpetual markets

across three major disruption events: the Terra/Luna collapse (May 2022), the FTX

bankruptcy (November 2022), and the Silicon Valley Bank (SVB) failure (March

2023). Each event is partitioned into pre-crisis, crisis, and post-crisis windows,

allowing for a cross-event comparison of market microstructure dynamics under

extreme stress. All statistics are based on hourly observations. Adverse selection

costs are reported in scaled units of cost per $10,000 notional per hour; specifically,

the table entries must be multiplied by 104 to obtain the underlying cost. For

example, an entry of 1.69 corresponds to an underlying adverse-selection cost of

1.69× 104 = 16,900 USD per hour.

Several patterns emerge. First, spot prices decline sharply in the crisis windows

for all three events. Mean Ethereum prices fall by about 23% during Terra (from

$2,913 to $2,256), 5% during FTX (from $1,442 to $1,377), and 9% during SVB

(from $1,630 to $1,485). Post-crisis, prices remain below their pre-crisis levels in all

three cases, with average discounts of roughly 33% for Terra, 14% for FTX, and

6% for SVB. These persistent valuation gaps suggest that major crypto disruptions

are associated with lasting downward price adjustments rather than rapid mean

reversion.
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Funding-rate and basis dynamics reveal distinct patterns in market positioning

across events. In Terra, the mean funding rate rises from approximately 0.002 in

the pre-crisis window to about 0.01 during the crash, before turning negative in

the post-crisis period (−0.002). Combined with a shift in the average basis from

mildly positive (0.17) to more elevated levels (0.32) during the crash, then slightly

negative (−0.05) afterward, this pattern is consistent with an initial buildup of

leveraged long positions supporting arbitrage, followed by broad deleveraging

once the peg breakdown becomes persistent.

By contrast, the FTX episode is characterized by persistently negative funding

rates and deeply negative bases. The mean funding rate falls from −0.003 pre-crisis

to around −0.02 in the crash window and remains negative post-crisis. The basis

moves from a modest discount (−0.11) to a much larger one (−0.85) during the

crash, before settling at an intermediate discount (−0.47) post-crisis. This pattern

reflects sustained short pressure and a prolonged period in which perpetual prices

trade at a discount to the index. The SVB disruption shows a more modest but

highly asymmetric dislocation: the pre-crisis basis is slightly positive (0.16), turns

mildly negative in the crash window (−0.06), and collapses to a large discount

(−2.65) in the post-crisis period, indicating persistent pricing stress even after the

immediate failure window.

Volatility and transaction costs rise across all three events. Measured by σETH,

average volatility roughly doubles in the crash window for both Terra and FTX

(from about 1% to 2%), and increases from roughly 0.5% to 1% for SVB. Post-crisis,

volatility normalizes quickly for FTX, falling back toward pre-crisis levels, but

remains at or above pre-crisis levels for Terra and especially SVB.

Bid–ask spreads and adverse-selection-driven trading costs (market makers’

risk premia) show particularly strong stress patterns once the scaling is taken into

account. For Terra, the mean risk premia rises from 2700 USD in the pre-crisis

window to 18,400 USD during the crash, before falling to 3600 post-crisis. FTX
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displays the same qualitative pattern: Risk premia rises from 6,800 to 14,000 USD

during the crash and then drops to 1,800 post-crisis. SVB exhibits a smaller but still

meaningful increase in adverse selection costs from 700 pre-crisis to 1,800 USD in

the crash window, followed by a modestly higher post-crisis level of 2,200. Across

all events, market makers’ risk premia becomes markedly more expensive.

Open interest and order flow highlight differences in market participation and

the depth of available capital across events. Terra exhibits a dramatic collapse in

mean open interest, from 58.74 million pre-crisis to 49.27 million during the crash

and just 20.30 million post-crisis, implying a sharp contraction in the capital to

absorb price and funding-rate shocks. In contrast, FTX shows a mild increase in

open interest from 10.96 to 11.33 million in the crash window and to 11.83 million

post-crisis, suggesting that some capital remained engaged or was even attracted

by the dislocation. SVB features a gradual erosion of open interest (from 9.36 to 9.05

and then 8.94 million), consistent with a more conventional risk-off retrenchment.

Order-flow imbalances become more negative during all three crisis windows,

reflecting the dominance of aggressive selling pressure. Terra’s mean order flow

moves from approximately zero (0.002) pre-crisis to a clearly negative value (0.07)

during the crash, before turning positive (0.08) post-crisis, suggesting net buying

interest as prices stabilize at lower levels. FTX shifts from slightly positive order

flow (0.06) before the collapse to negative order flow (0.04) in the crash window, and

remains marginally negative thereafter, consistent with continued net selling and

unwinding of long exposure after the bankruptcy. SVB displays the most severe

deterioration in order flow in relative terms, declining from 0.10 pre-crisis to 0.25

in the crash period, with only a partial recovery (0.04) post-crisis. These patterns

underscore that microstructure responses are highly event-specific, shaped by the

nature of the underlying shock and the resilience of available capital.
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4 Empirical Setting

Our empirical model is motivated by global-games run frameworks in the spirit

of Morris and Shin (2001); Goldstein and Pauzner (2005). In those models, agents

decide whether to stay or run based on a latent fundamental θt and noisy signals

about that fundamental. Strategic complementarities in action give rise to a unique

threshold θ at which the equilibrium switches from no-run to run. We map this

structure to the perpetual market as follows:

• The fundamental is the resilience of the ETH spot–perpetual complex. We

proxy resilience by short-horizon spot volatility σt. Higher σt indicates a more

fragile trading environment with greater execution and margin risk, and thus

weaker fundamentals. Volatility σt is observed by all market participants and

therefore acts as a public stress signal.

• Each investor faces private information costs summarized by the adverse

selection cost per trade. This measure captures market makers’ risk premia

from trading against better-informed counterparties. It plays the role of a

private signal to market participants.

• Open interestOIt is the aggregate outcome of individual stay-or-exit decisions.

A run on open interest corresponds to a sharp decline in OIt as many

arbitrageurs simultaneously choose to exit.

In a global-games interpretation, each investor observes the public signal σt and

a noisy private signal about information costs, and chooses whether to maintain

or liquidate their position. Under standard assumptions, the equilibrium can be

characterized by a threshold rule: for a given level of public stress σt, arbitrageurs

exit when their private information cost exceeds a cutoff. The capital outflow, open

interest decline, is a function of σt and the distribution of private signals.
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4.1 Reduced-Form Specification for Open Interest

Rather than estimating a structural global game, we work with an empirical

reduced-form representation of the equilibrium relationship between open interest,

market frictions, and adverse selection costs. We estimate coefficients as

OIt = α+βAS·AS_costt−1+βσ·σt−1+βAS×σ·AS_costt−1×σt−1+γ′Xt−1+µh(t)+εt, (7)

where:

• OIt is open interest (in millions of USD) in the ETH perpetual at hour t;

• AS_costt is the adverse selection cost ;

• σt is the spot volatility of ETH;

• AS_costt · σt is the interaction that captures state-dependence of the effect of

information costs on open interest;

• Xt are controls (such as order-flow imbalance, and momentum);

• µh(t) are hour-of-day fixed effects;

• εt is an error term.

Equation (7) can be interpreted as a local linear approximation to the global-

games equilibrium mapping from the public signal σt and the distribution of

private information costs (summarized by AS_costt) into the aggregate outcome

OIt. The key nonlinearity implied by global-games theory is that the impact of

information costs on the equilibrium mass of “stayers” (arbitrageurs that keep

positions) is state-dependent: beyond a certain level of public stress, small changes

in private information costs can trigger a coordinated run.
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4.2 Marginal Effect of Adverse Selection and Volatility Threshold

The global-games interpretation focuses on how the marginal effect of information

costs on the aggregate action depends on the public signal. In our specification, the

marginal effect of adverse selection costs on open interest is given by the partial

derivative of OIt with respect to AS_costt:

∂OIt
∂AS_costt

= βAS + βAS×σ · σt. (8)

Equation (8) has a simple interpretation:

• For a fixed level of volatility σt, ∂OIt
∂AS_costt

measures the expected change

in available capital (open interest) associated with a marginal increase in

information costs.

• If ∂OIt
∂AS_costt

> 0, the market can absorb higher information costs without losing

available capital; adverse selection is not yet “run-inducing.”

• If ∂OIt
∂AS_costt

< 0, higher information costs are associated with a decline in open

interest; adverse selection becomes capital-destructive and is consistent with a

run on positions.

A central implication of global-games models is the existence of a threshold

in the public signal at which behavior changes discontinuously in equilibrium.

In our reduced-form representation, this threshold is captured by the volatility

level at which the marginal effect of adverse selection switches sign. Equating (8)

to zero yields the threshold volatility. The volatility threshold σ∗ in (9) is then the

empirical analogue of the global-games run threshold: a level of public stress at

which a marginal increase in private information costs changes from stabilizing to

destabilizing for open interest.
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∂OIt
∂AS_costt

= 0 =⇒ σ∗ = − βAS

βAS×σ

(9)

For σ∗ to be a strong and valid threshold, βAS and βAS×σ must be of opposite

signs and be statistically significant—the implied σ∗ in (9) is positive. This delivers

the global-games–style threshold:

∂OIt
∂AS_costt

=

> 0, if σt < σ∗ → No Run

< 0, if σt > σ∗ → Run

(10)

When σt < σ∗, marginal increases in adverse selection costs are absorbed by

available capital; the market remains in a “no-run” region of the equilibrium

correspondence. Once σt exceeds σ∗, the sign of the marginal effect flips, and

increases in adverse selection costs are associated with declines in open interest,

consistent with a coordinated withdrawal of the capital. In our empirical work, we

estimate (7) separately for distinct stress episodes (Terra, FTX, SVB, and the 2021

China ban phases) and compute σ∗. We then compare the location of σ∗ relative to

realized volatility and the behavior of open interest across episodes.

4.3 Arbitrage Mechanism

We examine how closely the perpetual funding rate tracks the basis around the

stress episodes. Our analysis centers on the fundamental arbitrage relationship

that governs perpetual contract pricing, where funding payments serve as the

primary mechanism for anchoring derivative prices to their underlying spot values.

To understand the arbitrage mechanism, we examine the funding rates during

stress regimes. The funding rate consists of two components: a fixed interest rate

and a dynamic component (premium) that adjusts to the basis. The variation in the

dynamic component captures the efficacy of arbitrage mechanism. Funding-rate
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elasticity captures how closely the dynamic component of the funding rate adjusts

to the basis, and is computed as the coefficient from regressing funding rates on

the basis. Since the interest rate is fixed, the coefficient of regression captures the

impact of variations in dynamic rates on the basis. A theoretical elasticity of one

implies that the arbitrage mechanism fully aligns the perpetual price with the spot

price and effectively closes the perp-spot gap.

ft = ffix + f
dyn
t . (11)

∂ft
∂t

=
∂f

dyn
t

∂t
, (12)

Following He et al. (2022) to quantify the degree of futures–spot mispricing

and assuming r − r′ ≈ 0 (a reasonable approximation since there is no interest on

ETH holdings), the annualised no-arbitrage deviation measure in ETH, ρ, for each

minute can be computed as

ρt ≈ κ (logFt − logSt).

where Ft denotes the perpetual futures price and St represents the spot index

value at time t. The scaling factor emerges from the institutional structure of

cryptocurrency perpetual markets in Kraken, where funding payments typically

occur at hourly intervals (24 times times daily). The annualization thus requires:

κ = 24︸︷︷︸payments/day × 365︸︷︷︸days/year = 8760 hours/year (13)

This scaling transforms minute-level basis observations into annualized per-

centage rates, facilitating economic interpretation. We utilize minute-by-minute

Ethereum/USD perpetual futures data from Kraken, spanning 2020 through
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2023, encompassing multiple stress episodes. Kraken’s hourly funding AsiaNext

Exchange (2024) provides an ideal laboratory for examining funding-basis dy-

namics at high frequency. The dataset includes the perpetual futures price Ft, the

corresponding spot index price St, the funding rate ft applied to positions, as

well as trading activity metrics like open interest, bid–ask spreads, and volume.

Following exchange conventions, the hourly funding rate ft is settled at the end

of each hour, while the contemporaneous basis is defined as the log difference

between mark and index prices. The mark price is the exchange’s internal fair-value

estimate of the perpetual contract. The index price represents the reference spot

value of ETH/USD.

bt = ln(markt)− ln(indext). (14)

We construct an evenly spaced one-hour panel and compute the average

premium over the preceding hour,

b̄t−1:t =
1

60

∑
s∈[t−1,t)

bs, (15)

which serves as the explanatory variable for the next-hour funding payment.

Both funding and basis are expressed in annualized units by multiplying by

κ = 24× 365 = 8760. The baseline regression is

fAPR
t = α+ βρAPR

t + εt, (16)

where ρAPR
t = κb̄t−1:t represents the annualized premium, and β captures the

elasticity of the dynamic component of the funding rate, β =
∂f

dyn
t

∂ρAPR
t

.

The coefficient β captures the funding-basis elasticity—the percentage change

in funding rates associated with a one percentage point change in the annualized

basis. In a frictionless benchmark with fully effective arbitrage, we would expect
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β = 1, meaning funding adjusts one-for-one with the basis and fully transmits price

discrepancies into funding incentives. Values of β below 1 indicate underreaction:

funding does not adjust enough to close the basis, suggesting a weakened or

constrained arbitrage channel. Values of β above 1 indicate overreaction: funding

moves more than one-for-one relative to the basis, consistent with an aggressive

response in which the funding mechanism strongly rewards (or penalizes) positions

and draws in additional arbitrage activity.

.

5 Results

5.1 Baseline estimates

We begin by examining the evolution of the dynamic component of funding basis

elasticity (β) for Ethereum perpetual contracts on Kraken from September 2020

to April 2022. This interval includes multiple market cycles, volatility regimes,

and systemic stress events. We examine the funding–basis relation during normal

market conditions to establish a baseline against which stress-period distortions can

be measured. Establishing this benchmark is essential: it provides clear evidence of

what “efficient” arbitrage looks like during calm market periods.Figure 1b displays

the scaled elasticity series across this 20-month window. The subsequent stress

events—Terra’s collapse, the FTX bankruptcy, and the SVB collapse can therefore

be interpreted as deviations from this baseline. Table 2 presents baseline results

for arbitrage functionality. We find that, in the calm periods, the mapping between

the prior-hour premium and next-hour funding rate is stable and consistent, with

funding payments from long to short most of the periods. This behavior is fully

consistent with the functioning arbitrage mechanism during calm periods.
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5.2 Funding Rate Dynamics during Market Stress

Do all market stress limit "arbitrage" in perpetual futures? We examine funding rates,

a crucial perp spot price-convergence mechanism, during periods of extreme market

stress. Figure 2 presents the 48-hour rolling average funding rate (annualized)

across three distinct periods: the Pre-Crash, Crash, and Post-Crash periods, shaded

in green, red, and blue, respectively. This is a period of stress transmission from

the Terra, FTX, and SVB ecosystems to ETH derivatives markets. Funding rate

remained stable pre-crash but shows a steep decline once the stress starts.

Next, we examine how closely the perpetual funding rate tracked basis around

stress episodes. Understanding when and why funding elasticity breaks down can

reveal deeper insights into the behavior of traders and the health of derivatives

markets. Figure 3 shows the hourly relation between the next-hour funding rate

and the prior-hour premium.

The baseline regression is.

fAPR
t = α+ βρAPR

t + εt, (17)

where ρAPR
t = κb̄t−1:t represents the annualized premium.

Figure (3, and 4) and Table 3 present results. Results suggest that the pre-Terra

period exhibits β = 1.44×10−5 (R2 = 0.113), corresponding to a scaled elasticity of

0.64. During the Terra crash (May 7–10), β is insignificant and declines to 0.64×10−5

(R2 = 0.11), with a scaled elasticity of 0.38. An increase in the intercept [1.44 (pre)

to 8.41(post)] indicates an increased response of the dynamic component of the

funding rate. This suggests that arbitrageurs were attempting to close the basis;

however, a decrease in elasticity (β) indicates that the arbitrage mechanism was

ineffective in restoring the basis. In the post-crash phase (May 11–30), β increases
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to 1.52 × 10−5 (R2 = 0.13), and the scaled elasticity rises to 0.91, consistent with

restoration of arbitrage mechanism.

The pre-FTX period exhibits β = 2.43× 10−5 (R2 = 0.64), corresponding to a

scaled elasticity of 1.44, indicating a strong and stable link between funding rates

and the basis. The intercept is negative (α = −6.95×10−6), implying that, on average,

perpetual prices trade below spot and shorts pay longs even after controlling

for the basis. During the FTX crash window (November 6–11), β increases to

2.91 × 10−5 (R2 = 0.75), with a scaled elasticity of 1.72, reflecting a temporary

amplification of the pass-through from basis deviations to funding adjustments. At

the same time, the intercept becomes more negative (α = −1.39× 10−5), indicating

that the level of funding shifts further downward and that short positions pay a

larger amount to longs during the crash. In the post-crash phase (November 12–

December 15), β rises further to 3.18× 10−5 (R2 = 0.91), and the scaled elasticity

reaches 1.88, consistent with a strengthened funding–basis linkage as markets

stabilized, while the intercept remains negative (α = −9.97 × 10−6), signaling a

persistently discounted perp relative to spot and continued net payments from

shorts to longs. Funding rate responsiveness (Figure ??) suggests effective arbitrage

and strong funding–basis correction.

Silicon Valley Bank faced a rapid deposit run on March 8- 9, 2023, and was

closed by regulators on March 10, 2023. Withdrawal requests of around $42B (25%

of deposits) hit within eight hours; end-of-day cash balance about –$958M. Funding

α turned more negative as balance sheets tightened and shorts demanded premia,

but β did not break, so the arbitrage mapping still functioned—like FTX. Around

this failure, ETH perpetuals on Kraken exhibit a tight funding–basis relation with a

downward level shift: the crash-window scatter shows more negative funding for a

given premium, while the elasticity remains near or above its pre-period level and

only eases afterward. This mirrors the FTX episode in which arbitrage effectiveness

is preserved. By contrast, during Terra’s collapse, arbitrage effectiveness collapses.
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5.3 Runs and Global Games Approach

Why would similarly devastating market events have opposite effects on funding

rate elasticity? To understand the source of this anomaly, we analyze open-interest

dynamics and interpret sharp and persistent contractions in open interest as runs

on perpetual futures markets that impair the correction of basis deviations. We find

that open interest behaves very differently across crash episodes. During the Terra

collapse, average ETH perpetual open interest falls from about $58.7 million in the

pre period to $20.3 million in the post period—a decline of roughly 65%—with

the crash window itself exhibiting both elevated volatility and extremely wide

dispersion in open interest. By contrast, during the FTX bankruptcy and the SVB

failure, ETH perpetual average open interest remains in a relatively narrow range:

it drifts slightly upward from $10.9m to $11.8m across the FTX episode and declines

by only about 1% (from $9.38m to $9.28m) across the SVB window. In other words,

only during the Terra crash period, there was a run on the ETH-perpetual market

as seen by capital constraints to arbitrage.

To understand the cause of the run only during the Terra crash episode, we

bring to this setting a global-games perspective in the spirit of Morris and Shin

(2001); Goldstein and Pauzner (2005). In global-games models, agents decide

whether to stay or run based on a fundamental state and noisy private signals

about that state, and a threshold emerges at which the unique equilibrium switches

from no-run to run. We adapt this framework (Equation 10) by modeling investors’

stay-or-exit decisions (change in open interest) as a function of public stress

(volatility) and private signals (adverse selection costs). Results from Table 7 reveal

a sharp contrast. During the Terra crash, we estimate βAS = 4.591 (p<0.01) and

βAS×σ = −257.249 (p<0.01), yielding a volatility threshold σ∗ = 1.785% per hour.

This threshold lies within the range of realized hourly volatility during the crisis

(Fig 5, Terra crash median σ = 0.71%, with peaks exceeding 1.8% for 37 hours).
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As σt crossed σ∗, the marginal effect of adverse selection on open interest flipped

from positive to negative, triggering a coordinated withdrawal of open interest—a

classic global-games run equilibrium. Open interest collapsed by 65% (Figure 8a),

consistent with a run regime. During the pre and post-crash periods, volatility

remained below the threshold all the time, and open interest remained stable.

In stark contrast, during the FTX and SVB crash episodes, the global-games

mechanism remained dormant. For FTX, βAS×σ is statistically insignificant (−6.062,

p>0.10), implying no meaningful threshold. For SVB, the interaction term is

positive during the crisis (85.659, p>0.10), but the opposite sign is required for a

coordination threshold. Consequently, even though volatility crossed the threshold

in both events (FTX crash σ = 0.9%, SVB crash σ = 1.1%), adverse selection

costs did not induce the same run dynamics. Moreover, during the SVB Collapse

period, the threshold volatility of 1.1% was statistically significant post-crash, and

volatility remained below this threshold before. Open interest remained stable

(FTX: +36%; SVB: -4%), and the funding–basis elasticity stayed near or above 1

(Table 4), indicating preserved arbitrage functionality.

5.4 Runs on Open Interest and Arbitrage Breakdown

The preceding analysis establishes three facts: (i) open interest collapses during

Terra but remains stable or increases during FTX and SVB; (ii) funding-rate elasticity

breaks down during Terra but persists during FTX and SVB; (iii) only Terra exhibits

a statistically significant coordination threshold σ∗ that realized volatility breaches.

We now directly test the mechanism linking these findings—whether runs on open

interest impair the funding rate to correct basis deviations.

The funding rate mechanism requires arbitrage capital to function. Arbitrageurs

holding positions absorb basis deviations and collect funding payments, ensuring

that funding rates adjust to close the futures spot gap. When arbitrageurs exit en
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masse, the capital necessary to enforce price parity disappears. If coordination-

driven runs are the mechanism through which arbitrage breaks down, open interest

collapse should result in breakdown of arbitrage mechanism.

We estimate:

ft = α+ β ·OIt−1 + εt (18)

where ft is the hourly funding rate (scaled to 106) and OIt−1 is lagged open interest

(in millions USD). Under normal conditions, funding rates respond to the basis,

and open interest should have limited explanatory power for funding rate levels.

During a run, however, open interest becomes the binding constraint; as capital

flees, the funding mechanism loses its corrective capacity. The coefficient β sign

across episodes is central to understanding the impact of the coordination runs on

arbitrage effectiveness. Table 13 summarizes the patterns.

Whenβ > 0 and significant during a crash, open interest and funding rates move

together—both declining as arbitrageurs exit. When β < 0 and significant, open

interest and funding rates move inversely— open interest increases while funding

rates fall into negative territory. Arbitrageurs enter to exploit the dislocation, and

the funding mechanism operates to attract this capital, consistent with arbitrage

functioning. The sign and significance of β across crisis windows therefore provides

evidence on whether coordination on exit (a run) or coordination on entry (no run)

contributed to the arbitrage mechanism failure.

5.4.1 Results

Table 12 presents the results. During the pre-crash period, open interest has no

significant relationship with funding rates. The funding mechanism operates

independently of the open interest, which is not a binding constraint. This changes

sharply during the crash. Open interest becomes a significant predictor of funding

rates. The positive coefficient indicates that a run on open interest predicts funding
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rates collapse: as arbitrageurs exit, the funding rate’s capacity to correct the basis

deteriorates in tandem. This is direct evidence that the run on open interest

impaired the arbitrage mechanism. Post-crash, with open interest stabilized at

approximately $20 million—65% below pre-crash levels—the relationship again

becomes insignificant. The market reached a new equilibrium, but one with

diminished capital.

The FTX episode presents a striking contrast. Open interest is highly significant

across all periods, but the coefficient is negative and turns positive in the post-

crash period. This reflects the market dynamics during the FTX period: Ethereum

perpetual prices traded below spot, and funding rates turned negative, in which

short positions paid long positions. As arbitrageurs entered the Ethereum perpetual

market to exploit the funding opportunity, open interest increased. The negative β

therefore indicates arbitrage functioning, not failing. Open interest rose from $9.5

million to over $13 million during the crash window (Figure 8b), a 36% increase.

Arbitrageurs coordinated on entry, not exit. The funding mechanism continued to

close the basis and arbitrage functionality were preserved.

The SVB episode reveals a more nuanced pattern. Open interest predicts funding

rates across all windows with positive coefficients. The relationship intensifies

during the crash, however, the underlying dynamics differ fundamentally from

Terra. Open interest declined only modestly during the SVB crash (approximately

4%), then recovered within the same window (Figure 8c). The positive coefficient

indicates that open interest and funding rates were jointly stressed—both declining

under pressure—but the coordinated mass exit characteristic of a run did not

materialize. This pattern aligns precisely with the threshold estimates in Table 7:

during SVB, the coordination threshold σ∗ was insignificant, and realized volatility

did not trigger the global-games run equilibrium. SVB represents a stressed market

in which there was a small contraction in open interest, but run dynamics were

not triggered.
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These findings establish that runs on open interest are the mechanism through

which arbitrage breaks down in perpetual futures markets. The funding rate—

the primary anchor tying perpetual prices to spot—requires arbitrage capital

to function. When arbitrageurs coordinate on exit, capital flees, and the anchor

fails. When arbitrageurs coordinate on entry—or simply remain engaged—the

mechanism persists even under extreme market stress.

6 Robustness

The phased China 2021 regulatory crackdown is a powerful natural experiment

to test the limits of arbitrage under the global games framework. The ban is

correctly seen, as recent work shows, as one of the sharpest regulatory shocks

in crypto’s history, causing a market-wide collapse in prices, a spike in volatility,

and—most relevant for this study—plummeting market quality through mass

liquidity withdrawal and forced exit of arbitrageurs. Manwaring (2021).

China’s regulators progressively escalated restrictions on crypto activity from

May to September 2021. On May 18, financial associations ordered banks and

payment firms to halt all crypto-related services, citing financial-stability risks. On

May 21, the State Council explicitly targeted Bitcoin mining and trading, triggering

nationwide enforcement and shutdown orders across major mining provinces

through June. By September 24, the PBoC and nine national agencies declared

all crypto transactions illegal and barred foreign exchanges from serving Chinese

users. The phased nature of regulatory announcements created an information-

revelation sequence: initial policy ambiguity (Phase I) was gradually resolved

through enforcement actions (Phases II–III) and culminating in a comprehensive,

symmetric ban (Phase IV) as shown in Table 8.

28



We first show that the funding rate elasticity collapses towards zero (Fig 10

and Table 9 ), in Phase I, with the highest level of information asymmetry. During

the pre-crackdown period, the funding mechanism operated with near-ideal

efficiency (βscaled = 1.48), where 30% of funding-rate variation was explained by

observable basis deviations, consistent with well-functioning arbitrage markets. In

Phase I, both funding elasticity collapses to 0; βscaled = 0.09, R2 ≈ 0). The estimates

indicate that the dynamic component of the funding rate (f
dyn
t ) stops responding

to mispricing. Elasticity recovers towards a value of one post Phase I period.

To understand the collapse in funding elasticity around the China crackdown,

we examine open interest. A sudden decline of open interest implies a run on

perpetual. (Figure 12). Prior to the ban, average open interest is about $72.7 million,

with values ranging from $45.7 million to more than $102 million. During Phase I

of the ban, open interest falls to $39.4 million—a decline of roughly 45% relative to

the pre-ban mean—and the lower tail reaches levels near $20 million. In Phases II

and III, open interest stabilizes at an even lower plateau of $27–31 million, before

partially recovering in Phase IV (mean $77.3 million). Thus, the China ban episode

features a discrete, policy–driven run on ETH perpetual positions in Phase I,

followed by a no- run regime in which open interest remained stable and increased

during later phases.

We adapt the global games approach (Equation 10) to understand the cause

of the collapse of open interest during Phase I and model investors’ stay-or-exit

decisions (change in open interest) as a function of public stress (volatility) and

private signals (adverse selection costs). Results are presented in Table 11 and

Figure 11. During Phase I, we estimate βAS = 1.987 (p<0.01) and βAS×σ = −42.837

(p<0.01), yielding a volatility threshold σ∗ = 4.6% per hour. This threshold is

statistically significant and lies within the range of realized hourly volatility during

Phase I (Fig. 11, Terra crash median σ = 0.71%, with peaks exceeding 1.8% for 37

hours). As σt crossed σ∗, the marginal effect of adverse selection on open interest
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flipped from positive to negative, triggering a run. Open interest collapsed by 45%

(Figure 12) soon after volatility crossed the threshold σ∗ during Phase I. During

other Phases, σ∗ was statistically insignificant, and the run was not triggered

despite volatility σ crossing the threshold σ∗ during Phases III and IV. Results from

Phase I (Table 9 and Figure 10) suggest that the funding rate could not correct

the basis, and arbitrage broke down. Overall, these robustness checks confirm

that the results are fully consistent with the patterns observed during the Terra,

FTX, and SVB episodes, and they extend the global-games framework of Goldstein

and Pauzner (2005); Morris and Shin (2001) and the limits-to-arbitrage insights of

Shleifer and Vishny (1997) to an empirical setting in perpetual futures markets.

7 Conclusion

This paper applies the global games framework to identify when and why arbitrage

mechanisms fail in derivatives markets. Our contribution to the literature is

threefold. First, we document a new empirical puzzle: similar crises of comparable

severity produce starkly opposite effects on arbitrage functionality. This finding

suggests that the crisis magnitude alone may not fully determine run behavior,

pointing to additional mechanisms at work. Second, we provide a theoretical

resolution grounded in the global games run threshold equilibrium model. By

mapping the global games framework onto perpetual futures markets—with spot

volatility as a public signal, adverse selection costs as private signals, and open

interest as the aggregate coordination outcome—we derive an endogenous volatility

threshold that separates run regimes from non-run regimes by estimating the run

equilibrium threshold. This threshold is empirically estimable and statistically

significant only during Terra’s collapse, precisely when arbitrage failed.
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Third, we bridge two foundational literatures. We extend classical limits to arbi-

trage by showing that constraints can emerge endogenously through coordination

failure, complementing capital shortage as an explanatory channel. Simultaneously,

we provide an empirical application of global games coordination thresholds to

the derivatives (perpetual futures) market by identifying the specific mechanism

through which arbitrage breaks down under stress. Our findings carry implications

for exchange design, regulatory surveillance, and risk management: monitoring

volatility relative to estimated thresholds may provide early warning of arbitrage

mechanism failure before capital flight becomes visible.
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Table 1: Summary Statistics — Ethereum
Panel A: Terra

Variable Pre Mean Pre SD Crash Mean Crash SD Post Mean Post SD
Price 2913.47 120.30 2256.09 216.47 1951.43 100.50
Basis 0.17 0.43 0.32 0.54 -0.05 0.25
Funding Rate 0.002 0.005 0.01 0.01 -0.002 0.01
Spread 1.72 0.37 1.69 0.61 1.18 0.21
AS_cost_10k 0.27 1.84 1.84 2.45 0.36 2.05
Open Interest 58.74 1.14 49.27 18.68 20.30 1.12
σETH 0.01 0.002 0.02 0.01 0.01 0.002
Order Flow -0.002 0.77 -0.07 0.61 0.08 0.74
Momentum -0.0003 0.01 -0.002 0.02 -0.0001 0.01

Panel B: FTX

Variable Pre Mean Pre SD Crash Mean Crash SD Post Mean Post SD
Price 1442.30 136.87 1376.60 167.36 1234.27 50.08
Basis -0.11 0.28 -0.85 0.89 -0.47 0.71
Funding Rate -0.003 0.01 -0.02 0.02 -0.01 0.02
Spread 0.63 0.25 1.30 0.60 0.73 0.22
AS_cost_10k 0.68 2.35 1.40 1.50 0.18 0.58
Open Interest 10.96 0.29 11.33 1.11 11.83 1.19
σETH 0.01 0.003 0.02 0.01 0.005 0.003
Order Flow 0.06 0.76 -0.04 0.62 -0.01 0.70
Momentum 0.0004 0.01 -0.002 0.02 0.0000 0.01

Panel C: SVB

Variable Pre Mean Pre SD Crash Mean Crash SD Post Mean Post SD
Price 1630.40 48.99 1484.58 61.26 1534.51 83.52
Basis 0.16 0.42 -0.06 0.69 -2.65 1.94
Funding Rate 0.002 0.01 -0.0003 0.01 -0.05 0.04
Spread 0.43 0.13 0.54 0.19 0.81 0.20
AS_cost_10k 0.07 0.27 0.18 0.32 0.22 0.39
Open Interest 9.36 0.28 9.05 0.29 8.94 0.44
σETH 0.005 0.003 0.01 0.004 0.01 0.002
Order Flow 0.10 0.74 -0.25 0.63 0.04 0.55
Momentum 0.0000 0.01 0.001 0.01 0.001 0.01
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Table 2: Funding–Basis Elasticity in Normal Times (Nov 2021 – Apr 2022). This
table reports monthly regressions of the hourly funding rate (yt) on the prior-hour
basis premium (xt): yt = α + βxt + εt. Funding and basis are annualized (APR).
Coefficients α and β are reported in units of 10−5. Scaled elasticity βscaled normalizes
β relative to full pass-through.

Nov 2021 Dec 2021 Jan 2022 Feb 2022 Mar 2022 Apr 2022

α (×10−5) 1.30∗∗∗ 1.04∗∗∗ −0.501∗∗ 1.29∗∗∗ −0.445∗∗ 1.56∗∗∗

(6.55) (7.31) (−2.21) (6.03) (−2.19) (9.60)

β (×10−5) 1.34∗∗∗ 0.753∗∗∗ 1.32∗∗∗ 0.990∗∗∗ 1.14∗∗∗ 0.856∗∗∗

(17.29) (9.35) (10.68) (7.93) (9.48) (7.87)

βscaled 0.79 0.45 0.78 0.59 0.68 0.51

R2 0.301 0.108 0.137 0.088 0.111 0.082
N 697 721 721 649 721 697

Note: βscaled = β/median(ft/ρt) within each window. Stars denote significance at 10% (*), 5% (**),
and 1% (***). T-statistics are reported in parentheses.

36



Table 3: Funding–Basis Elasticity Across Crisis Episodes. This table reports hourly regressions of next-hour funding
(yt) on the prior-hour basis premium (xt): yt = α+ βxt + εt. Funding and basis are annualized (APR). Coefficients
α and β are expressed in units of 10−5. Scaled elasticity βscaled ≡ β/median(ft/ρt) normalizes β so that βscaled ≈ 1
corresponds to full pass-through.

Terra Collapse FTX Collapse SVB Episode

Pre Crash Post Pre Crash Post Pre Crash Post

α (×10−5) 1.44∗∗∗ 8.41∗∗∗ −0.64∗∗ −0.695∗∗∗ −1.39 −0.997∗∗∗ 0.235 1.56∗∗∗ −2.82∗∗

(7.98) (9.31) (−2.26) (−4.28) (−1.05) (−4.44) (1.54) (2.76) (−2.01)

β (×10−5) 1.08∗∗∗ 0.643 1.53∗∗∗ 2.43∗∗∗ 2.91∗∗∗ 3.18∗∗∗ 2.13∗∗∗ 1.71∗∗∗ 2.33∗∗∗

(8.18) (1.62) (8.23) (29.93) (18.79) (88.87) (33.34) (5.66) (20.90)

βscaled 0.64 0.38 0.91 1.44 1.72 1.88 1.26 1.01 1.38

R2 0.113 0.036 0.130 0.641 0.748 0.907 0.689 0.406 0.725
N 528 73 456 504 121 816 504 49 168

Notes: T-statistics in parentheses. Significance levels: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01. βscaled uses
a common empirical scale factor median(ft/ρt) = 1.69× 10−5 for comparability across windows.
Event windows: Pre Terra (Apr 15–May 6), Terra Crash (May 7–10), Post Terra (May 11–30); Pre FTX
(Oct 15–Nov 5), Crash FTX (Nov 6–11), Post FTX (Nov 11–Dec 15); Pre SVB (Feb 15–Mar 7), SVB
Crash (Mar 8–10), Post SVB (Mar 11–18).
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Table 4: Adverse Selection Summary Statistics by Event

Statistic Terra FTX SVB

PRE Median 0.185 0.171 0.111

PRE SD 3.495 1.242 0.558

PRE P25 -0.000 -0.029 -0.116

PRE P75 0.392 0.416 0.395

N 455 941 363

CRASH Median 0.313 0.329 0.161

CRASH SD 0.339 0.564 0.503

CRASH P25 0.122 0.168 -0.082

CRASH P75 0.586 0.586 0.357

N 123 73 39

POST Median 0.192 0.140 0.162

POST SD 0.692 0.681 0.315

POST P25 -0.050 -0.046 0.041

POST P75 0.458 0.372 0.331

N 364 824 96
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Table 5: Adverse Selection Cost Summary Statistics for Ethereum
Summary statistics are reported for the pre-crisis, crash, and post-crisis windows
of the Terra, FTX, and SVB episodes. Adverse selection costs, realized in next hour
t, are computed using the median adverse selection estimate between consecutive
hours and the corresponding 24-hour trading volume. Specifically, for each hour t,
we compute

AS Costt = RawAS[t−1→t] ×

(
Volume24ht

Pricet

)
,

where RawAS[t−1→t] denotes the median adverse-selection component between
t−1 and t (in USD/ETH), Volume24ht is the 24-hour notional trading volume (in
USD), and Pricet is the spot ETH price (USD/ETH). This yields the total dollar
value of informational trading costs in each hourly window.

Statistic Terra FTX SVB

PRE Median 1433.96 1988.55 485.81

PRE SD 18638.99 19967.02 2721.63

PRE P25 -6.20 -277.39 -389.21

PRE P75 3543.42 7196.47 1718.77

PRE N 455 919 363

CRASH Median 12911.05 14561.84 455.97

CRASH SD 24691.19 17277.00 1319.94

CRASH P25 2775.21 5512.76 -228.98

CRASH P75 27179.43 19992.39 990.32

CRASH N 123 73 39

POST Median 3327.19 979.86 1826.78

POST SD 20450.48 5685.78 3894.06

POST P25 -848.34 -290.99 504.67

POST P75 9769.68 3018.78 3344.97

POST N 363 824 96
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Table 6: Open Interest Response to Market Forces

Pre-Crisis Crisis Post-Crisis

Panel A: Terra Collapse (May 2022)
AS_costt−1 −0.040 4.591∗∗∗ 0.174

(0.141) (1.286) (0.132)

Realized Volatility (σETH,t−1) −133.144∗∗∗ −370.142∗∗ −11.130

(24.292) (152.409) (26.116)

Momentum (Momt−1) −5.861 −66.754 −4.186

(8.886) (45.946) (7.056)

Order Flow Imbalance (OFi,t−1) −0.085 0.274 0.171∗

(0.076) (1.617) (0.092)

AS_costt−1 × σETH,t−1 27.073 −257.249∗∗∗ −27.683∗

(33.698) (50.142) (14.760)

Observations 462 122 387
Hourly FE Yes Yes Yes
R2 0.088 0.640 0.073

Panel B: FTX Collapse (Nov 2022)
AS_costt−1 −0.026∗ 0.052 −0.152∗

(0.015) (0.175) (0.085)

Realized Volatility (σETH,t−1) −3.515 71.399∗∗∗ −24.398∗∗

(5.184) (21.686) (10.569)

Momentum (Momt−1) 0.782 −1.053 6.114

(2.189) (8.149) (4.266)

Order Flow Imbalance (OFi,t−1) 0.020 −0.119 0.078

(0.022) (0.272) (0.064)

AS_costt−1 × σETH,t−1 1.726 −6.062 6.698

(1.728) (8.835) (6.516)

Observations 316 73 446
R2 0.079 0.431 0.049
Hourly FE Yes Yes Yes

Table continued on next page.
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Table 6 (continued)

Pre-Crisis Crisis Post-Crisis

Panel C: SVB Collapse (Mar 2023)
AS_costt−1 0.171 0.122 1.751∗∗∗

(0.146) (0.393) (0.541)

Realized Volatility (σETH,t−1) 9.743 −78.825∗∗∗ 25.132

(6.249) (16.025) (28.990)

Momentum (Momt−1) 4.564∗ −3.945 11.393∗∗∗

(2.561) (2.230) (3.801)

Order Flow Imbalance (OFi,t−1) −0.023 −0.034 −0.018

(0.023) (0.028) (0.091)

AS_costt−1 × σETH,t−1 −27.769 85.659 −157.659∗∗∗

(21.123) (98.908) (54.488)

Observations 345 39 96
R2 0.064 0.948 0.285
Hourly FE Yes Yes Yes

Notes: This table reports the impact of market frictions on Ethereum perpetuals
open interest during different stress episodes. The dependent variable is hourly
open interest (in millions USD). This table reports volatility thresholds estimated
from the regression: OIt = α+ βAS ·AS_costt−1 + βσ · σt−1 + βAS×σ ·AS_costt−1 ×
σt−1 + γ′Xt−1 + Hour FE + εt. Pre-crisis periods span 30 days before each event,
crisis windows are defined as: Terra (May 8-12, 2022), FTX (November 6-9, 2022),
SVB (March 8-9, 2023). Pre and Post-crisis periods extend 30 days before and after
each event.
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Table 7: Spot Volatility Threshold Estimates Across Crash Episodes
This table reports Ethereum spot volatility thresholds estimated from the regression:
OIt = α+βAS ·AS_costt−1+βσ·σt−1+βAS×σ·AS_costt−1×σt−1+γ′Xt−1+Hour FE+εt.
The threshold volatilityσ∗ = −βAS/βAS×σ represents the level at which the marginal
effect of adverse selection costs on open interest is zero. Run is determined based on
whether the threshold was breached during any period and whether the coefficient
pattern (βAS > 0, βAS×σ < 0) indicates a coordination equilibrium. Only the Terra
crash exhibits a statistically significant threshold (1.785% per hour) with the correct
sign pattern and threshold breach, consistent with a global-games run equilibrium.

Crisis Period βAS βAS×σ Threshold σ∗ (%/hour) Run?

Terra Collapse (May 2022)

Terra Pre −0.040 27.073 0.148 No
(0.141) (33.698)

Terra Crash 4.591∗∗∗ −257.249∗∗∗ 1.785 Yes
(1.286) (50.142)

Terra Post 0.174 −27.683∗ 0.628 No
(0.132) (14.760)

FTX Collapse (November 2022)

FTX Pre −0.026∗ 1.726 1.5 No
(0.015) (1.728)

FTX Crash 0.052 −6.062 0.9 No
(0.175) (8.835)

FTX Post −0.152∗ 6.698 2.3 No
(0.085) (6.516)

SVB Collapse (March 2023)

SVB Pre 0.171 −27.769 0.6 No
(0.146) (21.123)

SVB Crash 0.122 85.659 -0.1 No
(0.393) (98.908)

SVB Post 1.751∗∗∗ −157.659∗∗∗ 1.1 Yes
(0.541) (54.488)
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Table 8: China Ban Phases, Windows, and Adverse Selection (Median AS)

Period Window / Phase Info Asymmetry Median AS

2021-03-22 – 2021-05-20 60-Day Pre Low 0.339
2021-05-21 – 2021-06-10 Phase I High 0.712
2021-06-11 – 2021-06-25 Phase II Medium 0.470
2021-06-26 – 2021-07-20 Phase III Medium 0.416
2021-07-21 – 2021-09-24 Phase IV Declining 0.330
2021-09-25 – 2021-11-23 60-Day Post Low 0.510
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Table 9: Funding–Basis Elasticity During China’s Cryptocurrency Crackdown. This table reports hourly regressions
of the next-hour funding rate (yt) on the prior-hour basis premium (xt), yt = α + βxt + εt. Funding and basis are
annualized in APR. Coefficients α and β are reported in units of 10−5. The scaled elasticity βscaled normalizes β relative
to β = 1.

Pre Phase I Phase II Phase III Phase IV Post
(Mar 22–May 20) (May 21–Jun 10) (Jun 11–Jun 25) (Jun 26–Jul 20) (Jul 21–Sep 24) (Sep 25–Nov 23)

(1) (2) (3) (4) (5) (6)

α (×10−5) 14.1∗∗∗ −0.347 −3.91∗∗∗ 0.815∗∗ 4.03∗∗∗ 2.35∗∗∗

(16.62) (−0.46) (−5.91) (2.36) (17.78) (14.97)

β (×10−5) 2.51∗∗∗ 0.156 1.50∗∗∗ 0.896∗∗∗ 1.39∗∗∗ 1.30∗∗∗

(24.39) (0.94) (6.57) (5.13) (16.66) (21.34)

βscaled 1.48 0.09 0.89 0.53 0.82 0.77

R2 0.296 0.002 0.114 0.044 0.151 0.244
N 1417 458 337 577 1561 1417

Note: βscaled is computed as β/median(ft/ρt) within each window. Event windows: Pre (Mar 22–May
20), Phase I (May 21–Jun 10), Phase II (Jun 11–Jun 25), Phase III (Jun 26–Jul 20), Phase IV (Jul 21–Sep
24), Post (Sep 25–Nov 23).
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Table 10: Open Interest Response to Adverse Selection Costs and Market Frictions
Across China Ban Phases
This table reports the impact of market frictions on Ethereum perpetuals open
interest during different stress episodes estimated from the regression: OIt =
α+βAS ·AS_costt−1+βσ ·σt−1+βAS×σ ·AS_costt−1×σt−1+ γ′Xt−1+Hour FE+ εt.
The dependent variable is hourly open interest (in millions USD). Adverse selections
costs are per 10k USD. Pre and Post-crisis periods extend 30 days before and after
each event.

Pre PH1 PH2 PH3 PH4 Post

AS_Cost_t-1 0.309∗∗ 1.987∗∗∗ 0.098 –0.054 –0.185 –0.211
(0.150) (0.237) (0.094) (0.038) (0.115) (0.198)

Sigma_ETH_t-1 344.968∗∗∗ 609.467∗∗∗ 147.568∗∗∗ –52.156∗∗∗ –517.055∗∗∗ –1,076.180∗∗∗
(103.238) (144.538) (35.370) (19.432) (66.920) (95.455)

Mom_t-1 36.561 –50.296 –5.206 –1.780 –44.021∗∗ –20.818
(35.971) (46.107) (12.050) (6.015) (22.244) (36.145)

OF_i_t-1 0.900 1.538 –0.441∗ 0.006 –0.404 0.415
(0.685) (1.675) (0.227) (0.095) (0.363) (0.471)

AS_Cost_t-1 × Sigma_t-1 13.979 –42.837∗∗∗ –2.502 6.198∗ 26.362∗∗ 39.400∗
(10.669) (9.181) (6.097) (3.709) (11.159) (20.600)

Observations 1,194 616 348 480 1,457 1,353
R2 0.079 0.164 0.129 0.038 0.050 0.092
Hour FE Y Y Y Y Y Y
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Table 11: Spot Volatility Threshold Estimates — China Cryptocurrency Ban
(2021)
This table reports Ethereum spot volatility thresholds estimated from the regression:
OIt = α+βAS ·AS_costt−1+βσ·σt−1+βAS×σ·AS_costt−1×σt−1+γ′Xt−1+Hour FE+εt.
The threshold volatilityσ∗ = −βAS/βAS×σ represents the level at which the marginal
effect of adverse selection costs on open interest is zero. Threshold volatility is
defined as σ∗ = −βAS/βAS×σ. A “Run” is recorded only when: (i) βAS > 0 and
βAS×σ < 0 with p < 0.01, and (ii) the realized volatility in the event window crosses
σ∗. Only Phase I satisfies both conditions, indicating a coordinated withdrawal of
open interest during the China crypto ban regulatory period.

China Phase βAS βAS×σ Threshold σ∗ (%/hour) Run?

PRE 0.309∗∗ 13.979 – No
(0.150) (10.669)

I 1.987∗∗∗ −42.837∗∗∗ 4.6 Yes
(0.237) (9.181)

II 0.098 −2.502 3.9 No
(0.094) (6.097)

III −0.054 6.198∗ 0.9 No
(0.038) (3.709)

IV −0.185 26.362∗∗ 0.7 No
(0.115) (11.159)

POST −0.211 39.400∗ 0.5 No
(0.198) (20.600)
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Table 12: Ethereum Open Interest and Funding Rate Dynamics
This table reports OLS regressions of hourly funding rates on lagged open interest (millions
USD). Only during the Terra crash phase does the funding rate fail to close the perp–spot basis.

Terra FTX SVB
Pre Crash Post Pre Crash Post Pre Crash Post

OIt−1 −0.0002 0.0002∗∗∗ −0.0003 −0.004∗∗∗ −0.012∗∗∗ 0.003∗∗∗ 0.006∗∗∗ 0.016∗∗∗ 0.026∗∗

(0.0002) (0.0001) (0.0003) (0.001) (0.002) (0.001) (0.001) (0.004) (0.011)

Constant 0.012 −0.003 0.004 0.041∗∗∗ 0.125∗∗∗ −0.059∗∗∗ — — —
(0.011) (0.003) (0.006) (0.015) (0.024) (0.009)

Observations 454 122 387 316 73 446 504 72 71
R2 0.002 0.098 0.003 0.028 0.318 0.028 0.087 0.428 0.19847



Table 13: Summary of Ethereum Open Interest–Funding Rate Dynamics
This table summarizes the relationship between open interest and funding rates
during crash windows across the three crisis episodes. OI Change refers to the
change in open interest during the crash window. β Sign and significance refer to
the coefficient on lagged open interest in Equation (18).

Crisis OI Change β Sign Significant? R2 Interpretation
Terra −65% Positive Yes (p < 0.01) 0.098 Run: Coordination on exit
FTX +36% Negative Yes (p < 0.01) 0.318 No run: Coordination on entry
SVB −4% (recovered) Positive Yes (p < 0.01) 0.428 Stress without run
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Figure 1: Historical Funding–Basis Elasticity (Scaled β), ETH perpetual. The dashed line
represents the theoretical benchmark β = 1. We plot the scaled funding–basis elasticity
(βscaled = β/median(ft/ρt)) and funding rate over 20 months. The scaling adjustment is for
better interpretation of dynamic funding elasticity. We see the value of funding elasticity
consistently over the theoretical benchmark value during the period of key market events.
The funding rate was consistently elevated from November 2020 to April 2021. A positive
funding rate implies that the futures is over spot. An increase in the funding rate implies
increased investors’ participation. The β ≈ 1 levels are consistent with an efficient pricing
regime.

(a) 24-Hour Rolling Funding Rate

(b) Scaled Funding Elasticity
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Figure 2: Kraken ETH Perpetual Funding Rates Around Major Market Crashes. Hourly
annualized funding rates (APR) are shown for three crisis episodes: (a) Terra collapse (May
2022), (b) FTX collapse (Nov 2022), and (c) SVB collapse (Mar 2023). Shaded regions denote
the event windows. Each episode shows a sharp deviation of funding from equilibrium
levels, consistent with transient dislocations in the arbitrage mechanism. The red dotted
horizontal line is the inflection point where the funding regime changes from Long to
Short. Above the red line, futures trade over spot.

(a) Terra Crash Onset (May 9, 2022)

(b) FTX Collapse Onset (Nov 6, 2022)

(c) SVB Collapse Onset (Mar 9, 2023)
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Figure 3: Funding–premium elasticity on Kraken ETH perpetuals around major stress
events.
Each panel plots next-hour funding (APR) vs. the prior-hour perp–spot premium (APR)
for pre-, crash-, and post-event windows with within-window OLS fits: (a) Terra—flatter
slope and higher dispersion (impaired arbitrage); (b) FTX—tight, nearly linear mapping
with negative premium (shorts pay long); (c) SVB—downward level shift with slope largely
preserved (funding-liquidity shock).

(a) Terra (May 9, 2022)

(b) FTX (Nov 6, 2022)

(c) SVB (Mar 10, 2023)
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Figure 4: Funding–Basis Elasticity Across Three Stress Episodes
This figure reports the scaled funding–basis elasticity, βscaled = β/median(ft/ρt), for
Kraken ETH/USD perpetual swaps during three systemic events: Terra (May 2022),
FTX (Nov 2022), and SVB (Mar 2023). The dashed horizontal line marks the benchmark
β = 1. Elasticity collapses during the Terra run but remains above 1 during FTX and SVB,
indicating preserved arbitrage function.

Panel A. Terra Collapse (May 7–10, 2022)

Panel B. FTX Collapse (Nov 6–11, 2022)

Panel C. SVB Failure (Mar 8–10, 2023)
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Figure 5: Volatility – Terra Period
This figure plots hourly Ethereum (ETH) volatility (σ) in percent from April 15 to May
30, 2022, covering the Terra collapse. The series is partitioned into three event windows:
Pre-Crash (blue, April 15 - May 7), Crash (red, May 7 - May 12), and Post-Crash (green,
May 14 - May 30). The dashed horizontal line at 1.8% marks the volatility threshold σ∗

estimated from the global-games model (Table 7). During the Crash window, volatility
spikes breached this threshold, triggering a run on open interest.
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Figure 6: Volatility – FTX Period
This figure plots hourly Ethereum (ETH) volatility (σ) in percent from Oct 15 to Nov
30, 2022, covering the FTX collapse. The series is partitioned into three event windows:
Pre-Crash (blue, Oct 15 - Nov 5), Crash (red, Nov 6 - Nov 9), and Post-Crash (green,
Nov 10 - Nov 30). The dashed horizontal line at 0.9% marks the volatility threshold σ∗

estimated from the global-games model (Table 7). During the Crash window, volatility
spikes breached this threshold, but the run was not triggered as σ∗ was statistically
insignificant.
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Figure 7: Volatility – SVB Period
This figure plots hourly Ethereum (ETH) volatility (σ) in percent from Feb 15 to March
13, 2023, covering the SVB collapse. The series is partitioned into three event windows:
Pre-Crash (blue, Feb 15 - Feb 5), Crash (red, Feb 8 - Feb 9), and Post-Crash (green, Feb 10
- Feb 13). The dashed horizontal line at 1.1% marks the statistically significant volatility
threshold σ∗ estimated from the global-games model (Table 7), Post Crash. Pre and during
the crash window, volatility was below the threshold, and the run was not triggered.
Moreover, σ∗ was statistically insignificant during these periods (0.6% and -0.1 %).
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Figure 8: Ethereum Perps Open Interest Around Major Market Crashes.
Open Interest (notional) for three crisis episodes: (a) Terra collapse (May 2022), (b) FTX
collapse (Nov 2022), and (c) SVB collapse (Mar 2023). Shaded regions denote the event
windows. The Terra episode shows the steepest decline in Open Interest. The FTX episode
shows an increase, while the SVB crash episode shows a slight decline.

(a) Terra Crash Onset (May 7, 2022)

(b) FTX Collapse Onset (Nov 6, 2022)

(c) SVB Collapse Onset (Mar 8, 2023)56



Figure 9: Ethereum Adverse Selection Costs Around Major Market Crashes.
Adverse Selection Costs (USD) are shown for three crisis episodes: (a) Terra collapse (May
2022), (b) FTX collapse (Nov 2022), and (c) SVB collapse (Mar 2023). Shaded regions denote
the event windows. The Terra episode shows a sharp increase in Adverse Selection Costs,
followed by the FTX and SVB crash episodes.

(a) Terra Crash Onset (May 7, 2022)

(b) FTX Collapse Onset (Nov 6, 2022)

(c) SVB Collapse Onset (Mar 8, 2023)57



Figure 10: Scaled Funding–Basis Elasticity (β) Across China Crackdown Phases. Each
bar shows the scaled funding elasticity (βscaled = β/median(ft/ρt)) during the 2021
China cryptocurrency crackdown. The scaled elasticity βscaled = β/median(ft/ρt) with
median(ft/ρt) = 1.69 × 10−5 yields values of 1.5, 0.09, 0.89, 0.53, 0.82, and 0.77 for the
respective windows. The elasticity falls sharply to 0.09 during the high–asymmetry Phase
I (May 21 –June 10), indicating impaired arbitrage and weak funding–basis linkage, and
gradually recovers toward unity once the regulatory stance becomes clearer.

58



Figure 11: Volatility – China Crypto Ban Period
This figure plots hourly Ethereum (ETH) volatility (σ) in percentage terms from May 15 to
September 24, 2021, covering the China Crypto regulatory period. The series is partitioned
into four event windows. The dashed horizontal line at 4.64% during Phase I marks the
statistically significant volatility threshold σ∗ estimated from the global-games model
(Table 11). During other phases, σ∗ was statistically insignificant, and the run was not
triggered despite volatility crossing the threshold.
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Figure 12: Open Interest Across China Crackdown Phases.
The figure shows the evolution of open interest during the 2021 China cryptocurrency
crackdown. Open Interest falls sharply by 80% during the high–asymmetry Phase I (May
21 –June 10), indicating a run on perpetuals, and gradually recovers with a significant
capital inflow during Phase IV, as adverse selection costs decline.
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Figure 13: Funding Dynamics and Arbitrage Mapping During China’s 2021 Crackdown.
Panel (a) shows the 24-hour trailing average of next-hour ETH perpetual funding rates (APR)
on Kraken, with shaded regions marking key policy phases: the 60-day pre-crackdown
period (green), Phases I–IV of varying information asymmetry (orange → red → purple
→ brown), and the post-ban window (violet). Panel (b) plots raw 1-hour funding rates
against prior-hour mark–index premia (APR) for the same windows. Funding levels turn
negative and volatility increases from late May 2021 as uncertainty about mining and
payment restrictions widens. The slope of the funding–basis mapping (β) flattens sharply
during Phase I, indicating impaired arbitrage under high information asymmetry, and
then partially recovers once the policy stance becomes symmetric and predictable (after
Sept 24).

(a) Trailing 24h Avg Funding (b) Funding–Basis Scatter by Asymmetry
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A Perpetual Pricing Terminology – Kaiko data

Index Price

The index price represents the reference spot value of ETH/USD. It is computed

by Kraken as a time-weighted median of ETH/USD spot prices across major

exchanges (e.g., Coinbase, Bitstamp, and Kraken Spot). The index price serves

as the contract’s anchor and is intended to reflect the fair market value of the

underlying asset. Because it aggregates multiple venues, the index price is robust

to idiosyncratic noise or manipulation on any single exchange.

Mark Price

The mark price is the exchange’s internal fair-value estimate of the perpetual contract.

It is not the last trade price but a smoothed measure used for mark-to-market

profit and loss calculations and for determining funding payments and liquidation

triggers. Kraken defines:

Mark Pricet = Index Pricet × (1 + Premium Indext), (19)

where the Premium Index is a rolling weighted average of the percentage difference

between the perpetual’s traded price and the index price over the recent interval.

As a result, the mark price tracks the index price closely but adjusts for persistent

deviations between the two markets.
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Funding Rate

The funding rate is the periodic interest-like payment exchanged between long

and short positions that keeps the perpetual price anchored to its spot reference.

When the perpetual trades above the index price (positive basis), the funding rate is

positive, causing longs to pay shorts. Conversely, when the perpetual trades below

the index (negative basis), the funding rate is negative, and shorts pay longs. The

funding mechanism therefore enforces convergence between the perpetual and

spot markets:

Funding Ratet = Interest Adjustmentt + Premium Indext, (20)

ft > 0 ⇒ longs pay shorts, ft < 0 ⇒ skurthorts pay longs. (21)

Relation to the Spot Market

The difference between the mark and index prices,

ρt = ln(Mark Pricet)− ln(Index Pricet),

is the perpetual basis—a measure of the deviation of the futures market from its spot

reference. Arbitrageurs monitor this basis and exploit positive or negative spreads

through offsetting positions in the spot and perpetual markets. The funding

mechanism, by periodically adjusting cash flows between longs and shorts, serves

as an endogenous force driving ρt toward zero. In equilibrium, the mark price

should closely track the index price, and funding payments adjust to enforce

this parity. Temporary deviations—such as those observed during the May 2022

Terra collapse—reflect transient limits to arbitrage or liquidity constraints in the

perpetual market.
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B Institutional Background

B.1 Cryptocurrency Spot Markets

The cryptocurrency spot market, where assets are traded for immediate delivery,

has evolved from a retail-dominated niche into a complex institutional-grade

ecosystem. This transformation is driven by advancements in market infrastructure,

regulatory clarity, and the development of sophisticated financial instruments.

The core of the spot market involves the immediate exchange of a cryptocurrency,

such as Bitcoin or Ethereum, for fiat currency (e.g., USD) or another digital asset.

Unlike derivatives, which derive value from an underlying asset, a spot transaction

confers immediate ownership. The price at which this exchange occurs is the spot

price. By mid-2025, over 19,000 tokens were listed, yet market value remains highly

concentrated in Bitcoin (BTC) and Ethereum (ETH). According to CoinMarketCap’s

Q2 2025 update, the total crypto market capitalisation was about US $4 trillion,

with 24-hour spot trading volume of roughly US $98 billion5. CoinGecko’s Q3

2025 industry report notes that the market cap continued its upward trajectory in

Q3, increasing by 16.4% to end the quarter at around US $4.0 trillion 6. Binance

remains the largest spot exchange, recording roughly US $2 trillion in spot volume

in Q3 2025. Binance remains the largest spot exchange, recording roughly US $2

trillion in spot volume in Q3 2025.

B.2 Development of Cryptocurrency Derivative Markets

The first regulated Bitcoin futures began trading on Cboe on 10 December 2017

and on CME on 18 December 2017 under CFTC oversight. CME later introduced
5https://coinmarketcap.com/academy/article/according-to-cmc-q2-2025
6https://www.coingecko.com/research/publications/2025-q3-crypto-report#:~:text=1,0T%20in
%202025%20Q3
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cash-settled Ethereum futures on 8 February 2021 7. In October 2021, ProShares

launched the first U.S. Bitcoin futures-based ETF (BITO), whose first-day trading

volume exceeded $1 billion, signaling strong institutional demand.

By 2025, crypto derivatives account for roughly 75–85% of total crypto trading

activity. TokenInsight’s 8 report notes that derivatives trading on CEXs surged to

US $26.0 trillion in Q3 2025, with average daily volume US $283 billion, while

spot trading volume was US $4.7 trillion. Global open interest was around US

$91 billion, although Coindesk reported that open interest across CEXs reached

US $187 billion in August 2025. Derivatives account for the majority of crypto

trading. Kaiko data show that perpetual contracts alone represented 68% of Bitcoin

derivative volume. On CME, Bitcoin options open interest reached $4 billion by

Q2 2025, and Ether options daily volume increased 65% year-on-year.

B.3 Perpetual-Futures Markets

Perpetual futures (perps) are non-expiring contracts that use an eight-hourly funding

rate mechanism to anchor prices to the spot market. When the perpetual price

exceeds spot, longs pay shorts; when below, shorts pay longs. This continuous

payment enforces convergence between the two markets.

Perpetuals, first introduced by BitMEX in 2016, now dominate crypto derivatives.

CoinGecko’s State of Crypto Perpetuals Report (2025) 9 estimates that the top ten

centralized exchanges traded about $58.5 trillion in perpetual futures during 2024,

doubling 2023’s figure, with open interest reaching $131 billion in December

2024. Kaiko estimates that derivatives represent over 75 % of total crypto trading
7https://www.cmegroup.com/media-room/press-releases/2021/2/08/cme_group_announce
slaunchofetherfutures.html

8https://tokeninsight.com/en/research/reports/crypto-exchanges-report-q3-2025
9https://assets.coingecko.com/reports/2025/CoinGecko-State-of-Crypto-Perpetuals-Market.
pdf
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activity, with perps alone making up 68 % of Bitcoin trading volume in 2025 10.

Decentralized perpetual protocols such as dYdX, Hyperliquid, and Aster handled

over $1.5 trillion of trading in 2024, with DEX perpetual volumes growing 87%

quarter-on-quarter to $1.81 trillion in Q3 2025.

Regulatory Developments. Until 2025, perpetual contracts were offered mainly

on offshore platforms. On 21 July 2025, Coinbase Derivatives launched the first

U.S.-regulated nano BTC and ETH perpetual futures under the Commodity Futures

Trading Commission (CFTC) self-certification. The CFTC did not object, confirming

compliance with the Commodity Exchange Act, while the SEC did not challenge

ETH’s commodity classification 11.

B.3.1 Market Metrics (2025)

Metric Value Source

Total crypto market capitalization (Q3 2025) $4.0 trillion CoinGecko (2025)
Stablecoin market capitalization $288 billion CoinGecko (2025)
Spot trading volume (Q3 2025) $5.1 trillion CoinGecko (2025)
Derivatives trading volume (Q3 2025) $26 trillion TokenInsight (2025)
Perpetual futures volume (2024) $58.5 trillion CoinGecko (2025)
Perpetual open interest (Dec 2024) $131 billion CoinGecko (2025)
Perpetual DEX volume (Q3 2025) $1.81 trillion CoinGecko (2025)
Global derivatives open interest (Q3 2025) $91–187 billion Coindesk (2025)
Crypto options market monthly volume $8.94 trillion CoinLaw (2025)

Table 14: Key market metrics for crypto spot, derivatives, and perpetual futures
markets as of 2025.

The institutional landscape of crypto markets in 2025 is characterised by enormous

spot and derivatives activity, evolving regulatory frameworks, and rapid innovation.
10https://www.kaiko.com/reports/perps-are-coming-to-america
11https://www.pillsburylaw.com/en/news-and-insights/cftc-perpetual-futures-btc-eth-crypt

o-derivatives.html
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Perpetual futures have become the most popular derivative instrument due to

their flexibility and leverage. Global regulators are gradually integrating crypto

assets into existing market structures: the EU’s MiCA and U.S. legislation, such as

the GENIUS and CLARITY Acts, aim to clarify which tokens are commodities or

securities and to provide regulatory oversight. The approval of spot Bitcoin and

Ether ETFs in 2024 and the launch of the first U.S.-regulated perpetual futures in

2025 mark significant milestones.
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