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Abstract

I illustrate the corrosive effects of marginal increase in adverse selection costs in the
perpetual futures market and show how it can lead to run on open interest. Perpetual futures,
93% of crypto derivatives volume, rely on funding rates as their primary arbitrage mechanism to
anchor prices to spot markets. Using the Terra, FTX, and SVB collapses as natural experiments, I
document that similarly severe crises produce disproportionate impact on arbitrage functionality
and run behavior. Applying global games, I model investors’ stay-or-exit decisions as functions
of public signals (spot volatility) and private signals (adverse selection costs), identifying a
volatility threshold where adverse selection’s effect on open interest flips from stabilizing to
destabilizing, triggering a run. Only during Terra’s collapse did Ethereum volatility exceed this
threshold (1.8%/hour); open interest fell 65%, funding rates ceased correcting the basis, and
arbitrage broke down. My main contribution is to highlight the importance of small departures
from publicly observed signals, and what kinds of departures matter for runs in perpetual

futures. My findings bridge limits-to-arbitrage with the global games run framework.
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1 Introduction

Perpetual futures (perps), constituting approximately 93% of the crypto derivative’s trading volume,
with daily flows often exceeding $100 billion', are a type of derivative contract that enables traders
to speculate on the price of an asset—Ilike Bitcoin, Ethereum, or other cryptocurrencies—without
needing to buy or own the underlying asset itself. The market’s scale is substantial: Bitcoin and
Ethereum together represent approximately 70% of total perpetual futures open interest, with
combined positioning exceeding $125 billion in 2025 and annual trading volume surpassing $58
trillion in 2024. Yet leverage creates fragility: amplified exposure can precipitate runs through
cascading liquidations. Understanding when and why such runs occur requires examining the unique
structure of these instruments.

Unlike traditional futures contracts, perpetual futures don’t have an expiration date, meaning
traders can hold their positions indefinitely Shiller (1993), as long as they maintain the required
margin. Because of no expiration date, there is no guaranteed date when the futures price would
converge to the spot price. The fundamental mechanism anchoring perpetual futures to spot markets
is the funding rate 2, a periodic cash flow between long and short positions that incentivizes
arbitrageurs when the perpetual deviates from the underlying Angeris et al. (2023). When futures
trade above spot, long positions periodically fund shorts, and vice versa, thereby closing the price
deviations between perp and spot. In essence, the funding rate is the primary arbitrage mechanism
in perpetuals.

In well-functioning markets, funding rates effectively enforce price parity He et al. (2022).
However, during periods of market stress, this stability mechanism may fail. I exploit major collapse
episodes in cryptocurrency markets as plausibly exogenous shocks to Ethereum perpetual futures as
natural experiments to study the arbitrage mechanism in perpetual futures markets: the collapse
of the Terra stablecoin ecosystem, the failure of the crypto exchange FTX, and the run on Silicon
Valley Bank (SVB). These stress episodes are remarkably similar in duration and severity, each
destroying comparable market value within a week *. Terra and FTX collapsed within three days,

while the SVB episode unfolded over two days. Ethereum perpetuals on Kraken exchange provide a
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clean laboratory to examine high-frequency funding—basis dynamics because funding is settled
hourly, allowing us to measure funding adjustments at an hourly interval; by contrast, many major
venues typically settle funding every eight hours.

First, I study the arbitrage mechanism of these new asset classes by examining funding rates
during normal and stress periods. I show that the funding rate remains uniform during normal periods
but becomes volatile and drops sharply once the crash begins. These patterns are consistent across
all stress episodes examined. Post-crash, funding rates revert toward pre-crisis levels, indicating
that arbitrage activity recovers sufficiently to restore basis discipline. Next, I examine funding-rate
elasticity across market regimes. Funding-rate elasticity measures how closely the funding rate
responds to the futures—spot basis and is estimated as the coefficient from regressing funding rates
on the basis. A theoretical elasticity of one corresponds to full arbitrage pass-through, under which
funding rates adjust proportionally to deviations between perpetual and spot prices. I therefore
use funding-rate elasticity as an empirical measure of arbitrage effectiveness. Prior to the Terra
collapse, the estimated elasticity is approximately 0.64, indicating partial but stable arbitrage activity.
During the May 7-9 Terra crash, elasticity collapses to 0.38, consistent with a sharp deterioration
in arbitrage effectiveness. Post-crash, elasticity rebounds to 0.91, suggesting a rapid restoration
of arbitrage discipline once market stress subsides. In contrast, during the FTX and SVB stress
episodes, funding-rate elasticity remains high and in several windows exceeds one. Pre FTX and
SVB crashes, I see a stable and near-proportional relation between funding rate and the basis. During
the crash period, the funding mechanism remained highly elastic but was subject to a level shift—
funding rates increased (futures were trading above(SVB), below(FTX) spot), and the arbitrage
mechanism was closing the basis. Post-crash, funding rates became negative (Terra and SVB), but
funding elasticity stabilized, consistent with a restoration of equilibrium.

My central finding is an anomaly across otherwise comparable stress events: while funding
rates decline sharply in all episodes, only a subset exhibits arbitrage collapse. While the Terra
collapse is associated with a breakdown in funding-rate elasticity and hence a failure of the arbitrage
mechanism, the FTX and SVB episodes preserve arbitrage effectiveness despite similarly severe
market stress. This divergence highlights that not all market crashes impair the arbitrage mechanism
in perpetual futures markets. A natural driver of this anomaly is plausibly the availability of

capital required to close the basis. I examine open interest surrounding the crash episodes. Open



interest, the total number of outstanding contracts that remain unsettled, captures the aggregate
leveraged exposure of market participants, including arbitrageurs. I find that the three crisis events
exhibit starkly different open interest dynamics that align precisely with their differential arbitrage
effectiveness patterns.

During the Terra collapse, Ethereum’s open interest experienced a catastrophic collapse. From
a stable pre-crash level averaging $58.7 million in notional value, open interest briefly spiked to
$66 million before plummeting to just $21 million—a 65% decline that persisted throughout the
post-crash period with minimal recovery. This provides evidence of a run on open interest and is
suggestive of a fundamental breakdown in market-making and arbitrage infrastructure. In sharp
contrast, the FTX bankruptcy and SVB failure displayed remarkable resilience in open interest
despite their comparable or even greater systemic importance. During the FTX crisis, open interest
increased only marginally from $9.5 million to over $13 million, and exceeded pre-crisis levels.
The SVB episode showed even greater stability, with open interest fluctuating by just $0.75 million
during the crash period. These differential patterns in market participation directly map to our
funding-rate elasticity findings: arbitrage effectiveness collapse during Terra’s episode coincides
with the run on open interest, while maintained effectiveness during FTX and SVB reflects the
persistence in open interest to intermediate basis divergences.

To examine differential run dynamics in open interest across stress episodes in Ethereum
perpetual futures markets, I employ the global games framework of Goldstein and Pauzner (2005)
and Morris and Shin (2001). Specifically, I examine the impact of marginal change in adverse
selection costs on open interest, conditional on underlying market forces. Several studies have
explored the role of adverse selection in market breakdown Kirabaeva (2010); Morris and Shin
(2012); Chiu and Koeppl (2016). Adverse selection arises because some participants in financial
markets have private information or superior expertise in evaluating new financial instruments and
markets. In normal times, when the fraction of low-quality assets (i.e. the “lemon”) is small, adverse
selection does not have a significant effect on the market. However, during stress episodes, if the
fraction of lemons is large or potential buyers believe it may be large, then even small increases in
adverse selection can lead to a market breakdown. In this context, information costs manifest as
adverse selection costs-the compensation market makers demand for expected losses when trading

against better-informed counterparties Glosten and Milgrom (1985). Information asymmetry creates



strategic complementarities among market participants: when adverse selection costs are high, each
investor rationally anticipates that others may possess superior information about fundamental value
shifts, leading to a run on open interest Brunnermeier and Pedersen (2005)).

In my empirical estimation, adverse selection costs capture investors’ beliefs about the funda-
mentals or asset quality. During normal periods, adverse selection costs are primarily driven by
heterogeneous private information. During crisis episodes, however, adverse selection no longer
operates as a purely private signal and instead becomes an equilibrium object jointly determined
with public volatility. On the other hand, spot volatility o, and other market variables primarily
act as a public signal. Open interest is the aggregate outcome of individual stay-or-exit decisions.
The interaction between volatility and adverse selection costs in my model, therefore, provides an
empirical analogue of the global-games run mechanism. A potential concern with the identification
strategy is that adverse selection costs may be correlated with spot volatility, as both respond to
underlying information flows Grundy and McNichols (1989); Van Ness et al. (2001). I view this
correlation not as a threat to identification but as central to the run mechanism itself. In normal
times, adverse selection reflects idiosyncratic private information. During systemic stress, adverse
selection costs spike because market makers face elevated uncertainty about counterparty beliefs
about asset quality and fundamental values, the same forces driving volatility. The interaction term
in my specification captures precisely this crisis-specific amplification. My empirical contribution
is documenting that this amplification crosses a threshold only during Terra’s collapse, triggering a
run, while remaining below threshold during FTX and SVB despite comparable market stress.

I find that a threshold level of spot volatility o* exists such that, when volatility is below o*,
marginal increases in adverse selection costs are absorbed by open interest. Once volatility exceeds
o, the effect of the marginal increase in adverse selection costs turns negative: deterioration
in beliefs about fundamentals or asset quality is associated with a sharp contraction in open
interest, consistent with run equilibrium. I uncover a distinctive pattern only during the Terra crash,
adverse selection costs become significant conditional on volatility, with volatility (c*) threshold of
approximately ~ 1.8% per hour at which adverse selection costs do not impact open interest. Below
this threshold, adverse selection costs are associated with higher open interest. But once volatility
spikes past *, the sign flips, and adverse selection costs put negative pressure on open interest,

consistent with significant deleveraging that I find. In contrast, FTX and SVB episodes do not



exhibit a statistically or economically meaningful o* and open interest remains stable, suggesting
that not all crashes push perpetual futures into the run region consistent with the global-games
framework Goldstein and Pauzner (2005).

The robustness of this run mechanism is further validated through an out-of-sample test using
the 2021 China regulatory crackdown, an event that introduced sudden, policy-driven information
asymmetry. Consistent with the findings during Terra collapse episode, the crackdown’s initial phase
(Phase I) saw a sharp collapse in funding elasticity and a significant 45% decline in open interest,
accompanied by the robust identification of a statistically significant threshold (o* ~ 4.6% /hour)
which was breached only during this phase of high information asymmetry. Crucially, the o*
threshold was statistically insignificant during the subsequent phases of the China crackdown
(Phases II, III, and IV), mirroring the results of the FTX and SVB periods where the run was not
triggered and open interest remained stable. This replication across an independent, policy-driven
shock confirms that the run on perpetuals is dependent on this endogenous run threshold, providing
strong support for limits to arbitrage Shleifer and Vishny (1997).

In the final part of the paper, I examine the impact of the run on the funding mechanism. I
show that when open interest collapses, the pass-through from basis to funding rate, the measure of
arbitrage effectiveness, declines sharply. In other words, runs on open interest weaken the arbitrage
functionality. This mechanism should be relevant for equity, FX, and commodity futures markets
during stress episodes and connects the global-games run mechanism directly to the functioning of
the core pricing anchor mechanism in derivatives.

The rest of the paper is organized as follows: Section 2 provides the literature review. Section 3
presents data and summary statistics. Section 4 presents empirical methodology. Section 5 presents

results. Section 6 presents robustness tests. Section 7 concludes.

2 Literature Review

The arbitrage mechanism anchoring perpetual futures to spot markets is crucial for market efficiency,
yet it is inherently vulnerable to the classic "limits to arbitrage" documented in financial theory.
The earliest work by Grossman and Stiglitz (1980) established that fully efficient markets are

impossible if information acquisition is costly, creating a fundamental limit on how closely prices



can track fundamentals. More formally, Shleifer and Vishny (1997) showed that capital constraints
on arbitrageurs, such as funding constraints, can cause asset prices to deviate persistently from
fundamental value. The idea of perpetual futures was formalized in academic literature by Shiller
(1993), but the practical application of Shiller (1993) concept lay dormant until cryptocurrency
exchanges operationalized perpetual futures, sparking a new wave of research in this direction.
While recent research on perpetuals Ackerer et al. (2024); He et al. (2022); Gornall et al. (2024)
establish the general effectiveness of the arbitrage mechanism, they leave open the question of how
and why it fails during systemic crises, a gap this paper aims to fill.

The central mechanism investigated in this paper is the endogenous failure of arbitrage driven
by runs using the global games approach. This framework, formalized by Morris and Shin (2001)
and applied to banking by Goldstein and Pauzner (2005), models agents’ decisions (to stay or run)
as strategic complements, where individual action is dependent on the perceived actions of others.
In these models, a unique run threshold (6*) exists, based on the interaction between a public signal
and private signals. When the public signal crosses this threshold, strategic complementarities flip,
leading to a run. My paper applies this framework to model the investors’ ’stay-or-exit’ decision
in the perpetual futures market, by providing a reduced-form model to capture the run threshold.
Morris and Shin (2012) demonstrates how small adverse-selection frictions can lead to the total
breakdown of trade in an asset market; I empirically examine this mechanism in perpetual futures
markets.

In conventional asset classes (FX, commodities, etc.), perpetual futures have not been traded in
practice, but analogous principles exist. The closest parallel is the forward/futures pricing parity
enforced by arbitrage. For example, in FX markets, Covered Interest Parity (CIP) ensures that the
forward exchange rate is tied to the interest rate differential between currencies; any deviation is
quickly arbitraged away under normal conditions. Du et al. (2018) document how CIP famously
failed during the 2008 crisis, with forward prices diverging from parity by dozens of basis points
as credit risk and funding constraints impeded arbitrage. I extend this literature by examining
the same mechanism in the crypto derivative market. De Blasis and Webb (2022) compare the
contract design and microstructure of Bitcoin quarterly futures versus perpetual futures. They
document episodes where arbitrageurs could exploit mispricings between the two markets, but as

crypto markets matured, those opportunities became less frequent. Kim and Park (2025) provide a



theoretical framework for setting the funding rate process optimally and discusses path-dependent
funding and hedging for exchanges to ensure the perp price stays aligned with the underlying.
Streltsov and Ruan (2022) focus on how the introduction of perpetuals changes market behavior.
Using natural experiments, they found that when exchanges added perpetual futures, trading activity
surged and those markets attracted more informed traders. Alexander et al. (2020) examine BitMEX
Bitcoin futures (both the perpetual swap and fixed-maturity quarterly futures) and find that the
BitMEX perpetual plays a dominant role in price discovery for Bitcoin, often leading the spot market.
Their results also suggest the periods of information inefficiency, where futures and spot diverge,
profitable hedging and arbitrage opportunities are created. Broadly, several papers have explored
the role of arbitrage in digital assets Liu et al. (2023); Joshi (2025); Makarov and Schoar (2020);
Lyons and Viswanath-Natraj (2023). I extend the literature by examining the arbitrage mechanism
in perpetual futures during periods of systemic stress. Most importantly, I extend literature on
classical limits to arbitrage Shleifer and Vishny (1997); Grossman and Stiglitz (1980) by showing
that capital constraints can be triggered endogenously, and I provide an empirical application of
global games run thresholds Goldstein and Pauzner (2005); Morris and Shin (2001) to the perpetual

futures market.

3 Data & Sample Construction

I utilize minute-by-minute trade and perpetual futures data for the Ethereum/USDC pair from Kaiko,
a leading provider of cryptocurrency data Makarov and Schoar (2020). The data spans 2020 through
2023, encompassing multiple stress episodes. I use data for the Kraken exchange because its hourly
funding AsiaNext Exchange (2024) provides me with a setup to examine high-frequency data. I
compute market microstructure variables from ETH-USDC trade data and aggregate them hourly.
Following Hasbrouck (1993), the realized volatility of Ethereum prices, crrH , is obtained using a
24-hour rolling window of hourly close-to-close price changes. This estimator adjusts for the bias
induced by bid-ask bounce and provides an estimate of the efficient price volatility. This approach

builds on the model of Roll (1984) but directly estimates the volatility of the efficient price rather



than the spread. The variable is measured in USD and is computed as:
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I compute hourly returns, Returns;, as the logarithmic price change from the previous hour,

capturing short-term return persistence.
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where ¢g; € {+1, -1} indicates buyer- or seller-initiated trades and V; is the trade volume.

3.1 Estimation of Adverse Selection

The measure of information asymmetry follows Glosten and Harris (1988) framework to compute
adverse selection, which estimates the adverse-selection component of the bid—ask spread by
regressing price changes on trade direction and trade size. Accordingly, I denote the unobserved
true price of the asset by m,. It represents the price of the asset assuming a fully competitive market
maker and no inventory costs or clearing fees. Innovations in m;,, therefore, result from public news

or information arrival through order flows. More formally,
my—me—y = e + 07, 4)

with Q; = 1(—1) for a buyer- (seller-) initiated trade. In Equation 4, ¢, represents the impact of
public news, and Z; is the market maker’s compensation for bearing the adverse selection risk.
Hence, Z, is the adverse selection component of the bid-ask spread. The observed prices reflect

factors such as the market maker’s monopoly power, inventory costs, and clearing fees. To account



for these factors, Glosten and Harris (1988) include a second component in their specification,

called the transitory component. Formally,

Py =m; + 0,Cy, )

where the dependence of the transitory component on the trade direction reflects the fact that market
makers buy low and sell high.

Larger trades increase the bid-ask spread through both components. Therefore, I allow Z; and
C; to depend on the volume, V;. Glosten and Harris (1988) assume a linear dependence to facilitate

the estimation.
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Substituting these into Equation 5 and taking the first difference gives

P —Pi1=co(Qr = Q1-1) +c1(Q1 Vi = Q1-1Vi1) + 200 + 210:V; + ¢4 (6)

I estimate the parameters in Equation 6 for every trading hour. I observe all the variables in
Equation 6 in the data and can estimate the parameters, cg, c1, Zo, and z; through OLS regressions.*
Using the estimated parameters, ¢y, ¢, 2o, and 71, I calculate ¢ ; and Zt for each trade. My measure

of the adverse selection component of the bid-ask spread for the trading hour 4 is

Adverse Selectiony, = Z Z,
teh

“Contrary to Glosten and Harris (1988), I can observe the trade direction (Q;) in my data. Furthermore, the rounding
error in prices is negligible in my setup, given the minuscule tick size on Exchanges (0.00000010 for BTC/USD pair).
Therefore, I do not resort to the maximum likelihood method to estimate the parameters.



All variables are computed hourly and lagged one period when used as predictors in the model.

Next, I compute hourly adverse selection costs, such as:

Volume?*"
AS Cost; = RawAS[;_ ) X | ——

Price;

where RawAS|,_1_,;] denotes the median adverse-selection component between 7—1 and 7 (in
USD/ETH), Volurnef“h is the 24-hour notional trading volume (in USD), and Price; is the spot
ETH price (USD/ETH).

3.2 Summary Statistics

Table 1 reports summary statistics for Ethereum spot and perpetual markets across three major
disruption events: the Terra/Luna collapse (May 2022), the FTX bankruptcy (November 2022), and
the Silicon Valley Bank (SVB) failure (March 2023). Each event is partitioned into pre-crisis, crisis,
and post-crisis windows, allowing for a cross-event comparison of market microstructure dynamics
under extreme stress. All statistics are based on hourly observations. Adverse selection costs are
reported in scaled units of cost per $10,000 notional per hour; specifically, the table entries must be
multiplied by 10* to obtain the underlying cost. For example, an entry of 1.69 corresponds to an
underlying adverse-selection cost of 1.69 x 10* = 16,900 USD per hour.

Funding-rate and basis dynamics reveal distinct patterns in market positioning across events. In
Terra, the mean funding rate rises from approximately 0.002 in the pre-crisis window to about 0.01
during the crash, before turning negative in the post-crisis period (0.002). Combined with a shift in
the average basis from mildly positive (0.17) to more elevated levels (0.32) during the crash, then
slightly negative (0.05) afterward, this pattern is consistent with an initial buildup of leveraged long
positions supporting arbitrage, followed by broad deleveraging once the peg breakdown becomes
persistent.

By contrast, the FTX episode is characterized by persistently negative funding rates and deeply
negative bases. The mean funding rate falls from —0.003 pre-crisis to around —0.02 in the crash
window and remains negative post-crisis. The basis moves from a modest discount (—0.11) to a much

larger one (—0.85) during the crash, before settling at an intermediate discount (—0.47) post-crisis.
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This pattern reflects sustained short pressure and a prolonged period in which perpetual prices
trade at a discount to the index. The SVB disruption shows a more modest but highly asymmetric
dislocation: the pre-crisis basis is slightly positive (0.16), turns mildly negative in the crash window
(—0.06), and collapses to a large discount (—2.65) in the post-crisis period, indicating persistent
pricing stress even after the immediate failure window.

Volatility and transaction costs rise across all three events. Measured by oy, average volatility
roughly doubles in the crash window for both Terra and FTX (from about 1% to 2%), and increases
from roughly 0.5% to 1% for SVB. Post-crisis, volatility normalizes quickly for FTX, falling back
toward pre-crisis levels, but remains at or above pre-crisis levels for Terra and especially SVB.

Bid-ask spreads and adverse selection-driven trading costs (market makers’ risk premia) show
particularly strong stress patterns once the scaling is taken into account. For Terra, the mean risk
premia rises from 2700 USD in the pre-crisis window to 18,400 USD during the crash, before
falling to 3600 post-crisis. FTX displays the same qualitative pattern: Risk premia rises from 6,800
to 14,000 USD during the crash and then drops to 1,800 post-crisis. SVB exhibits a smaller but
still meaningful increase in adverse selection costs from 700 pre-crisis to 1,800 USD in the crash
window, followed by a modestly higher post-crisis level of 2,200. Across all events, market makers’
risk premia becomes markedly more expensive.

Open interest and order flow highlight differences in market participation and the depth of
available capital across events. Terra exhibits a dramatic collapse in mean open interest, from 58.74
million pre-crisis to 49.27 million during the crash and just 20.30 million post-crisis, implying a
sharp contraction in the capital to absorb price and funding-rate shocks. In contrast, FTX shows a
mild increase in open interest from 10.96 to 11.33 million in the crash window and to 11.83 million
post-crisis, suggesting that some capital remained engaged or was even attracted by the dislocation.
SVB features a gradual erosion of open interest (from 9.36 to 9.05 and then 8.94 million), consistent
with a more conventional risk-off retrenchment.

Order-flow imbalances become more negative during all three crisis windows, reflecting the
dominance of aggressive selling pressure. Terra’s mean order flow moves from approximately zero
(0.002) pre-crisis to a clearly negative value (0.07) during the crash, before turning positive (0.08)
post-crisis, suggesting net buying interest as prices stabilize at lower levels. FTX shifts from slightly

positive order flow (0.06) before the collapse to negative order flow (0.04) in the crash window,
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and remains marginally negative thereafter, consistent with continued net selling and unwinding of
long exposure after the bankruptcy. SVB displays the most severe deterioration in order flow in
relative terms, declining from 0.10 pre-crisis to 0.25 in the crash period, with only a partial recovery
(0.04) post-crisis. These patterns underscore that microstructure responses are highly event-specific,

shaped by the nature of the underlying shock and the resilience of available capital.

4 Empirical Setting

4.1 Arbitrage Mechanism

I examine how closely the perpetual funding rate tracks the basis around the stress episodes. My
analysis centers on the fundamental arbitrage relationship that governs perpetual contract pricing,
where funding payments serve as the primary mechanism for anchoring derivative prices to their
underlying spot values. To understand the arbitrage mechanism, I examine the funding rates during
stress regimes. The funding rate consists of two components: a fixed interest rate and a dynamic
component (premium) that adjusts to the basis. The variation in the dynamic component captures
the efficacy of arbitrage mechanism. Funding-rate elasticity captures how closely the dynamic
component of the funding rate adjusts to the basis, and is computed as the coefficient from regressing
funding rates on the basis. Since the interest rate is fixed, the coeflicient of regression captures the
impact of variations in dynamic rates on the basis. A theoretical elasticity of one implies that the

arbitrage mechanism fully aligns the perpetual price with the spot price and effectively closes the

perp-spot gap.
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Following He et al. (2022) to quantify the degree of futures—spot mispricing and assuming

r —r’ =~ 0 (areasonable approximation since there is no interest on ETH holdings), the annualised
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no-arbitrage deviation measure in ETH, p, for each minute can be computed as
p: = k (logF; —log S;).

where F; denotes the perpetual futures price and S; represents the spot index value at time t. The
scaling factor emerges from the institutional structure of cryptocurrency perpetual markets in
Kraken, where funding payments typically occur at hourly intervals (24 times times daily). The

annualization thus requires:

k = 24 payments/day X 365 days/year = 8760 hours/year ©)
—— ——

This scaling transforms minute-level basis observations into annualized percentage rates,
facilitating economic interpretation. I utilize minute-by-minute Ethereum/USD perpetual futures
data from Kraken, spanning 2020 through 2023, encompassing multiple stress episodes. Kraken’s
hourly funding AsiaNext Exchange (2024) provides an ideal laboratory for examining funding-basis
dynamics at high frequency. The dataset includes the perpetual futures price F;, the corresponding
spot index price S;, the funding rate f; applied to positions, as well as trading activity metrics like
open interest, bid—ask spreads, and volume. Following exchange conventions, the hourly funding
rate f; is settled at the end of each hour, while the contemporaneous basis is defined as the log
difference between mark and index prices. The mark price is the exchange’s internal fair-value

estimate of the perpetual contract. The index price represents the reference spot value of ETH/USD.
b; = In(mark;) — In(index;). (10)

I construct an evenly spaced one-hour panel and compute the average premium over the

preceding hour,

- 1
bioti=g5 D, b (11

selt—1,t)

which serves as the explanatory variable for the next-hour funding payment. Both funding and basis

are expressed in annualized units by multiplying by « = 24 x 365 = 8760. The baseline regression
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is

FAPR — o 1 BpAPR 4 ¢, (12)

where pAPR = kb,_1, represents the annualized premium, and j captures the elasticity of the
dynamic component of the funding rate, 5 = f’ﬁ‘%'

The coeflicient 8 captures the funding-basis elasticity—the percentage change in funding rates
associated with a one percentage point change in the annualized basis. In a frictionless benchmark
with fully effective arbitrage, we would expect 8 = 1, meaning funding adjusts one-for-one with
the basis and fully transmits price discrepancies into funding incentives. Values of § below 1
indicate under reaction: funding does not adjust enough to close the basis, suggesting a weakened
or constrained arbitrage channel. Values of 8 above 1 indicate overreaction: funding moves more

than one-for-one relative to the basis, consistent with an aggressive response in which the funding

mechanism strongly rewards (or penalizes) positions and draws in additional arbitrage activity.

4.2 Run Mechanism

The empirical model is motivated by global-games run frameworks in the spirit of Morris and
Shin (2001); Goldstein and Pauzner (2005). In those models, agents decide whether to stay or run
based on their heterogeneous private beliefs (information) about the fundamental state 6, and the
homogeneous public information. Investors’ decisions are driven by the interaction between public
and private information structures that give rise to a unique threshold 6* at which the decision

switches from no-run to run. I map this structure to the perpetual market as follows:

* The fundamental is the investor perception about asset quality. The higher the belief that
"lemons" exist, the lower the fundamentals. Each investor faces private information costs
captured as the adverse selection cost per trade. This measure captures market makers’ risk
premia from trading against better-informed counterparties. The higher the adverse selection

costs, the lower the fundamentals. It plays the role of a private signal to market participants.

* | proxy market resilience by short-horizon spot volatility o;. Higher o, indicates a more
fragile trading environment with greater execution and margin risk. Volatility o is uniformly

observed by all market participants and therefore acts as a public signal.
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* Open interest 01, is the aggregate outcome of individual stay-or-exit decisions. A run on
open interest corresponds to a sharp decline in O/, as many arbitrageurs simultaneously

choose to exit.

Investors choose whether to maintain or liquidate their position based on this information
structure. Under standard assumptions, the equilibrium can be characterized by a threshold rule: for
a given level of public stress oy, investors exit when their adverse selection costs exceed a cutoff.

The capital outflow, open interest decline, is a function of public and private signals.

4.2.1 Reduced-Form Specification for Open Interest

Rather than estimating a structural global game, [ work with an empirical reduced-form representation
of the equilibrium relationship between open interest, market frictions, and adverse selection costs.

I estimate coefficients as

Ol; = a+Bas-AS_cost,_| + B - 041+ Basxo - AS_cost,_| X or—1 + ¥ X1 + tn(r) + &, (13)

where:

* OI; is open interest (in millions of USD) in the ETH perpetual at hour ¢;
e AS_cost, is the adverse selection cost ;

* o, is the spot volatility of ETH;

* AS_cost, - 0y is the interaction that captures state-dependence of the effect of heterogeneous

information costs on open interest;
e X, are controls (such as order-flow imbalance, and returns);
* [n(r) are hour-of-day fixed effects;

e g, is an error term.

15



Equation (13) can be interpreted as a local linear approximation to the global-games equilibrium
mapping from the public signal o and the distribution of private information costs (summarized by
AS_cost,) into the aggregate outcome O1;. The key nonlinearity implied by global games theory
is that the impact of information costs on the equilibrium mass of “stayers” (investors that keep
positions) is state-dependent. beyond a certain level of public stress, small changes in private

information can trigger a run.

4.2.2 Adverse Selection Costs and Volatility Threshold

I focus on the impact of marginal change in information costs on the investors’ action, conditional
on the public signal. In my specification, the marginal effect of adverse selection costs on open

interest is given by the partial derivative of O, with respect to AS_cost;:

001,

_ 9 .. 14
JAS_cost, Bas + Basxo T (14)

Equation (14) has a simple interpretation:

001,

* For a fixed level of volatility o, PAS costy

measures the expected change in available capital

(open interest) associated with a marginal increase in information costs.

. If 90L

PAS cost 0, the market can absorb higher information costs without losing available

capital; adverse selection is not yet “run-inducing.”

° If 601,

FAS cos, < 0, higher information costs are associated with a decline in open interest;

adverse selection becomes capital-destructive and is consistent with a run on positions.

A central implication of global-games models is the existence of an equilibrium threshold (the
public signal) at which investor behavior changes and a regime shift happens (run equilibrium). In my
reduced-form representation, this threshold is captured by the volatility level at which the marginal
effect of adverse selection on open interest switches sign. Equating (14) to zero yields the threshold
volatility. The volatility threshold o in (15) is then the empirical analogue of the global-games run
threshold: a level of public stress at which a marginal increase in private information costs changes

from stabilizing to destabilizing for open interest.
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001, 0 . Bas

_ = > = —
OAS_cost; 7 Basxo

5)

For o to be a strong and valid threshold, 545 and Basx s must be of opposite signs and be
statistically significant - the implied o* in (15) is positive. This delivers the global-games—style

threshold:

01, >0, ifoy <o*— No Run

O0AS_cost; - (16)

<0, ifo;>0" > Run

When 0, < 0¥, marginal increases in adverse selection costs are absorbed by available capital;
the market remains in a “no-run” region. Once oy exceeds o, the sign flips, and increases in
adverse selection costs are associated with declines in open interest, consistent with withdrawal of
the capital. In my empirical work, I estimate (13) separately for distinct stress episodes (Terra, FTX,
SVB, and the 2021 China ban phases) and compute o*. I then compare the location of o™ relative

to realized volatility and the behavior of open interest across episodes.

5 Results

5.1 Baseline estimates

I begin by examining the evolution of the dynamic component of funding basis elasticity (3)
for Ethereum perpetual contracts on Kraken from September 2020 to April 2022. This interval
includes multiple market cycles, volatility regimes, and systemic stress events. I examine the
funding—basis relation during normal market conditions to establish a baseline against which
stress-period distortions can be measured. Establishing this benchmark is essential: it provides clear
evidence of what “efficient” arbitrage looks like during calm market periods.Figure 1b displays
the scaled elasticity series across this 20-month window. The subsequent stress events—Terra’s
collapse, the FTX bankruptcy, and the SVB collapse can therefore be interpreted as deviations from
this baseline. Table 2 presents baseline results for arbitrage functionality. I find that, in the calm

periods, the mapping between the prior-hour premium and next-hour funding rate is stable and
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consistent, with funding payments from long to short most of the periods. This behavior is fully

consistent with the functioning arbitrage mechanism during calm periods.

5.2 Funding Rate Dynamics during Market Stress

Do all market stress limit "arbitrage” in perpetual futures? I examine funding rates, a crucial perp
spot price-convergence mechanism, during periods of extreme market stress. Figure 2 presents
the 48-hour rolling average funding rate (annualized) across three distinct periods: the Pre-Crash,
Crash, and Post-Crash periods, shaded in green, red, and blue, respectively. This is a period of stress
transmission from the Terra, FTX, and SVB ecosystems to ETH derivatives markets. Funding rate
remained stable pre-crash but shows a steep decline once the stress starts.

Next, I examine how closely the perpetual funding rate tracked basis around stress episodes.
Understanding when and why funding elasticity breaks down can reveal deeper insights into the
behavior of traders and the health of derivatives markets. Figure 3 shows the hourly relation between
the next-hour funding rate and the prior-hour premium.

The baseline regression is.

ftAPR :a+/5’prR+st, 17

where pr R = xb,_1., represents the annualized premium.

Figure (3, and 4) and Table 3 present results. Results suggest that the pre-Terra period exhibits
B =1.44 x 1073 (R? = 0.113), corresponding to a scaled elasticity of 0.64. During the Terra crash
(May 7-10), 3 is insignificant and declines to 0.64 x 107> (R? = 0.11), with a scaled elasticity of
0.38. An increase in the intercept [1.44 (pre) to 8.41(post)] indicates an increased response of the
dynamic component of the funding rate. This suggests that arbitrageurs were attempting to close the
basis; however, a decrease in elasticity (f) indicates that the arbitrage mechanism was ineffective in
restoring the basis. In the post-crash phase (May 11-30), 8 increases to 1.52 x 107 (R? = 0.13),
and the scaled elasticity rises to 0.91, consistent with restoration of arbitrage mechanism.

The pre-FTX period exhibits 8 = 2.43 x 107> (R? = 0.64), corresponding to a scaled elasticity
of 1.44, indicating a strong and stable link between funding rates and the basis. The intercept is
negative (@ = —6.95 x 10~%), implying that, on average, perpetual prices trade below spot and shorts

pay longs even after controlling for the basis. During the FTX crash window (November 6-11),
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B increases to 2.91 x 107> (R? = 0.75), with a scaled elasticity of 1.72, reflecting a temporary
amplification of the pass-through from basis deviations to funding adjustments. At the same time,
the intercept becomes more negative (@ = —1.39 x 107), indicating that the level of funding
shifts further downward and that short positions pay a larger amount to longs during the crash. In
the post-crash phase (November 12—-December 15), S rises further to 3.18 x 107> (R* = 0.91),
and the scaled elasticity reaches 1.88, consistent with a strengthened funding - basis linkage as
markets stabilized, while the intercept remains negative (@ = —9.97 x 10~°), signaling a persistently
discounted perp relative to spot and continued net payments from shorts to longs.

Silicon Valley Bank faced a rapid deposit run on March 8- 9, 2023, and was closed by regulators
on March 10, 2023. Withdrawal requests of around $42B (25% of deposits) hit within eight hours;
end-of-day cash balance about —-$958M. Funding « turned more negative as balance sheets tightened
and shorts demanded premia, but 8 did not break, so the arbitrage mapping still functioned like
FTX. Around this failure, ETH perpetuals on Kraken exhibit a tight funding - basis relation with a
downward level shift: the crash window scatter shows more negative funding for a given premium,
while the elasticity remains near or above its pre-period level and only eases afterward. This mirrors
the FTX episode in which arbitrage effectiveness is preserved. By contrast, during Terra’s collapse,

arbitrage effectiveness collapses.

5.3 Runs and Global Games Approach

Why would similarly devastating market events have opposite effects on funding rate elasticity?
To understand the source of this anomaly, I analyze open-interest dynamics and interpret sharp
and persistent contractions in open interest as runs on perpetual futures markets that impair the
correction of basis deviations. Figure 5 plots the open interest rate every hour during the stress
episodes. I find that open interest behaves very differently across crash episodes. During the Terra
collapse, average ETH perpetual open interest falls from about $58.7 million in the pre period to
$20.3 million in the post period—a decline of roughly 65%—with the crash window itself exhibiting
both elevated volatility and extremely wide dispersion in open interest. By contrast, during the FTX
bankruptcy and the SVB failure, ETH perpetual average open interest remains in a relatively narrow

range: it drifts slightly upward from $10.9m to $11.8m across the FTX episode and declines by
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only about 1% (from $9.38m to $9.28m) across the SVB window. In other words, only during the
Terra crash period, there was a run on the ETH-perpetual market as seen by capital constraints to
arbitrage.

To understand the cause of the run only during the Terra crash episode, I bring to this setting a
global-games perspective in the spirit of Morris and Shin (2001); Goldstein and Pauzner (2005). In
global games models, agents decide whether to stay or run based on a fundamental state and noisy
private signals about that state, and a threshold emerges at which the unique equilibrium switches
from no-run to run. I adapt this framework (Equation 16) by modeling investors’ stay-or-exit
decisions (change in open interest) as a function of public stress (volatility) and private signals
(adverse selection and costs, see Table 4, and 5). Table 6 presents results for the global games reduced
form model. During the Terra crash, I estimate 845 = 4.591 (p<0.01) and Basxos = —257.249
(p<0.01), yielding a volatility threshold o* = 1.785% per hour (see Table 7). This threshold lies
within the range of realized hourly volatility during the crisis, Terra crash median o = 0.71%,
with peaks exceeding 1.8% for 37 hours (Fig 7). As o, crossed o, the marginal effect of adverse
selection on open interest flipped from positive to negative, triggering a withdrawal of open interest,
a run equilibrium. Open interest collapsed by 65% (Figure 5a), consistent with a run regime. During
the pre and post-crash periods, volatility remained below the threshold all the time, and open interest
remained stable.

In stark contrast, during the FTX and SVB crash episodes, the run mechanism was not activated
(Table 7 and Figures 8, 9). For FTX, Basx o 1s statistically insignificant (—=6.062, p>0.10), implying
no meaningful threshold. For SVB, the interaction term is positive during the crisis (85.659, p>0.10),
but the opposite sign is required for a run threshold. Consequently, even though volatility crossed
the threshold in both events (FTX crash o = 0.9%, SVB crash o = 1.1%), adverse selection
costs did not induce the same run dynamics. Moreover, during the SVB Collapse period, the
threshold volatility of 1.1% was statistically significant post-crash, and volatility remained below
this threshold before. Open interest remained stable (FTX: +36%; SVB: -4%) (Figure 5b, 5¢), and

the funding—basis elasticity stayed near or above 1, indicating preserved arbitrage functionality.
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5.4 Runs on Open Interest and Arbitrage Breakdown

The preceding analysis establishes three facts: (i) open interest collapses during the Terra episode
but remains stable or increases during FTX and SVB episodes; (ii) funding-rate elasticity breaks
down during Terra but persists during FTX and SVB; (iii) only Terra episode exhibits a statistically
significant run threshold o™ that realized volatility breaches. I now directly test the mechanism
linking these findings, whether runs on open interest impair the funding rate to correct basis
deviations.

The funding rate mechanism requires arbitrage capital to function. Arbitrageurs holding positions
absorb basis deviations and collect funding payments, ensuring that funding rates adjust to close
the futures spot gap. When arbitrageurs exit en masse, the capital necessary to enforce price parity
disappears. If runs are the mechanism through which arbitrage breaks down, open interest collapse
should result in the breakdown of the arbitrage mechanism.

I estimate:

ft=a'+ﬂ-01t,1+8, (18)

where f; is the hourly funding rate (scaled to 10°) and OI,_; is lagged open interest (in millions
USD). Under normal conditions, funding rates respond to the basis, and open interest should have
limited explanatory power for funding rate levels. During a run, however, open interest becomes
the binding constraint; as capital flees, the funding mechanism loses its corrective capacity. The
coeflicient B sign across episodes is central to understanding the impact of the runs on arbitrage
effectiveness. Table 8 summarizes the patterns.

When $ > 0 and significant during a crash, open interest and funding rates move together - both
declining as arbitrageurs exit. When S < 0 and significant, open interest and funding rates move
inversely - open interest increases while funding rates fall into negative territory. Arbitrageurs enter
to exploit the dislocation, and the funding mechanism operates to attract this capital, consistent
with arbitrage functioning. The sign and significance of 8 across crisis windows therefore provides
evidence on whether run on open interest contributed to the arbitrage mechanism failure.

Table 9 presents the results. During the pre-crash period, open interest has no significant
relationship with funding rates. The funding mechanism operates independently of the open interest,

which is not a binding constraint. This changes sharply during the crash. Open interest becomes a

21



significant predictor of funding rates. The positive coefficient indicates that a run on open interest
predicts funding rates collapse: as arbitrageurs exit, the funding rate’s capacity to correct the basis
deteriorates in tandem. This is direct evidence that the run on open interest impaired the arbitrage
mechanism. Post-crash, with open interest stabilized at approximately $20 million, 65% below
pre-crash levels, the relationship again becomes insignificant. The market reached a new equilibrium,
but one with diminished capital.

The FTX episode presents a striking contrast. Open interest is highly significant across all
periods, but the coefficient is negative and turns positive in the post-crash period. This reflects the
market dynamics during the FTX period: Ethereum perpetual prices traded below spot, and funding
rates turned negative, in which short positions paid long positions. As arbitrageurs entered the
Ethereum perpetual market to exploit the funding opportunity, open interest increased. The negative
B therefore indicates arbitrage functioning, not failing. Open interest rose from $9.5 million to
over $13 million during the crash window (Figure 5b), a 36% increase. The funding mechanism
continued to close the basis and arbitrage functionality were preserved.

The SVB episode reveals a more nuanced pattern. Open interest predicts funding rates across
all windows with positive coefficients. The relationship intensifies during the crash; however, the
underlying dynamics differ fundamentally from Terra. Open interest declined only modestly during
the SVB crash (approximately 4%), then recovered within the same window (Figure 5c). The
positive coeflicient indicates that open interest and funding rates were jointly stressed, but the run
did not materialize. This pattern aligns precisely with the threshold estimates in Table 7: during
SVB, the run threshold o* was insignificant, and realized volatility did not trigger the global-games
run equilibrium. SVB represents a stressed market in which there was a small contraction in open
interest, but run was not triggered.

These findings establish that runs on open interest are the mechanism through which arbitrage
breaks down in perpetual futures markets. The funding rate requires capital to function. When
investors exit, capital flees, and the anchor fails. When investors enter or simply remain engaged,

the mechanism persists even under extreme market stress.
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6 Robustness

The phased China 2021 regulatory crackdown is a powerful natural experiment to test the limits of
arbitrage under the global games framework. The ban is correctly seen, as recent work shows, as
one of the sharpest regulatory shocks in crypto’s history, causing a market-wide collapse in prices,
a spike in volatility, and—most relevant for this study—plummeting market quality through mass
liquidity withdrawal and forced exit of arbitrageurs. Manwaring (2021).

China’s regulators progressively escalated restrictions on crypto activity from May to September
2021. On May 18, financial associations ordered banks and payment firms to halt all crypto-related
services, citing financial-stability risks. On May 21, the State Council explicitly targeted Bitcoin
mining and trading, triggering nationwide enforcement and shutdown orders across major mining
provinces through June. By September 24, the PBoC and nine national agencies declared all crypto
transactions illegal and barred foreign exchanges from serving Chinese users. The phased nature
of regulatory announcements created an information-revelation sequence: initial policy ambiguity
(Phase I) was gradually resolved through enforcement actions (Phases II-III) and culminating in a
comprehensive, symmetric ban (Phase IV) as shown in Table 10.

I first show that the funding rate elasticity collapses towards zero (Fig 10 and Table 11 ), in
Phase I, with the highest level of information asymmetry. During the pre-crackdown period, the
funding mechanism operated with near-ideal efficiency (Bscaled = 1.48), where 30% of funding-rate
variation was explained by observable basis deviations, consistent with well-functioning arbitrage
markets. In Phase I, both funding elasticity collapses to 0; Bscaled = 0.09, R? ~ 0). The estimates
indicate that the dynamic component of the funding rate ( f,dyn) stops responding to mispricing.
Elasticity recovers towards a value of one post Phase I period.

To understand the collapse in funding elasticity around the China crackdown, I examine open
interest. A sudden decline in open interest implies a run on perpetual. (Figure 11). Prior to the ban,
average open interest was about $72.7 million, with values ranging from $45.7 million to more
than $102 million. During Phase I of the ban, open interest falls to $39.4 million—a decline of
roughly 45% relative to the pre-ban mean—and the lower tail reaches levels near $20 million. In
Phases II and III, open interest stabilizes at an even lower plateau of $27-31 million, before partially

recovering in Phase IV (mean $77.3 million). Thus, the China ban episode features a discrete,
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policy—driven run on ETH perpetual positions in Phase I, followed by a no-run regime in which
open interest remained stable and increased during later phases.

I adapt the global games approach (Equation 16) to understand the cause of the collapse of
open interest during Phase I and model investors’ stay-or-exit decisions (change in open interest)
as a function of public stress (volatility) and private signals (adverse selection costs). Results
are presented in Table 13 and Figure 12. During Phase I, I estimate S5 = 1.987 (p<0.01) and
Basxo = —42.837 (p<0.01), yielding a volatility threshold o = 4.6% per hour. This threshold is
statistically significant and lies within the range of realized hourly volatility during Phase I (Fig. 12,
Terra crash median o = 0.71%, with peaks exceeding 1.8% for 37 hours). As o; crossed o*, the
marginal effect of adverse selection on open interest flipped from positive to negative, triggering
a run. Open interest collapsed by 45% (Figure 11) soon after volatility crossed the threshold o*
during Phase 1. During other Phases, o* was statistically insignificant, and the run was not triggered
despite volatility o= crossing the threshold o* during Phases III and I'V. Results from Phase I (Table
11 and Figure 10) suggest that the funding rate could not correct the basis, and arbitrage broke
down. Overall, these robustness checks confirm that the results are fully consistent with the patterns
observed during the Terra, FTX, and SVB episodes, and they extend the global-games framework
of Goldstein and Pauzner (2005); Morris and Shin (2001) and the limits-to-arbitrage insights of

Shleifer and Vishny (1997) to an empirical setting in perpetual futures markets.

7 Conclusion

This paper applies the global games framework to identify when and why arbitrage mechanisms
fail in derivatives markets. Our contribution to the literature is threefold. First, I document a new
empirical puzzle: similar crises of comparable severity produce starkly opposite effects on arbitrage
functionality. This finding suggests that the crisis magnitude alone may not fully determine run
behavior, pointing to additional mechanisms at work. Second, I provide a theoretical resolution
grounded in the global games run threshold equilibrium model. By mapping the global games
framework onto perpetual futures markets, with spot volatility as a public signal, adverse selection
costs as an an equilibrium object which originates from private information but whose variation

becomes endogenously linked to public volatility during stress episodes, and open interest as the
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aggregate outcome, I derive an endogenous volatility threshold that separates run regimes from
non-run regimes by estimating the run equilibrium threshold. This threshold is empirically estimable
and statistically significant only during Terra’s collapse episode, precisely when arbitrage failed.
Third, I bridge two foundational literatures. I extend classical limits to arbitrage by showing that
constraints can emerge endogenously, complementing capital shortage as an explanatory channel.
Simultaneously, I provide an empirical application of global games run thresholds to the derivatives
(perpetual futures) market by identifying the specific mechanism through which arbitrage breaks
down under stress. My findings carry implications for exchange design, regulatory surveillance, and
risk management: monitoring volatility relative to estimated thresholds may provide early warning

of arbitrage mechanism failure before capital flight becomes visible.
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Figure 1: Historical Funding-Basis Elasticity (Scaled 5), ETH perpetual. The dashed line represents
the theoretical benchmark 8 = 1. I plot the scaled funding—basis elasticity (Bscaleq = 8/median( f;/p;)) and
funding rate over 20 months. The scaling adjustment is for better interpretation of dynamic funding elasticity.
I see the value of funding elasticity consistently over the theoretical benchmark value during the period of
key market events. The funding rate was consistently elevated from November 2020 to April 2021. A positive
funding rate implies that the futures is over spot. An increase in the funding rate implies increased investors’
participation. The 8 ~ 1 levels are consistent with an efficient pricing regime.
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Figure 2: Kraken ETH Perpetual Funding Rates Around Major Market Crashes. Hourly annualized
funding rates (APR) are shown for three crisis episodes: (a) Terra collapse (May 2022), (b) FTX collapse
(Nov 2022), and (c) SVB collapse (Mar 2023). Shaded regions denote the event windows. Each episode
shows a sharp deviation of funding from equilibrium levels, consistent with transient dislocations in the
arbitrage mechanism. The red dotted horizontal line is the inflection point where the funding regime changes
from Long to Short. Above the red line, futures trade over spot.
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Figure 3: Funding—premium elasticity on Kraken ETH perpetuals around major stress events.

Each panel plots next-hour funding (APR) vs. the prior-hour perp—spot premium (APR) for pre-, crash-,
and post-event windows with within-window OLS fits: (a) Terra—flatter slope and higher dispersion
(impaired arbitrage); (b) FTX—tight, nearly linear mapping with negative premium (shorts pay long); (c)
SVB—downward level shift with slope largely preserved (funding-liquidity shock).
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Figure 4: Funding-Basis Elasticity Across Three Stress Episodes

This figure reports the scaled funding—basis elasticity, Bscaled = 8/median(f;/p;), for Kraken ETH/USD
perpetual swaps during three systemic events: Terra (May 2022), FTX (Nov 2022), and SVB (Mar 2023).
The dashed horizontal line marks the benchmark g = 1. Elasticity collapses during the Terra run but remains
above 1 during FTX and SVB, indicating preserved arbitrage function.
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Figure 5: Ethereum Perps Open Interest Around Major Market Crashes.
Open Interest (notional) for three crisis episodes: (a) Terra collapse (May 2022), (b) FTX collapse (Nov
2022), and (c) SVB collapse (Mar 2023). Shaded regions denote the event windows. The Terra episode shows

the steepest decline in Open Interest. The FTX episode shows an increase, while the SVB crash episode
shows a slight decline.
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Figure 6: Ethereum Adverse Selection Costs Around Major Market Crashes.

Adverse Selection Costs (USD) are shown for three crisis episodes: (a) Terra collapse (May 2022), (b) FTX
collapse (Nov 2022), and (c) SVB collapse (Mar 2023). Shaded regions denote the event windows. The Terra
episode shows a sharp increase in Adverse Selection Costs, followed by the FTX and SVB crash episodes.
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Figure 7: Volatility — Terra Period

This figure plots hourly Ethereum (ETH) volatility (o-) in percent from April 15 to May 30, 2022, covering
the Terra collapse. The series is partitioned into three event windows: Pre-Crash (blue, April 15 - May 7),
Crash (red, May 7 - May 12), and Post-Crash (green, May 14 - May 30). The dashed horizontal line at
1.8% marks the volatility threshold o* estimated from the global-games model (Table 7). During the Crash
window, volatility spikes breached this threshold, triggering a run on open interest.
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Figure 8: Volatility — FTX Period

This figure plots hourly Ethereum (ETH) volatility (o) in percent from Oct 15 to Nov 30, 2022, covering the
FTX collapse. The series is partitioned into three event windows: Pre-Crash (blue, Oct 15 - Nov 5), Crash
(red, Nov 6 - Nov 9), and Post-Crash (green, Nov 10 - Nov 30). The dashed horizontal line at 0.9% marks the
volatility threshold o estimated from the global-games model (Table 7). During the Crash window, volatility
spikes breached this threshold, but the run was not triggered as " was statistically insignificant.
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Figure 9: Volatility — SVB Period

This figure plots hourly Ethereum (ETH) volatility (o) in percent from Feb 15 to March 13, 2023, covering
the SVB collapse. The series is partitioned into three event windows: Pre-Crash (blue, Feb 15 - Feb 5), Crash
(red, Feb 8 - Feb 9), and Post-Crash (green, Feb 10 - Feb 13). The dashed horizontal line at 1.1% marks the
statistically significant volatility threshold o* estimated from the global-games model (Table 7), Post Crash.
Pre and during the crash window, volatility was below the threshold, and the run was not triggered. Moreover,
o * was statistically insignificant during these periods (0.6% and -0.1 %).
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Figure 10: Scaled Funding—Basis Elasticity (8) Across China Crackdown Phases. Each bar shows the
scaled funding elasticity (Bscaled = B/median( f;/p;)) during the 2021 China cryptocurrency crackdown.
The scaled elasticity Sscaed = 8/median( f;/p,) with median(f;/p;) = 1.69 x 1073 yields values of 1.5,
0.09, 0.89, 0.53, 0.82, and 0.77 for the respective windows. The elasticity falls sharply to 0.09 during the
high—asymmetry Phase I (May 21 —June 10), indicating impaired arbitrage and weak funding—basis linkage,
and gradually recovers toward unity once the regulatory stance becomes clearer.
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Figure 11: Open Interest Across China Crackdown Phases.

The figure shows the evolution of open interest during the 2021 China cryptocurrency crackdown. Open
Interest falls sharply by 80% during the high—asymmetry Phase I (May 21 —June 10), indicating a run on
perpetuals, and gradually recovers with a significant capital inflow during Phase IV, as adverse selection
costs decline.
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Figure 12: Volatility — China Crypto Ban Period

This figure plots hourly Ethereum (ETH) volatility (o) in percentage terms from May 15 to September 24,
2021, covering the China Crypto regulatory period. The series is partitioned into four event windows. The
dashed horizontal line at 4.64% during Phase I marks the statistically significant volatility threshold o*
estimated from the global-games model (Table 13). During other phases, o was statistically insignificant,
and the run was not triggered despite volatility crossing the threshold.
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Table 1: Summary Statistics — Ethereum Futures

Panel A: Terra

Variable Pre Mean Pre SD Crash Mean Crash SD Post Mean Post SD
Price 2913.47  120.30 2256.09 216.47 1951.43 100.50
Basis 0.17 0.43 0.32 0.54 -0.05 0.25
Funding Rate 0.002 0.005 0.01 0.01 -0.002 0.01
Spread 1.72 0.37 1.69 0.61 1.18 0.21
AS_cost_10k 0.27 1.84 1.84 2.45 0.36 2.05
Open Interest 58.74 1.14 49.27 18.68 20.30 1.12
OETH 0.01 0.002 0.02 0.01 0.01 0.002
Order Flow -0.002 0.77 -0.07 0.61 0.08 0.74
Momentum -0.0003 0.01 -0.002 0.02 -0.0001 0.01
Panel B: FTX
Variable Pre Mean Pre SD Crash Mean Crash SD Post Mean Post SD
Price 1442.30  136.87 1376.60 167.36 1234.27 50.08
Basis -0.11 0.28 -0.85 0.89 -0.47 0.71
Funding Rate -0.003 0.01 -0.02 0.02 -0.01 0.02
Spread 0.63 0.25 1.30 0.60 0.73 0.22
AS_cost_10k 0.68 2.35 1.40 1.50 0.18 0.58
Open Interest 10.96 0.29 11.33 1.11 11.83 1.19
OETH 0.01 0.003 0.02 0.01 0.005 0.003
Order Flow 0.06 0.76 -0.04 0.62 -0.01 0.70
Momentum 0.0004 0.01 -0.002 0.02 0.0000 0.01
Panel C: SVB

Variable Pre Mean Pre SD Crash Mean Crash SD Post Mean Post SD
Price 1630.40  48.99 1484.58 61.26 1534.51 83.52
Basis 0.16 0.42 -0.06 0.69 -2.65 1.94
Funding Rate 0.002 0.01 -0.0003 0.01 -0.05 0.04
Spread 0.43 0.13 0.54 0.19 0.81 0.20
AS_cost_10k 0.07 0.27 0.18 0.32 0.22 0.39
Open Interest 9.36 0.28 9.05 0.29 8.94 0.44
OETH 0.005 0.003 0.01 0.004 0.01 0.002
Order Flow 0.10 0.74 -0.25 0.63 0.04 0.55
Momentum 0.0000 0.01 0.001 0.01 0.001 0.01
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Table 2: Funding—Basis Elasticity in Normal Times (Nov 2021 — Apr 2022). This table
reports monthly regressions of the hourly funding rate (y;) on the prior-hour basis premium (x;):
ys = a + Bx; + & . Funding and basis are annualized (APR). Coefficients @ and § are reported in
units of 107>. Scaled elasticity Bycaled normalizes S relative to full pass-through.

Nov 2021 Dec 2021 Jan 2022 Feb 2022 Mar 2022 Apr 2022
a (x107) 1.30™* 1.04** —-0.501** 1.29* —0.445™ 1.56"

(6.55) (7.31)  (=221)  (6.03) (-2.19) (9.60)
B(x1075)  1.34* 0753  1.32**  0.990"*  1.14™*  (0.856"*

(17.29) (9.35) (10.68)  (7.93) (9.48) (7.87)
Bscaled 0.79 0.45 0.78 0.59 0.68 0.51
R? 0.301 0.108 0.137 0.088 0.111 0.082
N 697 721 721 649 721 697

Note: Bscaled = B/median( f; /p,) within each window. Stars denote significance at 10% (*), 5% (**), and 1% (**%*).
T-statistics are reported in parentheses.
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Table 3: Funding-Basis Elasticity Across Crisis Episodes. This table reports hourly regressions of next-hour funding (y,) on the prior-hour
basis premium (x;): y, = a + Bx; + &. Funding and basis are annualized (APR). Coefficients o and § are expressed in units of 107>. Scaled

elasticity Bscaled = 8/median( f;/p;) normalizes 8 so that Bscaleq ~ 1 corresponds to full pass-through.

Terra Collapse FTX Collapse SVB Episode
Pre Crash Post Pre Crash Post Pre Crash Post
@ (x1073) 1447 8.41™  —0.64* —0.695** -1.39 -0.997** 0.235 1.56*** —2.82%

(7.98)  (9.31) (=2.26) (-4.28) (=1.05) (-4.44)  (1.54)  (2.76) (-2.01)

B(x107%)  1.08"*  0.643 1.53™* 2437 2917 318" 2,13 171 233"
(8.18)  (1.62) (8.23) (29.93) (18.79) (88.87) (33.34)  (5.606) (20.90)

Biscaled 0.64 0.38 0.91 1.44 1.72 1.88 1.26 1.01 1.38
R? 0.113 0.036 0.130 0.641 0.748 0.907 0.689 0.406 0.725
N 528 73 456 504 121 816 504 49 168

Notes: T-statistics in parentheses. Significance levels: *p < 0.10, **p < 0.05, **p < 0.01. Bscaled UsEs a common
empirical scale factor median(f; /p;) = 1.69 x 1073 for comparability across windows.

Event windows: Pre Terra (Apr 15-May 6), Terra Crash (May 7-10), Post Terra (May 11-30); Pre FTX (Oct 15-Nov 5),
Crash FTX (Nov 6-11), Post FTX (Nov 11-Dec 15); Pre SVB (Feb 15-Mar 7), SVB Crash (Mar 8-10), Post SVB (Mar
11-18).



Table 4: Adverse Selection Summary Statistics by Event

Statistic Terra FTX SVB
PRE Median 0.185 0.171 0.111
PRE SD 3.495 1.242 0.558
PRE P25 -0.000 -0.029 -0.116
PRE P75 0.392 0.416 0.395
N 455 941 363
CRASH Median 0.313 0.329 0.161
CRASH SD 0.339 0.564 0.503
CRASH P25 0.122 0.168 -0.082
CRASH P75 0.586 0.586 0.357
N 123 73 39
POST Median 0.192 0.140 0.162
POST SD 0.692 0.681 0.315
POST P25 -0.050 -0.046 0.041
POST P75 0.458 0.372 0.331
N 364 824 96
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Table 5: Adverse Selection Cost Summary Statistics for Ethereum

Summary statistics are reported for the pre-crisis, crash, and post-crisis windows of the Terra,
FTX, and SVB episodes. Adverse selection costs, realized in next hour ¢, are computed using
the median adverse selection estimate between consecutive hours and the corresponding 24-hour
trading volume. Specifically, for each hour ¢, I compute

Volume?*"
AS Cost; = RawAS[; 1) X | —5——

Price;,

where RawAS[;_;_,;) denotes the median adverse-selection component between -1 and ¢ (in
USD/ETH), Volumef‘”‘ is the 24-hour notional trading volume (in USD), and Price; is the spot
ETH price (USD/ETH). This yields the total dollar value of informational trading costs in each
hourly window.

Statistic Terra FTX SVB
PRE Median 1433.96 1988.55 485.81
PRE SD 18638.99 19967.02 2721.63
PRE P25 -6.20 -277.39 -389.21
PRE P75 3543.42 7196.47 1718.77
PREN 455 919 363
CRASH Median 12911.05 14561.84 455.97
CRASH SD 24691.19 17277.00 1319.94
CRASH P25 2775.21 5512.76 -228.98
CRASH P75 27179.43 19992.39 990.32
CRASH N 123 73 39
POST Median 3327.19 979.86 1826.78
POST SD 20450.48 5685.78 3894.06
POST P25 -848.34 -290.99 504.67
POST P75 9769.68 3018.78 3344.97
POSTN 363 824 96
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Table 6: Open Interest Response to Market Forces

Pre-Crisis Crisis Post-Crisis

Panel A: Terra Collapse (May 2022)
AS_cost,_; -0.040 4.591* 0.174
(0.141) (1.286) (0.132)

Realized Volatility (0prp,—1) —133.144"* -370.142*  —11.130
(24.292)  (152.409)  (26.116)

Momentum (Mom;_1) -5.861 —66.754 -4.186
(8.886) (45.946) (7.056)

Order Flow Imbalance (OF; ;-1) —0.085 0.274 0.171%
(0.076) (1.617) (0.092)

AS_cost;_| X CETH.1-1 27.073  —257.249** —27.683"
(33.698)  (50.142)  (14.760)

Observations 462 122 387
Hourly FE Yes Yes Yes
R? 0.088 0.640 0.073

Panel B: FTX Collapse (Nov 2022)
AS_cost;_; -0.026* 0.052 -0.152*
(0.015) (0.175) (0.085)

Realized Volatility (0grs.-1) —3.515  71.399"*  —24.398"
(5.184)  (21.686)  (10.569)

Momentum (Mom;_1) 0.782 —1.053 6.114
(2.189) (8.149) (4.266)

Order Flow Imbalance (OF; ;-1) 0.020 -0.119 0.078
(0.022) (0.272) (0.064)

AS_cost,_| X CETH.1-1 1.726 ~6.062 6.698
(1.728) (8.835)  (6.516)

Observations 316 73 446
R? 0.079 0.431 0.049
Hourly FE Yes Yes Yes

Table continued on next page.
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Table 6 (continued)

Pre-Crisis

Crisis

Post-Crisis

Panel C: SVB Collapse (Mar 2023)

AS_cost;_; 0.171 0.122 1.751*
(0.146) (0.393) (0.541)
Realized Volatility (cerH 1-1) 9.743 —78.825%** 25.132
(6.249) (16.025) (28.990)
Momentum (Mom;_1) 4.564* -3.945 11.393***
(2.561) (2.230) (3.801)
Order Flow Imbalance (OF; ;_1) -0.023 —0.034 -0.018
(0.023) (0.028) (0.091)
AS_cost;_| X OETH 1-1 -27.769 85.659 —157.659***
(21.123) (98.908) (54.488)
Observations 345 39 96
R2 0.064 0.948 0.285
Hourly FE Yes Yes Yes

Notes: This table reports the impact of market frictions on Ethereum perpetuals open
interest during different stress episodes. The dependent variable is hourly open interest
(in millions USD). This table reports volatility thresholds estimated from the regression:
Ol, = a+Bas-AS_cost,_1+Bo-01—1+Basxo - AS_cost,_1 X071 +y’' X;—1+Hour FE+¢,.
Pre-crisis periods span 30 days before each event, crisis windows are defined as: Terra
(May 8-12,2022), FTX (November 6-9, 2022), SVB (March 8-9, 2023). Pre and Post-crisis
periods extend 30 days before and after each event.
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Table 7: Spot Volatility Threshold Estimates Across Crash Episodes

This table reports Ethereum spot volatility thresholds estimated from the regression: Ol; =
a+ Bas - AS_cost;_1 + B - 0r—1 + Basxo - AS_cost,_; X 07—1 + ¥y’ X;—1 + Hour FE + &;. The
threshold volatility o = —B4s/Basxo represents the level at which the marginal effect of adverse
selection costs on open interest is zero. Run is determined based on whether the threshold was
breached during any period and whether the coefficient pattern (845 > 0, Basxo < 0) indicates a
run equilibrium. Only the Terra crash exhibits a statistically significant threshold (1.785% per hour)
with the correct sign pattern and threshold breach, consistent with a global-games run equilibrium.

Crisis Period Bas Basxo Threshold o* (%/hour) Run?

Terra Collapse (May 2022)

Terra Pre -0.040 27.073 0.148 No
(0.141) (33.698)

Terra  Crash 4.591"* —-257.249*** 1.785 Yes
(1.286) (50.142)

Terra Post 0.174 -27.683* 0.628 No

(0.132) (14.760)
FTX Collapse (November 2022)

FTX Pre —-0.026" 1.726 1.5 No
(0.015) (1.728)

FTX Crash 0.052 —-6.062 0.9 No
(0.175) (8.835)

FTX Post  —0.152* 6.698 23 No

(0.085) (6.516)
SVB Collapse (March 2023)

SVB Pre 0.171 -27.769 0.6 No
(0.146) (21.123)

SVB Crash 0.122 85.659 -0.1 No
(0.393) (98.908)

SVB Post  1.751"* —157.659*** 1.1 Yes

(0.541) (54.488)
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Table 8: Summary of Ethereum Open Interest-Funding Rate Dynamics

This table summarizes the relationship between open interest and funding rates during crash
windows across the three crisis episodes. OI Change refers to the change in open interest during the
crash window. 8 Sign and significance refer to the coefficient on lagged open interest in Equation (18).

Crisis OI Change B Sign Significant? R>  Interpretation

Terra —65% Positive  Yes (p < 0.01) 0.098 Run: Investors exit
FTX +36% Negative Yes (p < 0.01) 0.318 No run: Investors enter
SVB  —49% (recovered) Positive Yes (p < 0.01) 0.428 Stress without run
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Table 9: Ethereum Open Interest and Funding Rate Dynamics

This table reports OLS regressions of hourly funding rates on lagged open interest (millions USD). Only during
the Terra crash phase does the funding rate fail to close the perp—spot basis.

Terra FTX SVB
Pre Crash Post Pre Crash Post Pre Crash Post

Ol —-0.0002 0.0002*** —0.0003 -0.004*** -0.012*** 0.003**  0.006™* 0.016"* 0.026**

(0.0002) (0.0001) (0.0003) (0.001) (0.002) (0.001) (0.001) (0.004) (0.011)
Constant 0.012 -0.003 0.004 0.0417* 0.125**  —0.059*** — — —

(0.011) (0.003) (0.006) (0.015) (0.024) (0.009)
Observations 454 122 387 316 73 446 504 72 71
R? 0.002 0.098 0.003 0.028 0.318 0.028 0.087 0.428 0.198




Table 10: China Ban Phases, Windows, and Adverse Selection (Median AS)

Period Window / Phase Info Asymmetry Median AS
2021-03-22 - 2021-05-20 60-Day Pre Low 0.339
2021-05-21 - 2021-06-10 Phase I High 0.712
2021-06-11 —2021-06-25 Phase IT Medium 0.470
2021-06-26 — 2021-07-20 Phase III Medium 0.416
2021-07-21 - 2021-09-24 Phase IV Declining 0.330
2021-09-25 —2021-11-23 60-Day Post Low 0.510
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Table 11: Funding-Basis Elasticity During China’s Cryptocurrency Crackdown. This table reports hourly regressions of the next-hour

funding rate (y,) on the prior-hour basis premium (x;), y; = a + Bx; + &;. Funding and basis are annualized in APR. Coefficients @ and S are
reported in units of 107>, The scaled elasticity Bcaleq Normalizes 8 relative to 8 = 1.

Pre Phase I Phase I1 Phase II1 Phase IV Post
(Mar 22-May 20) (May 21-Jun 10) (Jun 11-Jun 25) (Jun 26-Jul 20) (Jul 21-Sep 24) (Sep 25—-Nov 23)
(D 2 3) 4) (5) (6)
@ (x1079) 14.1%* -0.347 -3.91% 0.815* 4.03*** 2.35%*
(16.62) (-0.46) (-5.91) (2.36) (17.78) (14.97)
B (x107%) 2.51%* 0.156 1.50** 0.896" 1.39%* 1.30**
(24.39) (0.94) (6.57) (5.13) (16.66) (21.34)
Bscaled 1.48 0.09 0.89 0.53 0.82 0.77
R? 0.296 0.002 0.114 0.044 0.151 0.244
N 1417 458 337 577 1561 1417

Note: Bscaled 18 computed as 8/median( f; /p;) within each window. Event windows: Pre (Mar 22-May 20), Phase I (May
21-Jun 10), Phase II (Jun 11-Jun 25), Phase III (Jun 26-Jul 20), Phase IV (Jul 21-Sep 24), Post (Sep 25-Nov 23).



Table 12: Open Interest Response to Adverse Selection Costs and Market Frictions Across China
Ban Phases

This table reports the impact of market frictions on Ethereum perpetuals open interest during
different stress episodes estimated from the regression: OI; = a + Bas - AS_cost;—; + B5 - 0y—1 +
Basxo - AS_cost,_1 Xoy_1 +7'X;—1 + Hour FE + &;. The dependent variable is hourly open interest
(in millions USD). Adverse selections costs are per 10k USD. Pre and Post-crisis periods extend 30
days before and after each event.

Pre PH1 PH2 PH3 PH4 Post
AS_Cost_t-1 0.309** 1.987 0.098 -0.054 -0.185 -0.211
(0.150) 0.237) (0.094) (0.038) (0.115) (0.198)
Sigma_ETH_t-1 344.968***  609.467*  147.568"*  -52.156™*  —-517.055"**  —1,076.180""
(103238)  (144.538)  (35.370) (19.432) (66.920) (95.455)
Mom_t-1 36.561 -50.296 -5.206 ~1.780 —44.021" -20.818
(35.971) (46.107) (12.050) (6.015) (22.244) (36.145)
OF_i_t-1 0.900 1.538 -0.441* 0.006 -0.404 0.415
(0.685) (1.675) 0.227) (0.095) (0.363) 0.471)
AS_Cost_t-1 x Sigma_t-1 13979  —42.837"* -2.502 6.198* 26.362** 39.400*
(10.669) 9.181) (6.097) (3.709) (11.159) (20.600)
Observations 1,194 616 348 480 1,457 1,353
R2 0.079 0.164 0.129 0.038 0.050 0.092
Hour FE Y Y Y Y Y Y
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Table 13: Spot Volatility Threshold Estimates — China Cryptocurrency Ban (2021)

This table reports Ethereum spot volatility thresholds estimated from the regression: Ol; =
a+ Bas - AS_cost;_1 + B - 0r—1 + Basxo - AS_cost,_; X 07—1 + ¥y’ X;—1 + Hour FE + &;. The
threshold volatility o = —B4s/Basxo represents the level at which the marginal effect of adverse
selection costs on open interest is zero. Threshold volatility is defined as 0" = —Bas/Basxo- A
“Run” is recorded only when: (i) B4s > 0 and Basxs < 0 with p < 0.01, and (ii) the realized
volatility in the event window crosses o*. Only Phase I satisfies both conditions, indicating a
withdrawal of open interest during the China crypto ban regulatory period.

China Phase Bas Basxo Threshold o* (Y%/hour) Run?

PRE 0.309** 13.979 - No
(0.150) (10.669)

I 1.987* —42.837"* 4.6 Yes
(0.237) (9.181)

II 0.098 -2.502 3.9 No
(0.094) (6.097)

III -0.054 6.198* 0.9 No
(0.038) (3.709)

v -0.185 26.362* 0.7 No
(0.115) (11.159)

POST -0.211 39.400* 0.5 No

(0.198) (20.600)
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Appendix

A Perpetual Pricing Terminology — Kaiko Data

Index Price

The index price represents the reference spot value of ETH/USD. It is computed by Kraken as a
time-weighted median of ETH/USD spot prices across major exchanges (e.g., Coinbase, Bitstamp,
and Kraken Spot). The index price serves as the contract’s anchor and is intended to reflect the
fair market value of the underlying asset. Because it aggregates multiple venues, the index price is

robust to idiosyncratic noise or manipulation on any single exchange.

Mark Price

The mark price is the exchange’s internal fair-value estimate of the perpetual contract. It is not the
last trade price but a smoothed measure used for mark-to-market profit and loss calculations and for

determining funding payments and liquidation triggers. Kraken defines:

Mark Price; = Index Price; X (1 + Premium Index,), (19)

where the Premium Index is a rolling weighted average of the percentage difference between the
perpetual’s traded price and the index price over the recent interval. As a result, the mark price

tracks the index price closely but adjusts for persistent deviations between the two markets.

Funding Rate

The funding rate is the periodic interest-like payment exchanged between long and short positions
that keeps the perpetual price anchored to its spot reference. When the perpetual trades above the
index price (positive basis), the funding rate is positive, causing longs to pay shorts. Conversely,
when the perpetual trades below the index (negative basis), the funding rate is negative, and shorts

pay longs. The funding mechanism therefore enforces convergence between the perpetual and spot
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markets:

Funding Rate, = Interest Adjustment, + Premium Index;, (20)

f: > 0 = longs pay shorts, f; <0 = skurthorts pay longs. 21)

Relation to the Spot Market

The difference between the mark and index prices,

0 = In(Mark Price,) — In(Index Price;,),

is the perpetual basis—a measure of the deviation of the futures market from its spot reference.
Arbitrageurs monitor this basis and exploit positive or negative spreads through offsetting positions
in the spot and perpetual markets. The funding mechanism, by periodically adjusting cash flows
between longs and shorts, serves as an endogenous force driving p; toward zero. In equilibrium,
the mark price should closely track the index price, and funding payments adjust to enforce this
parity. Temporary deviations—such as those observed during the May 2022 Terra collapse—reflect

transient limits to arbitrage or liquidity constraints in the perpetual market.

B Institutional Background

B.1 Cryptocurrency Spot Markets

The cryptocurrency spot market, where assets are traded for immediate delivery, has evolved
from a retail-dominated niche into a complex institutional-grade ecosystem. This transformation
is driven by advancements in market infrastructure, regulatory clarity, and the development of
sophisticated financial instruments. The core of the spot market involves the immediate exchange
of a cryptocurrency, such as Bitcoin or Ethereum, for fiat currency (e.g., USD) or another digital
asset. Unlike derivatives, which derive value from an underlying asset, a spot transaction confers

immediate ownership. The price at which this exchange occurs is the spot price. By mid-2025,
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over 19,000 tokens were listed, yet market value remains highly concentrated in Bitcoin (BTC)
and Ethereum (ETH). According to CoinMarketCap’s Q2 2025 update, the total crypto market
capitalisation was about US $4 trillion, with 24-hour spot trading volume of roughly US $98 billion’.
CoinGecko’s Q3 2025 industry report notes that the market cap continued its upward trajectory in
Q3, increasing by 16.4% to end the quarter at around US $4.0 trillion ®. Binance remains the largest
spot exchange, recording roughly US $2 trillion in spot volume in Q3 2025. Binance remains the

largest spot exchange, recording roughly US $2 trillion in spot volume in Q3 2025.

B.2 Development of Cryptocurrency Derivative Markets

The first regulated Bitcoin futures began trading on Cboe on 10 December 2017 and on CME on 18
December 2017 under CFTC oversight. CME later introduced cash-settled Ethereum futures on 8
February 2021 7. In October 2021, ProShares launched the first U.S. Bitcoin futures-based ETF
(BITO), whose first-day trading volume exceeded $1 billion, signaling strong institutional demand.

By 2025, crypto derivatives account for roughly 75-85% of total crypto trading activity.
TokenlInsight’s ® report notes that derivatives trading on CEXs surged to US $26.0 trillion in Q3
2025, with average daily volume US $283 billion, while spot trading volume was US $4.7 trillion.
Global open interest was around US $91 billion, although Coindesk reported that open interest
across CEXs reached US $187 billion in August 2025. Derivatives account for the majority of
crypto trading. Kaiko data show that perpetual contracts alone represented 68% of Bitcoin derivative
volume. On CME, Bitcoin options open interest reached $4 billion by Q2 2025, and Ether options

daily volume increased 65% year-on-year.

B.3 Perpetual-Futures Markets

Perpetual futures (perps) are non-expiring contracts that use an eight-hourly funding rate mechanism
to anchor prices to the spot market. When the perpetual price exceeds spot, longs pay shorts; when

below, shorts pay longs. This continuous payment enforces convergence between the two markets.

Shttps://coinmarketcap.com/academy/article/according-to-cme-q2-2025
Shttps://www.coingecko.com/research/publications/2025-q3-crypto-report#:~:text=1,0T%20in%202025%20Q3
https://www.cmegroup.com/media-room/press-releases/2021/2/08/cme_group_announceslaunchofetherfutures.html
Shttps://tokeninsight.com/en/research/reports/crypto-exchanges-report-q3-2025
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Perpetuals, first introduced by BitMEX in 2016, now dominate crypto derivatives. CoinGecko’s
State of Crypto Perpetuals Report (2025) ° estimates that the top ten centralized exchanges traded
about $58.5 trillion in perpetual futures during 2024, doubling 2023’s figure, with open interest
reaching $131 billion in December 2024. Kaiko estimates that derivatives represent over 75 % of
total crypto trading activity, with perps alone making up 68 % of Bitcoin trading volume in 2025 '°.
Decentralized perpetual protocols such as dYdX, Hyperliquid, and Aster handled over $1.5 trillion
of trading in 2024, with DEX perpetual volumes growing 87% quarter-on-quarter to $1.81 trillion
in Q3 2025.

Regulatory Developments. Until 2025, perpetual contracts were offered mainly on offshore
platforms. On 21 July 2025, Coinbase Derivatives launched the first U.S.-regulated nano BTC and
ETH perpetual futures under the Commodity Futures Trading Commission (CFTC) self-certification.
The CFTC did not object, confirming compliance with the Commodity Exchange Act, while the

SEC did not challenge ETH’s commodity classification ''.

B.3.1 Market Metrics (2025)

Metric Value Source

Total crypto market capitalization (Q3 2025) $4.0 trillion CoinGecko (2025)
Stablecoin market capitalization $288 billion CoinGecko (2025)
Spot trading volume (Q3 2025) $5.1 trillion CoinGecko (2025)
Derivatives trading volume (Q3 2025) $26 trillion TokenlInsight (2025)
Perpetual futures volume (2024) $58.5 trillion CoinGecko (2025)
Perpetual open interest (Dec 2024) $131 billion CoinGecko (2025)
Perpetual DEX volume (Q3 2025) $1.81 trillion CoinGecko (2025)
Global derivatives open interest (Q3 2025) $91-187 billion Coindesk (2025)
Crypto options market monthly volume $8.94 trillion CoinLaw (2025)

Table 14: Key market metrics for crypto spot, derivatives, and perpetual futures markets as of 2025.

The institutional landscape of crypto markets in 2025 is characterised by enormous spot and

derivatives activity, evolving regulatory frameworks, and rapid innovation. Perpetual futures have

“https://assets.coingecko.com/reports/2025/CoinGecko- State-of-Crypto- Perpetuals-Market.pdf
1Ohttps://www.kaiko.com/reports/perps-are-coming-to-america
https://www.pillsburylaw.com/en/news-and-insights/cftc-perpetual-futures-btc-eth-crypto-derivatives.html
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become the most popular derivative instrument due to their flexibility and leverage. Global regulators
are gradually integrating crypto assets into existing market structures: the EU’s MiCA and U.S.
legislation, such as the GENIUS and CLARITY Acts, aim to clarify which tokens are commodities
or securities and to provide regulatory oversight. The approval of spot Bitcoin and Ether ETFs in

2024 and the launch of the first U.S.-regulated perpetual futures in 2025 mark significant milestones.
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