<Héctor Oca r"\a>

SQL
Injection
Playbook

ersion

A

Version Update Date Updated by Resaon for Update

08/02/2024 Initial Draft

How tq Use
This Pl Gybook

To guide our organization in responding to a web application
compromise incident. This playbook may also be used for a
website sql injection.

The steps in this playbook should be followed sequentially where
appropriate. With many steps in the Containment, Eradication,
and Recovery steps, some overlap may occur and is expected.

Introduction

An SQL injection attack occurs when a malicious user inserts SQL code into
input fields of a web application, exploiting vulnerabilities in the application's
database interaction. By injecting SQL commands, attackers can
Mmanipulate database queries to retrieve, modify, or delete sensitive data.
This type of attack exploits inadequate input validation and sanitation,
allowing unauthorized access to databases and potentially compromising
the entire system's security. To prevent SQL injection attacks, developers
should implement secure coding practices like parameterized queries and
input validation.

(" Playbook) Escqlqtion
\

1. Initial Detection:

« Team Member Involved: Core Incident Response Team

« Action Steps:
o ldentify and verify the SQL injection incident.
o |Isolate affected systems to prevent further damage.
o Begin initial investigation and data collection.
o Ensure that web application backups are functioning as
expected.

2. Severity Assessment:
« Team Member Involved: Core Incident Response Team
(Cybersecurity Specialists)
« Action Steps:
o Assess the severity and potential impact of the SQLI
incident.
o Determine if it's an isolated incident or part of a broader
attack.
o Evaluate potential data exposure or compromise.

3. Notification to Extended Teams:
« Team Member Involved: Core Incident Response Team
(Team Lead)
« Action Steps:
o Notify Legal, Compliance, and Customer Support teams
about the incident.
o Share initial findings and impact assessment.

o Initiate collaboration with extended teams.
o Document third-party web-hosting contacts

Escalation
Path

4. Investigation Deepening:
« Team Member Involved: Extended Teams (Legal and

< Playbook >

Compliance)
« Action Steps: ;
o Legal team assesses any legal implications or ~ I
obligations.
o Compliance team ensures adherence to data protection
regulations. | N
o Communicate with external stakeholders if required. N I

5. Executive Briefing:
« Team Member Involved: Core Incident Response Team
(Team Lead)
« Action Steps:
o |f severity warrants, brief Executive Leadership on the \
incident.
o Provide a high-level overview of the situation, potential
impact, and current actions being taken.
o Discuss resource allocation and strategic decisions.

6. Public Relations Engagement: d
« Team Member Involved: Extended Teams (Public Relations) Ny
« Action Steps: m
o Public Relations team prepares for potential public N
communication. e

o Craft a message for customers or the public, if)\ ' v 3

Py i necessary. i (N N
y o Coordinate with Legal to ensure messaging compliance.

Escalation
Path

7. Full Incident Response Activation: |
« Team Member Involved: Core Incident Response Team
(Team Lead)
« Action Steps:
o If the situation escalates further, activate the full

< Playbook >

iIncident response plan.

o Coordinate with all relevant teams to execute response
actions.

o Continue monitoring and updating stakeholders.

8. Post-Incident Review and Improvement:
« Team Member Involved: Core Incident Response Team
(Post-Incident Review Lead)
« Action Steps:
o Conduct a post-incident review to analyze the response
effectiveness.
o |ldentify areas for improvement in detection, response,
and communication.
o Update the SQL Injection Playbook based on lessons
learned.

(Playbook >

Planning and
Prevention

Performing regular security analyses throughout the software development
process is essential to identify potential SQL injection vulnerabilities.
Leveraging static code analysis tools and vulnerability scanners enables
developers to detect and resolve security concerns prior to deploying the

application in a production environment.

Dynamic Application Security
Testing (DAST) Analysis:

Conduct DAST analysis in test and
production environments to identify
potential SQL injection vulnerabilities in
the web application. Utilize automated
security scanning tools to simulate
attacks and detect weaknesses in the
application. Some tools are listed later.

WAF (Web Application Firewall):

Implement a WAF to monitor and filter
web traffic for attack patterns
associated with SQL injections.
Configure custom rules on the WAF to
block requests attempting to exploit SQL
injection vulnerabilities.

08

(Playbook >

Planning
and
Prevention

03 Prepared Statments

Prepared Statements are a security feature provided by
many database systems and programming languages.
They are designed to separate SQL code from user input,
thereby preventing SQL injection attacks.

Parameterization: Instead of directly embedding user
inputs into SQL queries, use placeholders or parameters.
These placeholders are then replaced with the actual
values at runtime.

Automatic Escaping: Prepared Statements often handle
automatic escaping of special characters, ensuring that
user input is treated as data rather than executable code.

04 Object-Relational-Mapping (ORMS)

Object-Relational Mapping (ORM) tools automate the generation of SQL queries
in a secure manner, alleviating the burden on developers and significantly
reducing the risk of SQL injections. By using ORM frameworks, developers can
work with high-level, object-oriented code, leaving the tool to handle the
translation of these objects into SQL queries. ORM frameworks often incorporate
best practices for secure database access, such as parameterized queries and

proper data escaping.
09

< Playbook >

Planning and
Prevention

05 Stored Procedures

The use of stored procedures and functions in the database constitutes an
effective strategy to add an additional layer of security and reduce
vulnerability to SQL injections. Stored procedures are predefined snippets of
SQL code stored in the database. By executing these procedures from the
application instead of sending SQL queries directly, the exposure to potential
attacks is minimized. Furthermore, stored procedures allow the centralization

of database access logic, simplifying permission management and providing
more precise control over data access. Incorporating stored procedures into
the database architecture strengthens security and decreases the attack
surface, as users interact with the database through controlled and
predefined interfaces.

-—al g
#

Juan g i oes

1
A
L]
A
[

i
= |
-}
o |
LB
L}
1
1
i

-

]

A
|

kr‘ L

10

Examine abnormal behavior in the web
application.

Investigate notifications of compromise from
external sources.

Collect evidence such as client reports of
anomalous or malicious behavior.

Categorize the method of compromise (e.g.,
exploited vulnerability)

Interview impacted users, asking specific
guestions about potential points of
compromise.

Check for abnormal actions on the user's
workstation.

Examine web history for visits to potentially
malicious sites.

Conduct a malware scan on the user's
workstation.

Use loCs from the initial compromise to search for other potential victims.
Utilize SIEM or log searches for IP addresses, URLs, workstation names,

etc.

Review logs in account login systems for anomalies, including unusudl
locations or browser fingerprints.

Document all systems accessed by the attacker.

Netsparker: An automatic scanning tool that identifies and
explores vulnerabilities, including SQL injections. Provides an
automated approach to discovering security vulnerabilities
in web applications.

Acunetix: A web security scanning tool that detects SQL
injections, among other vulnerabilities. Performs automatic
audits and provides detailed reports on vulnerabilities found.

Security AppScan: A web application security tool that helps
identify and remediate vulnerabilities, including SQL
injections. Provides automated scanning and testing to
evaluate the security of web applications.

otsparker AppScan

L1} Rational.

O
Qcunetix

(" Playbook)
Contact AEPD

In the event of a data security incident that impacts our clients' information,
it is imperative that we take swift and decisive action to ensure compliance
with regulatory requirements. As part of our commitment to transparency
aond adherence to data protection laws, it is crucial to promptly
communicate and collaborate with the relevant authorities. In the context of
our operations in Spain, this involves contacting the Agencia Espanola de
Proteccion de Datos (AEPD). In this page, we outline the necessary steps to
initiote contact and facilitate a timely and effective response to any
potential dota breaches.

Contact Information

Address:

C/ Jorge Juan, 6. 28001 - Madrid
28001 Madrid
Spain

Phone;
Q00 293183

Email:
dpd@aepd.es

Website:
https://www.aepd.es

13

https://www.aepd.es/

Playbook _

0

Contdipment
|

Identify and disconnect the affected system from the network to prevent
the infection from spreading to other systemes.

Maintain constant monitoring of traffic using tools like Wireshark or
tcpdump to capture and analyze web traffic for patterns of malicious
requests.

Utilize role-based access control (RBAC) features to temporarily disable
access to compromised areas of the web application.

Restrict access to the affected system only to authorized personnel while
resolving the issue.

Change passwords for affected systems and databases to prevent
unauthorized access.

< Playboo__,k%__ : s

OHtG' PMent
Rl |

Temporarily shut down the compromised SQL service and application
to halt the execution of any injected mallicious code.

Review and Enhance of input validation mechanisms to prevent future
SQL injection attacks. Implement or enhance validation measures,
such as using parameterized queries or prepared statements.

Perform a quick forensic analysis to understand the scope of the
attack and how it occurred, which can help take corrective action.

4
i

¥

N
agication

j" /7 b

Vulnerability Fixing

Use static code analysis tools like SonarQube or Checkmarx
to identify and address SQL injection vulnerabilities in the
source code.

Additionally, update the code with what has been detected
In this attack, including the discovered vulnerability and
record the attacker's IP address for further analysis and
potential actions.

Modify SQL queries to use parameterized queries, for
example, changing string concatenation queries to
prepared statements in languages like PHP with PDO or
MySQLi.

Software Update

Applying patches and security updates to the web application
and database management system is critical for maintaining
system integrity and protecting against known vulnerabilities.
Patch management tools like Ansible or Chef streamline this
process by automating the deployment of updates across
multiple systems.

Use SQL scripts to search for and remove malicious records from the database.
This may involve querying the database to identify any unauthorized or suspicious
entries and deleting them. It's important to carefully review the data to ensure that
only malicious records are removed, without affecting legitimate data.

After cleaning the database, restore it from a recent backup using tools like
mysqldump or pg_dump. Ensure that the backup is from a point in time before the
attack occurred to eliminate any compromised data.

Additionally, consider implementing database integrity checks to verify the
consistency and accuracy of the data after the restoration process. This can help
identify any discrepancies or abnormalities that may have been introduced during
the attack or the restoration process.

My PostgreSQL

dump

Employ forensic analysis tools like Volatility (logical acquisition from lime) and
Autopsy (physical acquisition from dd) to investigate affected hosts for additional
indicators of compromise (IOC) and ensure they are patched and protected. These
tools can help identify any remnants of the attack, such as malware, suspicious
processes, or unauthorized access, and provide insights into how the attack
occurred and what data may have been compromised.

During the forensic analysis, it's essential to gather as much information as
possible about the attack, including timestamps, file modifications, network
connections, and system logs. This information can aid in understanding the attack
vector, the extent of the compromise, and any potential data exfiltration.

Autopsy"*

OPEN | EXTENSIBLE | FAST

VolyLly

Assess the effectiveness of incident response procedures and identify any
shortcomings or areas for improvement.

Update the cybersecurity playbook with new recommendations and best
practices identified during the post-incident review.

Conduct regular drills and simulations based on the updated playbook to
validate the effectiveness of the incident response process and ensure
readiness for future incidents.

19

