On the stochastic flow of harmonic maps
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THE MODEL
The domain D C R? is bounded, dim D = 2.

It tends to align to Au to minimize the Dirichlet energy

THE NOISE

The stochastic flow of harmonic maps writes :

du = (Au+ ulVul|?) dt + o(u) o dW |

T % T 4 5 with boundary conditions as in (1).
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p P = 1. The term o(u)W (¢, z) has to be orthogonal to the vector
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Figure 1: Example : D = the unit disk Lu(l,)jop = uojoD teR™ . Stratonovitch sense

The field u(t, x) has to respect the pointwise norm
constraint

lu(t,z)| =1 , forall (t,2) € R x D .

A NEW NUMERICAL SCHEME

e

Notation: Time step: At :=

If u is a steady-state of (1) then u is a harmonic map between the
two manifolds D and S°. It says that u has an harmonic map in its
homotopy class.

, N € N*. Consider a subspace of
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Algorithm [4]: Fixu®:=uo € Vpandforanyn € {0,...,.N =1}, “iigmilee’  WGiwe” v

W(u™) ={yY eV, Ve € D, Y(x) L u"(x)} .

Let 6 € (3,1], and v™ € W(u™) be the unique solution to the following

variational problem: Vo € W(u™) ,

(0™, ) 12208 (VO V) 1o = —2AL (V" Vi) o Ho(u) AW™ @) a5 o

Renormalization step : we set almost surely, for all x € D,

ity (@) (@)
) = Tun (@) + on ()

Theorem 1. The algorithm converges up to a subsequence to a solution

of (2) as At,h — 0.

BLOW-UP PHENOMENA

Deterministic case.
ariant fields
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Figure 4: Equivariant field

Case with noise.
case considering a real noise W (¢) € L*(D;R) and

In this box we consider equiv-

Noise can be added to the equivariant

(3)

Figure 2: Example of simulation of (2)

Figure 5: Blow-up of h in the deterministic case

Theorem 3. Every deterministic equivariant solution w such that
|hol||pee < 7 is a global regular solution. Conversely, there exist hg with
|hol||Lee > 7 that blow up in finite time t* in the following sense :

18,8 e —> coast — t* .

Equivalent Ité formulation :
du = (Au + u|Vul* — g(z)u) dt + o(u)dW .

The following two choices

o(ult, )W (t,z) = 10D |
\Pu(t,x)LW(t,x) , (orth. proj.)

V(t,) € - L*(D;R’) lead to the same laws.

GLOBAL SOLUTIONS

Theorem 2. Forug € H*, there exist a global solution to (2) in the
weak sense and a sequence of stopping times T* < T? < --- < T"

n—oo

such that P (T” — oo) = 1 , and one has almost surely

we | Je (T, 7Y N L ([T, T ) H?)
neN

and this u is unique in this class of solutions. Moreover, the times
T* at which v may blow-up are caracterized by bubbles:
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Figure 3: A bubble at the centre

The solution u(t, z) is extended after 7% with a loss of en-

. ergy expressed as a fixed quantum ¢; > 0.
o(x,u) = uwtTW , where o — .
L m - I S A A B S FUTURE DEVELOPMENTS
o= (m cos h(t, |z]), || cos h(t, [x]), —sinh(t, |z[)) , eBlow-up for any initial data
eadine to r Numerical studies show that initial data that are close to
5 e - — S—— equivariant explosive initial data may also blow up, even if
) sin 2h /2 ol < // S— o the noise term is multidimensional. Thus, if the noise ap-
dh = (Oprh + $0rh — ———=)dt + dW f proaches a control that brings a solution close to an initial
. (r,t) € (0,1) x ]:E—F | @ | explosive data, any solution of (2) may blow up in finite time

h(r € {0,1},t) =0, teR" |
A(-t=0)=ho .
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Figure 6: Example of blow-up that can not occur without noise

with a positive probability.

eBlow-up for stochastic LLG

Such blow-up phenomena are related to the blow-up of the
stochastic Landau-Lifshitz-Gilbert equation. In this case we
have to understand how the so called gyromagnetic term that
must be added in (2) interacts with bubbles.
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