

DATA ENGINEERING TRAINING MODULE

Total Duration: 40 Hours

Mode: Instructor-led, Practical &

Project-based

Introduction to Data Engineering [3 Hours]

→ What is Data Engineering?

Understanding the role of data engineering in modern data-driven organizations. How it bridges data science, analytics, and software engineering.

→ Role and Responsibilities of a Data Engineer

Designing, building, and maintaining data infrastructure; working with large datasets; ensuring reliability, scalability, and security.

→ Data Lifecycle and Architecture Overview

From raw data ingestion to data warehousing and analytics.

→ ETL Concepts and Data Pipelines

Deep dive into Extract, Transform, Load [ETL] processes, ELT vs ETL, data ingestion methods [batch & streaming], and pipeline orchestration.

→ Key Tools Overview

Overview of tools used by data engineers - Airflow, Kafka, Spark, Hadoop, etc.

Databases & SQL [6 Hours]

→ Introduction to Databases

Understanding different types of databases - Relational [MySQL, PostgreSQL] and Non-relational [MongoDB, Cassandra].

→ SQL Fundamentals

Writing complex SQL queries using SELECT, WHERE, GROUP BY, ORDER BY, and aggregate functions.

→ Joins and Subqueries

Mastering different types of joins [INNER, LEFT, RIGHT, FULL], and using subqueries effectively.

→ Views, Indexing, and Stored Procedures

Creating reusable SQL components, optimizing queries for better performance, and automating operations.

→ Data Modeling and Normalization

Designing efficient database schemas, normalization [1NF to 3NF], denormalization for analytics, and understanding star & snowflake schemas.

→ Hands-on Practice

Building and querying a sample e-commerce or financial database.

Big Data Tools & Ecosystem [6 Hours]

→ Understanding Big Data

Characteristics of Big Data [Volume, Velocity, Variety], challenges, and solutions.

→ Hadoop Ecosystem Overview

Introduction to HDFS, MapReduce, Hive, and Pig. Understanding how Hadoop stores and processes large data sets.

→ Apache Spark Fundamentals

Spark architecture, RDDs, DataFrames, SparkSQL, and PySpark basics.

→ Distributed File Systems

Concepts of distributed storage and computation. Comparing HDFS, Amazon S3, and Azure Blob Storage.

→ Real-world Use Cases

How big companies use Hadoop and Spark for large-scale analytics and ETL.

Cloud Data Platforms [6 Hours]

→ Introduction to Cloud in Data Engineering

Benefits of cloud-based data pipelines: scalability, reliability, and cost-effectiveness.

→ AWS for Data Engineers

- ◆ S3: Data storage and versioning.
- Redshift: Building data warehouses and performing analytical queries.
- ◆ Glue: Managed ETL service for automating workflows.
- ◆ Athena: Understanding and usage of Query Engine

→ Azure Data Services

Introduction to Azure Data Factory, Synapse Analytics, and Blob Storage.

→ Hands-on Activities

Building a simple ETL pipeline using AWS Glue and Redshift or Google BigQuery.

Python for Data Engineering [6 Hours]

→ Python Essentials for Data Engineering

Working with data structures, loops, functions, and libraries.

→ Connecting Python with Databases

Using libraries like psycopg2, SQLAlchemy, and pandas to interact with SQL and NoSQL databases.

→ Working with APIs

Fetching real-time data from REST APIs and integrating it into pipelines.

→ Data Wrangling and Cleaning

Using pandas, numpy, and regex to clean and transform raw data into usable formats.

→ Automation and Scheduling

Writing Python scripts for data automation, logging, and error handling.

→ Hands-on Exercise

Automating data extraction from a public API and loading it into a database.

Data Pipeline Projects [9 Hours]

- → End-to-End Real-Time Data Pipeline
- → Introduction to streaming concepts.
- → Building a real-time data ingestion system using Kafka.
- → Processing data with Apache Spark or Python scripts.
- → Visualizing output through dashboards [Power BI / Tableau / Grafana].
- → ETL Pipeline from Source to Data Warehouse
- → Designing an ETL pipeline using Airflow for orchestration.
- → Extracting data from APIs or databases.
- → Transforming data using Python / Spark.
- → Loading into AWS Redshift or BigQuery.

Mini Project [4 Hours]

- → Students will build a complete data pipeline project from scratch from ingestion to analysis.
- → Capstone Project Discussion & Review Presentation of final project work, discussion on real-world challenges, and industry best practices.

Key Takeaways

- → Gain hands-on experience with modern data tools like Spark, Airflow, Kafka, AWS Glue, and Redshift.
- → Learn to design and implement end-to-end data pipelines.
- → Build strong SQL and Python foundations specifically for data workflows.
- → Understand cloud data architecture and how to manage large-scale data efficiently.
- → Become job-ready for roles such as Data Engineer, ETL Developer, or Cloud Data Specialist.