Application Note, V1.00, June 2007

-

XC886MuItiCanContF I

||.|._.

~ Stand-Alone MultiCAN Controlle

g -

User’s Guide

Microcontrollers

(infineon

Never stop thinking



Edition 2007-06-17

Published by
Infineon Technologies AG
81726 Miinchen, Germany

© Infineon Technologies AG 2007.
All Rights Reserved.

LEGAL DISCLAIMER

THE INFORMATION GIVEN IN THIS APPLICATION NOTE IS GIVEN AS A HINT FOR THE
IMPLEMENTATION OF THE INFINEON TECHNOLOGIES COMPONENT ONLY AND SHALL NOT BE
REGARDED AS ANY DESCRIPTION OR WARRANTY OF A CERTAIN FUNCTIONALITY, CONDITION OR
QUALITY OF THE INFINEON TECHNOLOGIES COMPONENT. THE RECIPIENT OF THIS APPLICATION
NOTE MUST VERIFY ANY FUNCTION DESCRIBED HEREIN IN THE REAL APPLICATION. INFINEON
TECHNOLOGIES HEREBY DISCLAIMS ANY AND ALL WARRANTIES AND LIABILITIES OF ANY KIND
(INCLUDING WITHOUT LIMITATION WARRANTIES OF NON-INFRINGEMENT OF INTELLECTUAL
PROPERTY RIGHTS OF ANY THIRD PARTY) WITH RESPECT TO ANY AND ALL INFORMATION GIVEN
IN THIS APPLICATION NOTE.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types
in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express
written approval of Infineon Technologies, if a failure of such components can reasonably be expected to
cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or
system. Life support devices or systems are intended to be implanted in the human body, or to support
and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health
of the user or other persons may be endangered.



o .. AP08062
@l neo/n XC886 Stand-Alone MultiCAN

AP08062
Revision History: 2007-06

V1.00
Previous Version: none

Page Subjects (major changes since last revision)
V1.00 Initial Release

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:

mcdocu.comments@infineon.com |X|

Author: Chris Wunderlich

Infineon Technologies North America Corp.

Application Note 3 V1.00, 2007-06



o .. AP08062
@l neo/n XC886 Stand-Alone MultiCAN

Table of Contents Page
1 Stand-Alone XC886MultiCanController DEVICE ........cuuii it 6
1.1 1] (Yo {1 T2 o o PO USRS 6
1.2 ATChItECTUIAl OVEIVIEW ....coiiiiiiiiiiiie ettt ettt e e e ettt e e e st e e e enbe e e e e snbaeeeesnbaeeeeabeeeaeanns 6
1.3 APPHCALION FIEIAS ...ttt e ettt e e e st e e e sbee e e e abaeeeeanes 6
1.4 Basic Requirements of the XC886MultiCanController device ..........ccocoeeeiiiieiiiiiiiie e 6
1.5 T 01T = 70T [ 7
1.51 LGS IS T ) 0,77 S 7
1.5.1.1 (NG D= o T8 T o 1= PO UOPPPPTRRI 7
1.5.1.2 HiTop Debugger for XCBOO0.......c.oitiiiiiiiiiee ittt ettt et e e snbe e e nneeee s 7
1.5.1.3 FLOAD UART DOWRNIOGAET ......coiiiiiiieeiiiiie ettt eeiiet e ettt e e s sttt e e s sttt e e s snsteeassnsseeaeassaeaesansseeesnnnseeens 8
1.6 Pin Definition and FUNCHIONS ........ccuuiiiiiiii et e e e e e s e e s nnnneee s 8
1.6.1 T O o T g iTe 01 =1 (o] o SRR 8
1.7 DY ot oI B oY Yol ] o] o) o IR PR 10
1.7.1 Clock Generation UNit...........oociiiiiiiiie e e e et e e et e e e e aae e e e e nbe e e e e nees 10
1.7.2 o T 1 T To 1= SRR 11
1.8 POWEr ManagemENt.........coi ittt et e e s e e e e e e e e nre e e 11
1.8.1 L0 YT TS 11
1.8.2 oA D o o T 1V T Yo = SRR 12
1.9 o o 007 o o1 (o ) SR 12
1.91 1 T0To [SIST=] =T i T o - S 12
1.9.2 INPUL POrt CoNfIQUIATION ........eeiiiiiee et e e e e s 13
1.9.21 Special action configured t0 an INPUL PIN ......ocuiiiiiii e 13
1.9.2.2 Port pin used as a Trigger for a CAN Message Transfer.........cccovvviveiiciee e 13
1.9.3 Output Port ConfigUuIation .............oeiiiiiiiiiceee e e e e re e e e e e e e e s ae e e e e e e e e aaes 13
1.9.4 ST o= 1 (=T 1 LSRR 13
2 YT A= U [ 1 (=] o = Tod = PP PPPPPPRN 13
2.1 Communication via the Universal Asynchronous Receivers/Transmitters (UART)...........cc......... 13
2.2 Communication via the Synchronous Serial Channel (SSC)........cooieiiiiiiiiiiiiiee e 14
2.21 SIS O IR F= 1Y 1V [ To = SRR 15
222 TranSTEr IENGEN ... ettt e et e e e st e e e aneeeeeaae 15
2221 [ F= 10 £ F= 1S 15
2.2.3 Baud Rate Generation ....... ... ..ottt e e e e e e e 15
224 REGISIEr AQAreSS IMAP.......eiiiiiiiii ittt e b e e e s bt e e e ab e e e e e nbe e e nnes 16
225 =g o]l F= T a Lo |1 o PP R PPP 16
3 MUItICAN MOAUIE DESCIIPTION ... .eeiiiiiiiiiie ittt e e e ab e e e 17
3.1 MUltiCAN Register AdAreSS IMap .......coouiiiiiiiiie ettt 17
4 Application Program INtErface (API) ...t 18
4.1 Mailbox Layout (2420 DYIES): ....oi ittt 18
4.2 Structure for a 32-bit Little Endian machine (TriCore) ..........oocovviiiiieee e 21
4.3 API to communicate between host and slave controllers ..., 22
4.3.1 o e 0 [ PSRRI 23
4311 MTSR Packet DESCHPLON .......eeiiiie i e e e e e e e e e e e e re e e e e e e e e senrnneees 23
4.31.2 MRST Packet DESCHPLON .......uiiiiii i e e e e e e e e e e s re e e e e e e e e snnreneees 23
4.3.2 API 1: SetCanChannelONOfT ... e e e e e e e e e e e e e e e nenneees 24
4.3.2.1 MTSR Packet DeSCHIPLON ........eiiiiiiii e e e 24
4.3.2.2 MRST Packet DeSCHPLON ........eiiiiiiiie et e e e e e e 24
43.3 API 2: GetCanChannelOnOff . ... .o e e e e e e e e 25
4.3.31 MTSR Packet DESCHIPLON ..ot e et e e e e e e e e ee e e e e e e e e nennees 25
4.3.3.2 MRST Packet DESCHIPLON ...ttt e e e et e e e e e e e e ee e e e e e e e e e nennees 25
434 AP 3: SetCanIrqONO ... ...t e e e aaaraees 26
4.3.4.1 MTSR Packet DESCHPLON ........eeiiiiiiieeee e e e e e e e e e e e e e e areaees 26
4.34.2 MRST Packet DESCHPLON ........eeiiiiiiieeee e e e e e e e e e e e e e e areaees 26
4.3.5 F o IR S 1Y (0= ] 1o @ @ 1 SRR SPPP 27
4.3.51 MTSR Packet DESCHPLON .......eeiiiie e e e e e e e e e e e e e re e e e e e e e e senreneees 27
4.35.2 MRST Packet DESCHPLON .......eeiiiieiiiiceee et e e e e e e e e e e e e re e e e e e e e annrnneees 27
4.3.6 F o o IS ST (0= 17 01U | (=) S 28

Application Note 4 V1.00, 2007-06



o .. AP08062
@l neo/n XC886 Stand-Alone MultiCAN

Table of Contents Page
4.3.6.1 MTSR Packet DESCHPLON .......eiiiiie it e e e e e e e e e e e e e e e e e e e nrnneees 28
4.3.6.2 MRST Packet DeSCHIPLON ........eiiiiiiii e e e e e e e 28
4.3.7 F N o I G R C 1Y (O= 0708 o] (=] S 29
4.3.7.1 MTSR Packet DeSCHIPLON ........eiiiiiiiie et nbe e e 29
4.3.7.2 MRST Packet DESCHIPLON ...ttt e e e e e e e e e e e e ee e e e e e e e e e nennees 29
43.8 F N o I A C 1Y (0= o] o 5] = (1 LSS 30
4.3.81 MTSR Packet DESCHIPON ..ot e e e e e e e e e e e e e e e e e e e nennees 30
4.3.8.2 MRST Packet DESCHPLON ........ooiiiiiiieeee e e e e e e e e e e e e e e e areaees 30
4.3.9 F o e IR TS 1T (02 a1 o)=Y RS R 31
4.3.9.1 MTSR Packet DESCHPLON .......ceiiiiiiiieee e e e e e e e e e e e e e e areaees 31
4.3.9.2 MRST Packet DESCHPLON .......ueiiiie e e e e e e e e e e e e et re e e e e e e e e senrnneees 31
4.3.10 F o o IR €11 (0= (0] o] [T ox S SRR 32
4.3.10.1 MTSR Packet DESCHPLON .......eiiiiie e e e e e e e e e e e e et re e e e e e e e e nrnneees 32
4.3.10.2 MRST Packet DeSCHIPLON ........eiiiiiiiie e e e nbe e e 32
4.3.11 AP 10: SEtCaNBItRALE..........viii i 33
4.3.11.1 MTSR Packet DeSCHPLON ........eiiiiiiiie et e 33
43.11.2 MRST Packet DESCHIPLON ...ttt e e et e e e e e e e e ee e e e e e e e e e nennees 33
4.3.12 API 11: GEtCaNBIRAE ...t e e e e e s 34
43121 MTSR Packet DESCHIPLON ..ot e et e e e e e e e e et e e e e e e e e nennees 34
4.3.12.2 MRST Packet DESCHPLON ........eeiiiiiiieeee e e e e e e e e e e e e e e areaees 34
4.3.13 F e B D= (0= T o =T | - | - SR 35
4.3.13.1 MTSR Packet DESCHPLON .......ceiiiii e e e e e e e e e e e e e e re e e e e e e e snnreneees 35
4.3.13.2 MRST Packet DESCHPLON .......eeiiiieiiiiceee et e e e e e e e e e e e e re e e e e e e e annrnneees 35
4.3.14 F o o I R 1T (OF= g (=T | D= - SRR 36
4.3.14.1 MTSR Packet DeSCHPLON ........eiiiiiiiie et e 36
4.3.14.2 MRST Packet DeSCHPLON ........eiiiiiiii e e e 36
4.3.15 F o B B = (07 o T O o Tt O SUTRRRRP 37
4.3.151 MTSR Packet DESCHIPLON ..ottt e et e e e e e e e e e e e e e e e e nennees 37
4.3.15.2 MRST Packet DESCHIPLON ..ottt e e e e e e e e e e e e ee e e e e e e e e e nennees 37
4.3.16 F o e B T €11 (O o T o o2 QSRR 38
4.3.16.1 MTSR Packet DESCHPLON ........eeiiiiiiieee e e e e e e e e e e e e e areaees 38
4.3.16.2 MRST Packet DESCHPLON ........eeiiiiiiieeee e e e e e e e e e e e e e e areaees 38
4.4 Data flow example (SSC MOGE)........oiiiiiiiieiiiii ettt bee e e et e e e nnrae e e e ennreeeeennees 39
4.5 Bandwidth calculations (SPI) .....oooooiie e 40
4.6 Logic Analyzer Diagrams of SOmMe transfers ...........oooviiiiiiiiiiiiiiie e 40
4.6.1 Transmit a message on the CAN DUS ..........euiiiiiiii i 40
46.2 Receive a message from the CAN DUS ... 41
4.6.3 Read data from a register on MUIICAN ... 41

Application Note 5 V1.00, 2007-06



o .. AP08062
@l neo/n XC886 Stand-Alone MultiCAN

Stand-Alone XC886MultiCanController Device

1 Stand-Alone XC886MultiCanController Device

1.1 Introduction

This is a stand-alone device (SAx-XC886CM-8FF with firmware) that is capable of providing a connection
with two independent Controller Area Networks (CAN). A user configurable mechanism for communication
with a host controller is provided.

The purpose of this application note is to provide a framework (specification) for communication and
configuration of the MultiCAN module on the XC886 microcontroller. This document will refer to this device
as the XC886MultiCanController.

1.2 Architectural Overview

The Stand-Alone XC886MultiCanController provides several sub modules to control the data flow and to
configure the peripheral function:

e Two serial interface channels are implemented for the communication with a host device CPU to
read and write the XC886MultiCanController’s internal registers for initial configuration and control
during normal operation.

0 Synchronous Serial Channel (SSC), an alternate name would be Synchronous Peripheral
Interface (SPI).

o0 Universal Asynchronous Receiver / Transmitter (UART)

0 The interface selection is done via a MODE pin, which can be directly connected to the
supply voltage or via pull-up/down resistors (of about 10-47 kOhm)

e Both communication channels are based on byte transfers.

e Initialization mechanism for all MultiCAN registers can be configured via internal Flash memory or via
serial commands.

e The Port Control unit can be used to select the required functionality of the port pins operating as a
communication channel, interrupt request line or general purpose 1/0.

e The internal power saving modes can be used to reduce current consumption.

e Interrupt requests generated by the XC886MultiCanController can be sent to the external host via
output pins.

1.3 Application Fields

The Stand-Alone MultiCAN device “XC886MultiCanController” can be used in applications requiring one or
two independent CAN nodes. Message objects are built with double-chained lists that are assigned by the
user to one or the other nodes. The FIFO and gateway features minimize the CPU load for the message
handling and lead to an improved real-time behavior. The access to the internal registers is handled via a
serial interface that can be adapted to a large variety of applications. The clock generation can be controlled
either by the XC886MultiCanController or by the system it is connected to.

1.4 Basic Requirements of the XC886MultiCanController device
e Compliant with the 1SO 11898
e CAN functionality according to CAN specification V2.0 B active
e Dedicated control registers for each CAN node
e Data transfer rates up to 1 Mbit/s
e Full-CAN functionality: A set of 32 message objects that can be individually

— Allocated (assigned) to either CAN node

Application Note 6 V1.00, 2007-06



o .. AP08062
@l neo/n XC886 Stand-Alone MultiCAN

Stand-Alone XC886MultiCanController Device

— Configured as transmit or receive object

— Setup to handle frames with 11-bit, 29-bit identifier or both

(CANBusA ] [ CANBusB |
¢ ¢ Crystal

. - or
[ Transceiver ] [ Transceiver ] External Clock
i i
i

v XC886CanController v
p
MultiCAN Module 1 ECIock Control
NS
[ Port Interrupt
o) . nterrup
\Analog EControI} E Serial Interface } E Control
A
P2.x MODEx UART| | ssC DA| |CTS INx| | OUTx
Y vy L
1/0Ox
\j Host
Figurel  Port Control Unit
15 Firmware Code

151 Keil Software

This application note provides the full source code and project configuration created with the Keil tool chain.
The Keil version used is v8.08 and exceeds the demo limit and requires a full license to modify the code. The
hex file is provided if you want to try the firmware without modification.

For more information about the Keil please visit their web site: http://www.keil.com

1.5.1.1 Keil Debugger

Although the size of the code exceeds the 2k demo limit for the Keil Software, the integrated Keil debugger
can still be used to download the code via the On-Chip Debug Support (OCDS) which is a modified JTAG
interface. The Keil ULINK, Infineon Wiggler Box or Hitex Tantino can be used to connect the target
hardware (e.g. an evaluation board) with the PC. With the demo version of the Keil tools, debugging is not
possible. With the full version of the Keil C51 tools, the integrated simulator can be used for debugging
without any real hardware.

1.5.1.2 HiTop Debugger for XC800
For debugging the firmware the user can use the Hitex HITOP52-XC800

For more information about Hitex please visit their web site: http://www.hitex.com

Application Note 7 V1.00, 2007-06


http://www.keil.com/
http://www.hitex.com/

AP08062

o~ _.
@l neon XC886 Stand-Alone MultiCAN

/

Stand-Alone XC886MultiCanController Device

1.5.1.3 FLOAD UART Downloader

The free FLOAD tool from Infineon can also be used to download the hex file via the
FLOAD tool can be found on the Infineon web site: http://www.infineon.com

1.6 Pin Definition and Functions

16.1 Pin Configuration

UART interface. The

34] P3.7 (EXTIN4)
33] P3.6 (RSTIND)
32] P4.3 (1/0)
31] P1.5 (SLS)
30] P1.4 (MRST)
29] P1.3 (MTSR)
28:| P1.2 (SCK)
27] P1.1 (TXD)
26] P1.0 (RXD)
25] P2.7 (AIN)

36:| P3.1 (1/0)
35] P3.0 (1/0)

VSSP [42 19
VDDP [43 18
MBC [44 17
P4.0 (CTS) [45 16
P4.1 (DA) [46 15
PO.7 (1/0) [47 14

PO.3 (1/0) [48 13

O

o o
w w
w N
— o)
> >
o o
(@] (@]
= =
w w
oo ~
N N
w B
< <
> >
()] -
= m
o s

P3.4 (RXDCO) [39 22] P2.6 (CPHA)
P3.5 (TXDCO) [40 21] P2.5 (CPOL)
RESET [41 20] P2.4 (MODEO)

j P2.3 (AIN)

HEERGD
P21 exanT2)
P20 cexanTy)
Jre.1 (o)

IRQB) | |1

PO.5 (EXINTO) [ |2
xTaL2 [ |3

xTALL [ |4

PL.6 (1/0) | |8
PL.7 (1/0) | |9
s [ 10

Po.6 (Tck) [ |11
Po.2 (T00) [ |12

PO.4 (CAN_IRQ_B)

Figure 2  XC886MultiCanController Pin Configuration
The pin functions of the XC886 are described in Table 1.

Application Note 8

V1.00, 2007-06


http://www.infineon.com/

(infineon.

AP08062
XC886 Stand-Alone MultiCAN

Stand-Alone XC886MultiCanController Device

Table 1 Pin Definition and Function
Label Name | Pin | Reset | I/O | Description
State
CAN_IRQ B P0.4 1 Hi-Z | O | Output (active low) to notify an external host that an
action has occurred internally to the XC886
EXINTO P0.5 2 Hi-Z | I/0 | User configurable 1/0
Can be configured to wake up from power down
mode
XTAL2 - 3 Hi-Z | O |External Oscillator Output
XTAL1 - 4 Hi-Z I | External Oscillator Input
VSSC - 5 - - | Core Supply Ground
vVDDC - 6 - - | Core Supply Output (2.5V)
VDDP - 7, - - | 1/O Port Supply (3.3V or 5V)
17,
43
- P1.6 8 PU | 1/0 | User configurable pin
- P1.7 9 PU | 1/0 | User configurable pin
TMS 10 PD I | Test Mode Select
TCK PO.0 | 11 | Hi-Z I |JTAG Clock Input
TDO P0.2 | 12 PU O | JTAG Serial Data Output
TDI PO.1 | 13 | Hi-Z I | JTAG Serial Data Input
EXINT1 P2.0 | 14 | Hi-Z I | Analog or Digital Input
EXINT2 P2.1 | 15 | Hi-Z I | Analog or Digital Input
- P2.2 | 16 | Hi-Z I | Analog or Digital Input
VSSP - 18, - - | 1/O Port Ground
42
- P2.3 | 19 | Hi-Z I | Analog or Digital Input
COMM_MODE P2.4 | 20 | Hi-Z I | Communication mode (Serial Interface Selection)
CPOL P2.5 | 21 | Hi-Z I | SPI clock polarity configuration pin.
CPHA P2.6 | 22 | Hi-Z I | SPI clock phase configuration pin.
VAGND - 23 - - | Analog Reference Voltage
VAREF - 24 - - | Analog Reference Ground
- P2.7 | 25 | Hi-Z I | Analog or Digital Input
RXD P1.0 | 26 PU I | UART Receive Input
TXD P1.1 | 27 PU O | UART Transmit Output
SCK P12 | 28 PU I | SSC Slave Clock Input
MTSR P1.3 | 29 PU | | SSC Slave Receive Input
MRST P1.4 | 30 PU O | SSC Slave Transmit Output
SLS P15 | 31 PU I | SSC Slave Select Input
1/0 P4.3 | 32 | Hi-Z |1/0 | User configurable 1/0 or Qutput Trigger
RSTIND P3.6 | 33 PD O | Reset indication for internal reset condition in
microcontroller
EXINT4 P3.7 | 34 | Hi-Z |1/0 | User configurable 1/0
- P3.0 | 35 | Hi-Z | 1/0 | User configurable 1/0
- P3.1 | 36 | Hi-Z | 1/0 | User configurable 1/0

Application Note

9 V1.00, 2007-06



o .. AP08062
@l neo/n XC886 Stand-Alone MultiCAN

Stand-Alone XC886MultiCanController Device

Label Name | Pin | Reset | I/O | Description
State

RXDC1 P3.2 | 37 | Hi-Z I | MCAN Node 1 Receiver Input
TXDC1 P3.3 | 38 | Hi-Z | O | MCAN Node 1 Transmitter Output
RXDCO P3.4 | 39 | Hi-Z I | MCAN Node 0 Receiver Input
TXDCO P3.5 | 40 | Hi-Z | O | MCAN Node 0 Transmitter Output
RESET - 41 PU I |Reset Input

MBC - 44 PU I | Monitor & Bootstrap Loader Control
CTS P4.0 | 45 | Hi-Z | O |Clear To Send

1: The host controller can send a new message
frame to the XC886 (slave)

0: Busy or Processing a previous message

DA P4.1 | 46 Hi-Z | O |Data Available

1: There is a new message frame ready to be read
from the XC886 (slave)

0: No messages pending for the host to read

- PO.7 | 47 PU | I/0 | User configurable Output

- P0.3 | 48 | Hi-Z | 1/0 | User configurable Output

1.7 Device Description

1.7.1 Clock Generation Unit

The Clock Generation Unit (CGU) in the XC886 consists of an oscillator circuit and a Phase-Locked Loop
(PLL). In the XC886, the oscillator can be from either of these two sources: the on-chip oscillator (9.6 MHz)
or the external oscillator (3 MHz to 12 MHz). The term “oscillator” is used to refer to both on-chip oscillator
and external oscillator, unless otherwise stated. After the reset, the on-chip oscillator will be used by default.
The external oscillator can be selected via software. The PLL can convert a low-frequency external clock
signal from the oscillator circuit to a high-speed internal clock for maximum performance.

osc fail
detect

» OSCR

A

lock
—» detect

y

» LOCK

0sc ~ P: — —
el P ) > o= PLL oo K1 foys,

= core

r'y

N:1

(—

OSCDISC NDIV VYCOBYP

Figure3  CGU Block Diagram
Application Note 10 V1.00, 2007-06

PLLBYH




o .. AP08062
@l neo/n XC886 Stand-Alone MultiCAN

Stand-Alone XC886MultiCanController Device

When the XC886 is powered up, the PLL is disconnected from the oscillator and will run at its VCO base
frequency. After the EVR is stable, provided the oscillator is running, the PLL will be connected and the
continuous lock detection will ensure that the PLL starts functioning. Once reset has been released, bit
OSCR will be set to 1 if the oscillator is running and bit LOCK will be set to 1 if the PLL is locked.

Table 2 XTAL1 Input Characteristics (Operating Conditions apply)

Parameter Symbol Limit Values Unit
min. max.
Digital core supply voltage Vooe 2.3 2.7 \%
Input low voltage at XTAL1 Vix Vgg-0.5 0.3 x Vppe \Y
Input high voltage at XTAL1 Viux 0.7 x Vppe Vppe + 0.5 \Y

1.7.2 PLL Mode

The system clock is derived from the oscillator clock, divided by the P factor, multiplied by the N factor, and
divided by the K factor. Both VCO bypass and PLL bypass must be inactive for this PLL mode. This is the
mode the XC886MultiCanController will be configured as the run mode. The fCPU is programmed to run at
24MHz. Within the software a calibration value (CRYSTAL_FREQ) will be user selectable (see Table 3), with
the default value assumed to be an 8MHz external crystal.

For the XC886MultiCanController , the value of P is fixed to 1. In order to obtain the required fsys, the value
of N and K can be selected by bits NDIV and KDIV respectively for different oscillator inputs. The output
frequency must always be configured for 96 MHz.

The clock frequency of the MultiCAN peripheral is running at 48MHz.

Table 3 CRYSTAL_FREQ Selections

Label Oscillator Frequency N P K fsys fcpu
_4MHZ External 4 MHz 48 1 2 96 MHz 24 MHz
_6MHZ External 6 MHz 32 1 2 96 MHz 24 MHz
_8MHZ External 8 MHz 24 1 2 96 MHz 24 MHz
_9 6MHZ On-Chip 9.6 MHz 20 1 2 96 MHz 24 MHz
_12MHZ External 12 MHz 16 1 2 96 MHz 24 MHz
1.8 Power Management

1.8.1 Overview

The XC886MultiCanController power-management system allows software to configure the various
processing units so that they automatically adjust to draw the minimum necessary power for the application.

There are four power-management modes: Active Mode, Idle Mode, Slow Down Mode, and Power Down
Mode. The operation of each system component in each of these states can be configured by software. The
power management modes provide flexible reduction of power consumption through a combination of
techniques, including:

Stopping the CPU clock

Stopping the clocks of other system components individually
Clock-speed reduction of some peripheral components
Power-down of the entire system with fast restart capability

Application Note 11 V1.00, 2007-06



o .. AP08062
@l neo/n XC886 Stand-Alone MultiCAN

Stand-Alone XC886MultiCanController Device

1.8.2 Power-Down Mode

In the power-down mode, the oscillator and the PLL are turned off. The FLASH is put into the power-down
mode. The main voltage regulator is switched off, but the low power voltage regulator is still operating.
Therefore, all functions of the microcontroller are stopped and only the contents of the FLASH, on-chip RAM,
XRAM, and the SFRs are maintained. The port pins hold the logical state they had when the power-down
mode was activated.

In power-down mode, the clock is turned off. Hence, it cannot be awakened by an interrupt or the Watchdog
Timer. It will be awakened only when it receives an external wake up signal or reset signal.

Power down can be selected via port pin (if previously enabled by software) or by software command via API
call.

Exiting Power-Down Mode

Power down-mode can be exited in two ways:

o The EXINTO pin detects a falling edge, or
e The RXD pin detects a falling edge

1.9 Port Control

19.1 Mode Selections

Pin MODE selects whether the on-chip SSC or the UART interface is used as the communication channel. A
logic level 0 immediately after RESET is released the UART module is enabled. Likewise a logic level 1
activates the SSC module.

Note: Any configuration related to the state after a rising edge of RESET is performed by software as the
normal startup sequence and the user needs to ensure that the pin state remains stable until this
process has ended.

The logic state of pin MODEO during a rising edge on the RESET pin determines the access mode:
e Ifthe UART is selected:
— MODEO0=0 configures the on-chip UART.
e [fthe SSC is selected:

— MODEO=1 configures the on-chip SSC as slave device, which requires an external SSC
operating in master mode as the communication partner (host device).

Table 4 User Configuration Pins
Label Pin | 1/O | Description
p2.3 (COMM_MODE) |20 | Serial Interface Selection.

MODE=0, UART Mode Active.
MODE=1, SSC Mode Active.

P2.4 (CPOL) 21 | SPI clock polarity configuration pin.
CPOL=0, SCLK active low.
CPOL=1, SCLK active high.

P2.5 (CPHA) 22 I SPI clock phase configuration pin.
CPHA=0, shift data on leading edge, latch data on trailing edge.
CPHA=1, latch data on leading edge, shift data on trailing edge.

After latching the initial states of MODE, CPOL and CPHA with the rising edge of the reset signal, the pins
can be used as regular inputs (or analog).

Application Note 12 V1.00, 2007-06



o .. AP08062
@l neo/n XC886 Stand-Alone MultiCAN

Serial Interfaces

1.9.2 Input Port Configuration

1.9.2.1 Special action configured to an input pin

It's possible to configure different types of actions based on the edge/level of certain port pins. Some options
could be to go into sleep mode, change modes of operation and trigger CAN transfers or filters.

The determination of available IN (EXINTX) pins is TBD.

1.9.2.2 Port pin used as a Trigger for a CAN Message Transfer

When register TBD is loaded with TBD, a falling edge detected on pin(s) TBD generates a message transfer
via the CAN bus by setting control bit TXRQ in the corresponding message object. If the respective message
object is configured for transmit operation, a data frame will be transmitted. A configuration as a receive
message object causes a remote frame to be sent out.

1.9.3 Output Port Configuration

The XC886MultiCanController has 34 port pins organized into five parallel ports, Port 0 (PO) to Port 4 (P4).
Each pin has a pair of internal pull-up and pull-down devices that can be individually enabled or disabled.
Ports PO, P1, P3 and P4 are bidirectional and can be used as general purpose input/output (GPIO) or to
perform alternate input/output functions for the on-chip peripherals. When configured as an output, the open
drain mode can be selected. Port P2 is an input-only port, providing general purpose input functions,
alternate input functions for the on-chip peripherals, and also analog inputs for the Analog-to-Digital
Converter (ADC).

The determination of available OUT pins is TBD.

If pin OUTx is configured as interrupt output via bit field TBD in register TBD, a logic level O indicates an
interrupt request to the external host device. The interrupt line will be active if there is a new pending
interrupt request for interrupt node 0 according to the selection made by control bit TBD in register TBD.

194 Spare I/0O

The remaining I/O pins are controlled by port control logic and can be used as I/O extension. These lines can
be read or written by the serial channel or by CAN messages (if defined by the API). Furthermore, these
lines can be programmed as additional interrupt output lines in order to increase the number of independent
interrupts.

2 Serial Interfaces
2.1 Communication via the Universal Asynchronous Receivers/Transmitters
(UART)

UART Features:

Full-duplex asynchronous modes

8-bit data frames, no parity, 1 start bit, one stop bit, LSB first
Binary data transfer based on a defined protocol

Baud rate is 115200

Application Note 13 V1.00, 2007-06



o .. AP08062
@l neo/n XC886 Stand-Alone MultiCAN

Serial Interfaces

Tx Rx
" Y Baud Rate
Baud Rate Data L b4 Data Generator
Generator Register| R Tx |Register
X ) Y X
< < ASC
CAoﬁt?ol - N4 Control
ASC ISR
Host XC886CanController

Figure 4 UART Configuration

The message packet used for the UART will consist of a Header byte and a “Packet Cnt” (hnumber of bytes
contained within the total message packet). Then the API packet is inserted ending with a “Chksum” byte (a
two’s complement checksum for all bytes within the message packet) (see Figure 5).

Header Packet Cnt API Packet Chksum

Figure 5 UART Message Packet

2.2 Communication via the Synchronous Serial Channel (SSC)

SSC Features (Slave Mode):

Full-duplex synchronous Slave mode

Master mode is not allowed for communicating to a host

8-bit data frames, MSB first

Phase and Clock Polarity is according to pins CPHA and CPOL (see Table 4)
fixed baud rate (1 Mbit @ 24MHz fCPU clock)

SSC is equivalent to an SPI

The reset value of the baud rate generator (SSCBRG) is 0x000B expecting a clock signal of 1 MHz at the
SCK pin given the internal fCPU is equal 24 MHz on the XC886MultiCanController device.

Note: In order to avoid undefined states during power-up, it is recommended to add pull resistors (about 47-
100 kOhm) to the power supply on the SLS and SCK lines.

Data MTSR Hf MTSR Data
Register - Register
st 1 r

SSC
Baud Rate
Generator SCK 1 - scK Ciont?'
SSC \
Control sts o 1 o sLs SSCISR
(o)
(o

Host XC886CanController

Figure 6  SSC Slave Configuration

*
ﬁ
)
wn
=

EH

Application Note 14 V1.00, 2007-06



o .. AP08062
@l neo/n XC886 Stand-Alone MultiCAN

Serial Interfaces

2.2.1 SSC in Slave Mode

The XC886MultiCanController device can be easily connected to an external host device via a serial
channel. This mode is selected by pins MODE=0 and CPOL and CPHA levels (see Table 4) at the rising
edge of the RESET signal. In slave mode, the on-chip SSC can be connected to an external SSC (Host) in
master mode according to Table 4.

The SSC module of the XC886MultiCanController is equivalent to a standard four-line SPIl-compatible
interface. The XC886MultiCanController does not implement a true slave select signal meaning the clock
is always active and the user must dedicate the SPI channel (or at least ensure that all transfers are 8-bits in
length). The user can also choose to externally gate the SCK with the SLS signal.

The host can only begin a new message transfer if the CTS signal is at a high level (logic ‘1’). Upon the
transmission of a message stream, the data is expected or returned by the XC886MultiCanController as long
as the SLS pin is held on a low level (logic ‘0’) and the SCK pin is provided with a clock signal (maximum of
22 bytes). The signal SLS has to be set to a high level (logic ‘1) by the host to complete the message
transfer. The XC886MultiCanController device will drive the signal CTS low during the last byte of the
transfer. This indicates the transfer is complete from XC886MultiCanController perspective. The
XC886MultiCanController will drive the CTS signal high (logic ‘1’) when it has processed the message from
the host.

Note: The host is not allowed to initiate any message transfers unless the CTS signal is set (logic ‘1’).

2.2.2 Transfer length

The first byte transmitted by the external master (host) SSC after the activation of the SLS signal, represents
the APl command. All transfers on the SSC interface are of a fixed length (22 bytes) and support full-duplex
operation (once the corresponding buffer has been filled). This type of transfer was chosen to support
standard DMA Block transfers controlled by a host controller.

2.2.2.1 Handshake

The XC886MultiCanController will configure two port pins as status outputs for the host to read. The two pins
named “Clear To Send” (CTS) and “Data Available” (DA). These pins are used for hardware flow control
between the host and slave controllers.

CTS  “high” the host controller can send a new message frame to the XC886MultiCanController (slave),
“low” — otherwise

DA “high” there is a new message frame ready to be read from the XC886MultiCanController (slave)
“low” — otherwise

2.2.3 Baud Rate Generation

The synchronous serial channel SSC has its own dedicated 16-bit baud-rate generator with 16-bit reload
capability. Figure 7 shows the baud-rate generator.

The baud rate of the SSC is fixed (at 1Mbit) and there is no API call to allow for modification by the host.

Application Note 15 V1.00, 2007-06



o .. AP08062
@l neo/n XC886 Stand-Alone MultiCAN

Serial Interfaces

16-Bit Reload Register
|

f
WK gyl = 2L 16-Bit Counter

fss cik

-

fSS_CLK max iN Slave Mode <= fHW_CLK /4

Figure 7  SSC Baud-rate Generator

The baud-rate generator is clocked with the module clock fPCLK. The timer counts downwards. Register BR
is the dual-function Baud-rate Generator/Reload register. Reading BR, while the SSC is enabled, returns the
contents of the timer. Reading BR, while the SSC is disabled, returns the programmed reload value. In this
mode, the desired reload value can be written to BR.

The formulas below calculate either the resulting baud rate for a given reload value or the required reload
value for a given baud rate:

f f
Baud rate = AW CLK BR = i ctx -1
2 = (<BR> + 1) 2 = Baud rate

The maximum baud rate that can be achieved when using a module clock of 24 MHz is 12 MBaud in master
mode (with <BR> = 0000H) or 6 MBaud in slave mode (with <BR> = 0001H).

2.2.4 Register Address Map

Table 5 Summary of Registers

Register Register Name Address Reset Value

Symbol

RMAP =0
PISEL Port Input Select Register A9 O0u
CONL Control Register Low AAy 00
CONH Control Register High ABH O0u
TBL Transmitter Buffer Register Low ACH 00
RBL Receiver Buffer Register Low ADn O0H
BRL Baud rate Timer Reload Register Low AEn 00
BRH Baud rate Timer Reload Register High AFu O0H

2.2.5 Error Handling
TDB

Application Note 16 V1.00, 2007-06



AP08062
XC886 Stand-Alone MultiCAN

@fineon
-

3 MultiCAN Module Description

MultiCAN Module Description

3.1 MultiCAN Register Address Map

All Kernel registers, implemented for controlling the MultiCAN in the XC886MultiCanController, are
summarized in Table 6; detailed information about each register is provided in the respective module
description chapter in the XC886/8 User’'s Manual.

Note: Accesses to addresses which are not specified as registers in the following register address map are forbidden.

To decode the address of the MultiCAN kernel registers, at least an 14-bit address line is needed. As the
MultiCAN registers are 32-bit wide (4 Bytes), the address lines A[1:0] are not needed for decoding and are
tied to “00”. The address lines A[13:2] are implemented and they are programmed from the register bits CA2
to CA9 in the register ADL and CA10 to CA13 in the register ADH. The address registers need to be
programmed before accessing the MultiCAN registers.

Note: This means you need to shift right the offset value by 2 for the correct address in the MultiCAN register. Example, writing to
register NCRO address would be an offset address of 200h but the value written to the MultiCAN would be 0x200 >> 2 = 0x80.

Table 6 Summary of Registers for MultiCAN
Register Register Name Offset Reset Value
Symbol Address
MultiCAN Global Module Registers
LISTm List Register m 01004 + m x 4, XXXX XXX XH
MSPNDk Message Pending Register k 0120, + k x 4,
MSIDk Message Index Register k 0140, + k x 4,
MSIMASK Message Index Mask Register 01C0,
PANCTR Panel Control Register 01C4,
MCR Module Control Register 01C8,
MITR Module Interrupt Trigger Register 01CC,
Node Registers
NCRx Node x Control Register 0200, + x x 100 XXXX XXX Xn
NSRx Node x Status Register 0204, + x x 100,
NIPRx Node x Interrupt Pointer Register 0208, + x x 100,
NPCRx Node x Port Control Register 020C,, + x x 100,
NBTRx Node x Bit Timing Register 0210, + x x 100,
NECNTXx Node x Error Counter Register 0214, + x x 100,
NFCRXx Node x Frame Counter Register 0218, + x x 100,
Message Object Registers
MOFCRn Message Object n Function Control 1000, + n x 20, XXXX XXXXn
MOFGPRn Message Object n FIFO/Gateway Pointer 1004, + n x 20,
MOIPRn Interrupt Pointer 1008, + n x 20,
MOAMRnN Acceptance Mask 100C, + n x 20,
MODATALNn | Data Register Low (0-3) 10104 + n x 20,
MODATAHN | Data Register High (4-7) 1014, + n x 20,
MOARnN Arbitration (ID) 1018, + n x 20,
MOCTRn Message Object n Control Reg. 101Cy + n x 20, 1F1E 00004
MOSTATnN Message Object n Status Reg.

Application Note

17

V1.00, 2007-06



AP08062

o~ _.
@l neon XC886 Stand-Alone MultiCAN

/

Application Program Interface (API)

Summary of Registers
Register Register Name Address Reset Value
Symbol
RMAP =0
ADCON CAN Address/Data Control D8+ 00H
ADL CAN Address Low D9 OO0
ADH CAN Address High DA 00
DATAO CAN Data Register 0 DB O0H
DATA1 CAN Data Register 1 DCh O0H
DATA2 CAN Data Register 2 DDu O0H
DATAS3 CAN Data Register 3 DEH 00H
4 Application Program Interface (API)

The Application Program Interface (API) is a set of routines that the Host application uses to request and
receive lower-level services performed on the XC886MultiCanController.

A simplistic configuration would have the host controller generally see the content of just two receive
mailboxes (one for each CAN channel) and populate information in two transmit mailboxes (one for each
CAN channel). The logical mailbox structure seen by the host controller matches very closely to the
hardware register implementation used on the XC886MultiCanController. This results in reduced software
overhead of the data management within the XC886MultiCanController firmware. The mailbox format defines
the packet definition for the CAN frame data exchanged between the host and slave controllers over the SPI

interface (GetCanObject / SetCanObiject).
4.1 Mailbox Layout (2+20 bytes):
API Number API Extension 3 DBO 3 DB1
e —— ' b2 | oDB3 |
[ | ] ]
o |MPD STDAM[10:0] / EXTAM[28:18] %T_fé\]" ! ! ;
‘ ' 3 DB4 | DB5 3
EXTAM[15:0] /R L I 4
| DB6 ! DB7 :
[ | ] ]
PRI |IDE STDID[10:0] / EXTID[28:18] [5)7(71'6'3] I e :
‘ ' | DB8 | DB9 3
EXTID[15:0] (S o ]
!  DB10 | DB11
LIST[3:0] DIR| R |G | R | B [SDT [TXIE[RXIE DLC[3:0] | | !
. DB12 | DB13 |
DBO [7:0] DB1 [15:8] | | ;
. DB14 | DB15 |
DB2 [23:16] DB3 [31:24] | | ;
. DB16 | DB17 |
DB4 [39:32] DB5 [47:40] | | ;
. DB18 | DB19 |
DB6 [55:48] DB7 [63:56] A 1 — 4
. DB20 | DB21 |
CFCVAL [15:0] (Timestamp) L,,",,,"”:;L ffffffffffffffffffffff s
Figure 8  Mailbox Layout

Application Note 18

V1.00, 2007-06



@fineon
-

AP08062
XC886 Stand-Alone MultiCAN

Table 7 Mailbox Registers

Application Program Interface (API)

Field

Bits

Description

MIDE

157

Acceptance Mask bit for Message IDE bit
0 This message object accepts the reception of both standard and extended frames
1 This message object only receives frames with a matching IDE bit

STDAM/EXTAM

[156:128]

Acceptance Mask for CAN Message Identifier
Identifier of a standard message (xID[28:18]) or an extended message (xID[28:0]). For
standard identifiers bits xID[17:0] are “don’t care”.

PRI

[127:126]

Priority Class

PRI assigns one of the four priority classes 0, 1, 2, 3 to the message object, with lower PRI
number meaning higher priority. Message objects with lower PRI value always win
acceptance filtering for frame reception and transmission over message objects with higher
PRI value. Acceptance filtering based on identifier/mask and list position is only performed
between message objects of the same priority class. PRI also defines the acceptance
filtering method for transmission:

00 Time Triggered CAN (Do Not Use)

01 Transmit acceptance filtering is based on the list order

00 Transmit acceptance filtering is based on the CAN identifier

11 Transmit acceptance filtering is based on the list order

IDE

125

CAN IDE bit of Message Object
0 Standard frame with 11-bit identifier
1 Extended frame with 29-bit identifier

STDID/EXTID

[124:96]

CAN Identifier of Message Object
Identifier of a standard message (xID[28:18]) or an extended message (xID[28:0]). For
standard identifiers bits xID[17:0] are “don’t care”.

LIST

[95:92]

List Allocation
This field indicates the list to which the message object is allocated

0000 Unallocated object

0001 Allocated to list 1 (CAN channel 1)
0010 Allocated to list 2 (CAN channel 2)
else reserved

DIR

91

Message Direction

0 Receive Object. With TXRQ = 1 a remote frame with the identifier of the message
object is scheduled for transmission. On reception of a data frame with matching
identifier the message is stored in this message object.

1 Transmit Object. If TXRQ = 1 this message object is scheduled for transmission as a
data frame. On reception of a remote frame with matching identifier the TXRQ bit is
set.

TXEN1

90

Transmit Enable 1
The message object may only be transmitted if both TXENO and TXEN1 are set. TXEN1 is
used by the MultiCAN module for selecting the active message object in transmit FIFO'’s.

TXENO

89

Transmit Enable 0

The message object may only be transmitted if both TXENO and TXEN1 are set. The user
may clear TXENO in order to inhibit the transmission of a message that is currently updated
or to disable automatic response of remote frames.

TXRQ

88

Transmit Request

0 No transmission of message object n is requested.

1 Transmission of message object n on the CAN bus is requested.

The transmit request becomes valid only if TXRQ, TXENO, TXEN1 and MSGVAL are set.
TXRQ is set by hardware if a matching remote frame has been received correctly. TXRQ is
reset by hardware if message object n has been transmitted successfully and NEWDAT is
not set again by software.

RXEN

87

Receive Enable

The message object may only receive a frame from the CAN bus if RXEN is set. The
message object does not match any receiving frame if RXEN is not set.

RXEN is only evaluated for receive acceptance filtering.

SDT

86

Single Data Transfer
If SDT = 1 and message object n is not a FIFO base object, then MSGVAL is reset when this
object has taken part in a successful data transfer (receive or transmit).

Application Note

19 V1.00, 2007-06



o .. AP08062
@l neo/n XC886 Stand-Alone MultiCAN

Application Program Interface (API)

Field Bits Description

TXIE 85 Transmit Interrupt Enable

TXIE enables the message transmit interrupt of message object n. This interrupt is generated
after the transmission of a CAN message.

0 Message transmit interrupt is disabled.

1 Message transmit interrupt is enabled.

Bit field MOIPRn.TXINP selects the interrupt output line which becomes activated at this type
of interrupt.

RXIE 84 Receive Interrupt Enable

RXIE enables the message receive interrupt of message object n. This interrupt is generated
after reception of a CAN message (independent of whether the CAN message is received
directly or indirectly via a gateway action).

0 Message receive interrupt is disabled.

1 Message receive interrupt is enabled.

Bit field MOIPRN.RXINP selects the interrupt output line which becomes activated at this type
of interrupt.

DLC [83:80] Data Length Code

Valid values for the data length are 0 to 8. DLC>8 leads to 8 data bytes, but the DLC code is
not truncated upon reception or transmission of CAN frames.

DBO [79:72] CAN Data Byte 0 [7:0]
DB1 [71:64] CAN Data Byte 1 [15:8]
DB2 [63:56] CAN Data Byte 2 [23:16]
DB3 [565:48] CAN Data Byte 3 [31:24]
DB4 [47:40] CAN Data Byte 4 [39:32]
DB5 [39:32] CAN Data Byte 5 [47:40]
DB6 [31:24] CAN Data Byte 6 [55:48]
DB7 [23:16] CAN Data Byte 7 [63:56]
CFCVAL [15:0] Time Stamp

In CAN bit time

Application Note 20 V1.00, 2007-06



(infineon.

AP08062

XC886 Stand-Alone MultiCAN

4.2

Structure for a 32-bit Little Endian machine (TriCore)

typedef struct {

unsigned
unsigned
unsigned

int w :29;
int mide :1;
int 12

} CAN_OBJ_AM_EXT TYPE;

typedef struct {

unsigned
unsigned
unsigned

int w :29;
int ide 01
int pri 12

} CAN_OBJ_ID_EXT TYPE;

typedef struct {

unsigned
unsigned
unsigned
unsigned

int :18;
int w 111,
int mide :1;
int 12

} CAN_OBJ_AM_STD_TYPE;

typedef struct {

unsigned
unsigned
unsigned
unsigned

int 118
int w :11;
int ide 01
int pri 125

} CAN_OBJ_ID_STD_TYPE;

typedef struct {

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

int dlc 14
int rxie :1;
int txie :1;
int sdt 01
int rxen :1;
int txrgq :1;
int txen@ :1;
int txenl :1;
int dir 01
int list :4;

} CAN_OBJ_CFG_TYPE;

typedef struct {

union {
U32 w;

CAN_OBJ_AM_STD_TYPE std;
CAN_OBJ_AM_EXT_TYPE ext;

} am;

union {
U32 w;

/* acceptance mask */

CAN_OBJ_ID_STD_TYPE std;
CAN_OBJ_ID_EXT_TYPE ext;

} id;

union {
Ul6 hw;

/* identifier */

CAN_OBJ_CFG_TYPE b;

} cfg; /* object configuration */
U8 db[8]; /* data bytes */
Ulée timestamp; /* object time stamp */

} CAN_MAILBOX_TYPE;

Application Note 21

Application Program Interface (API)

V1.00, 2007-06



o .. AP08062
@l neo/n XC886 Stand-Alone MultiCAN

Application Program Interface (API)

4.3 APl to communicate between host and slave controllers

Table 8, lists the available messages for communication between the host and the slave
(XC886MultiCanController). The list can be expanded to meet future needs.

Table 8 (API) Description with byte lengths for the messages
Name SSC (SPI1) Bytes UART Bytes
In Out
API 0: NOP 22 4 4
API 1: SetCanChannelOnOff 22 6 -
API 2: GetCanChannelOnOff 22 5 6
API 3: SetCanlrqOnOff 22 5 -
API 4: GetCanlrqOnOff 22 5 6
API 5: SetCanCounter 22 9 -
API 6: GetCanCounter 22 5 9
API 7: GetCanlrgStatus 22 5 5
API 8: SetCanObject 22 25 -
API 9: GetCanObject 22 5 25
API 10: SetCanBitRate 22 7 -
API 11: GetCanBitRate 22 5 7
API 12: SetCanRegData 22 11 -
API 13: GetCanRegData 22 7 10
API 14: SetCpuClock 22 5 -
API 15: GetCpuClock 22 4 5

The SSC transfers are always of a fixed length (22 bytes) and support full-duplex communication. A two byte
header begins the transaction and is followed by specific mailbox data (20 bytes) releated to the header.

Note: For SSC transfers all bytes depend on the type of message and will be “don’t care”. The API will
always fill from the zero byte position out to the length specified by the message APIl. The software
does not explicitly clear unused mailbox data to zero.

Note: For UART transfers the user can omit all dummy transfers and instead must wrap the APl message
frame within the UART message packet as shown in Figure 5.

Note: API's 7 and 14 are not implemented in the accompanying source code for the
XC886MultiCanController. Only the framework for these API's exists in the source code.

Application Note 22 V1.00, 2007-06



(infineon.

AP08062

XC886 Stand-Alone MultiCAN

4.3.1 API 0: NOP

Description:

This means No OPeration and the user should ignore the message as the data is not valid.

4.3.1.1 MTSR Packet Description

MTSR (0)
‘ API [7:0] ‘

Application Program Interface (API)

Field Byte Bits Description
API 0 [6:0] API Function ID
0x00 No OPeration
1-21 [7:0] Dummy transfer

4.3.1.2 MRST Packet Description

MRST (0)

‘ API [7:0] ‘

Field Byte Bits Description
API 0 [7:0] API Function ID
0x00 No OPeration
1-21 [7:0] Unused data

Application Note

23

V1.00, 2007-06



o .. AP08062
@l neo/n XC886 Stand-Alone MultiCAN

Application Program Interface (API)

4.3.2 API 1: SetCanChannelOnOff

Description:
Enable / Disable CAN channel 1 (2)

4.3.2.1 MTSR Packet Description

MTSR (0) MTSR (1) MTSR (2)

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

‘ : : :API:[7:0]: : : ‘ : : C:hann:el[7:(:)] : ‘ CALM ‘ CCE ‘ 0 ‘CANDIS| ALIE ‘ LECIE‘ TRIE ‘ INIT ‘
W W w W W W W W W W W W W W w w w w w w w w rwh rh
Field Byte Bits Description

API 0 [7:0] API Function ID

0x01 Enable / Disable CAN channel
CH 1 [7:0] Channel

0 Channel 1
1 Channel 2

INIT 2 [0] Node Initialization
0 Module is initialized (messages with participate)
1 Module is inactive or in Bus off state
TRIE 2 [1 Transfer Interrupt Enable
0 Transfer interrupt is disabled
1 Transfer interrupt is enabled
LECIE 2 [2] LEC Indicated Error Interrupt Enable
0 Last error code interrupt is disabled
1 Last error code interrupt is enabled
ALIE 2 [3] Alert Interrupt Enable
0 Alert interrupt is disabled
1 Alert interrupt is enabled
CANDIS 2 [4] CAN Disable

Setting this bit disables the CAN node. The CAN node first waits until it is bus-idle or
bus-off. Then bit INIT is automatically set, and an alert interrupt is generated if bit ALIE
is set

CCE 2 [6] Configuration Change Enable

0 The Bit Timing Register, the Port Control Register, and the Error Counter
register may only be read. All attempts to modify them are ignored.

1 The Bit Timing Register, the Port Control Register, and the Error Counter
Register may be read and written

CALM 2 [7] CAN Analyze Mode

If this bit is set, then the CAN node operates in Analyze Mode. This means that
messages may be received, but not transmitted. No acknowledge is sent on the CAN
bus upon frame reception. Active-error flags are sent recessive instead of dominant.
The transmit line is continuously held at recessive (1) level. Bit CALM can be written
only while bit INIT is set.

- 3-21 [7:0] Dummy Transfer

4.3.2.2 MRST Packet Description

There is no transmit packet for this API

Application Note 24 V1.00, 2007-06



o .. AP08062
@l neo/n XC886 Stand-Alone MultiCAN

Application Program Interface (API)

4.3.3 APl 2: GetCanChannelOnOff

Description:
Get CAN channel 1 (2) Status

4.3.3.1 MTSR Packet Description

MTSR (0) MTSR (1)
API [7:0] CH [7:0]
Field Byte Bits Description
API 0 [6:0] API Function ID
0x02 Read CAN channel status (enabled or disabled)
CH 1 [7:0] Channel
1 Channel 1
2 Channel 2
else reserved
- 2-21 [7:0] Dummy transfer

4.3.3.2 MRST Packet Description

MRST (0) MRST (1) MRST (2)

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
‘ : : :API :[7:0] : : : ‘ : : C:hann:el [7:(:)] : ‘ CALM ‘ CCE ‘ 0 ‘ CANDIS | ALIE ‘ LECIE ‘ TRIE ‘ INIT ‘
W W w W W W W W W W W W W W Ww w w w w w w w rwh rh
Field Byte Bits Description

API 0 [7:0] API Function ID

0x02 Read CAN channel status
CH 1 [7:0] Channel

0 Channel 1
1 Channel 2

INIT 2 [0] Node Initialization
0 Module is initialized (messages with participate)
1 Module is inactive or in Bus off state
TRIE 2 [1] Transfer Interrupt Enable
0 Transfer interrupt is disabled
1 Transfer interrupt is enabled
LECIE 2 [2] LEC Indicated Error Interrupt Enable
0 Last error code interrupt is disabled
1 Last error code interrupt is enabled
ALIE 2 [3] Alert Interrupt Enable
0 Alert interrupt is disabled
1 Alert interrupt is enabled
CANDIS 2 [4] CAN Disable

Setting this bit disables the CAN node. The CAN node first waits until it is bus-idle or
bus-off. Then bit INIT is automatically set, and an alert interrupt is generated if bit ALIE
is set

CCE 2 [6] Configuration Change Enable

0 The Bit Timing Register, the Port Control Register, and the Error Counter
register may only be read. All attempts to modify them are ignored.

1 The Bit Timing Register, the Port Control Register, and the Error Counter
Register may be read and written

CALM 2 [7] CAN Analyze Mode

If this bit is set, then the CAN node operates in Analyze Mode. This means that
messages may be received, but not transmitted. No acknowledge is sent on the CAN
bus upon frame reception. Active-error flags are sent recessive instead of dominant.
The transmit line is continuously held at recessive (1) level. Bit CALM can be written
only while bit INIT is set.

- 3-21 [7:0] Unused data

Application Note 25 V1.00, 2007-06



(infineon

AP08062
XC886 Stand-Alone MultiCAN

Application Program Interface (API)

4.3.4 API 3: SetCanlrqOnOff

Description:

Enable / Disable CAN channel 1 (2) Interrupts

Note: Transmit and Receive interrupts are individually enabled via the mailbox for the corresponding object.

4.3.4.1 MTSR Packet Description

MTSR (0) MTSR (1)
‘ API [7:0] CH[7:4] ‘Aue‘LEEC" 0 ‘ 0 ‘
Field Byte Bits Description
API 0 [7:0] API Function ID
0x03 Enable / Disable CAN channel interrupts
CH 1 [7:4] Channel
1 Channel 1
2 Channel 2
else reserved
ALIE 1 3 Alert Interrupt Enable
0 disable
1 enable
LECIE 1 2 Last Error Code indicated Error Interrupt Enable
0 disable
1 enable
- 1 1 Always write O
- 1 0 Always write 0
2-21 [7:0] Dummy transfer

4.3.4.2 MRST Packet Description

There is no transmit packet for this API

Application Note

26 V1.00, 2007-06



o .. AP08062
@l neo/n XC886 Stand-Alone MultiCAN

Application Program Interface (API)

4.3.5 API 4: GetCanlrqOnOff

Description:
Get status of CAN channel 1 (2) Interrupt

Note: Transmit and Receive interrupts are individually enabled via the mailbox for the corresponding object.

4.3.5.1 MTSR Packet Description

MTSR (0) MTSR (1)
‘ API [7:0] ‘ CH[7:0] ‘
Field Byte Bits Description
API 0 [7:0] API Function ID

0x04 Read CAN channel interrupt status
CH 1 [7:0] Channel

1 Channel 1

2 Channel 2
else reserved

2-21 [7:0] Dummy transfer

4.3.5.2 MRST Packet Description

MRST (0) MRST (1) MRST (2)
‘ API [7:0] ‘ CH [7:4] ‘ - ‘ALIE‘L%CI‘ - ‘ - ‘
Field Byte Bits Description
API 0 [7:0] API Function ID

0x04 Read CAN channel interrupt status
CH 1 [7:0] Channel

1 Channel 1
2 Channel 2
else reserved

- 2 [7:4] Not used
ALIE 2 3 Alert Interrupt
0 disabled
1 enabled
LECIE 2 2 Last Error Code indicated Error Interrupt
0 disabled
1 enabled
- 2 1 Not Used
- 2 0 Not Used
3-21 [7:0] Unused data

Application Note 27 V1.00, 2007-06



o .. AP08062
@l neo/n XC886 Stand-Alone MultiCAN

Application Program Interface (API)

4.3.6 API 5: SetCanCounter

Description:
Write CAN Channel Counter

4.3.6.1 MTSR Packet Description

MTSR (0) MTSR (1) MTSR (2) MTSR (3) MTSR (4) MTSR (5)
‘ API [7:0] ‘ CH [7:4] ‘ CNTY [3:0] ‘ DB3 [31:24] ‘ DB2 [23:16] DB1[15:8] DBO [7:0]
Field Byte Bits Description
API 0 [7:0] API Function ID

0x05 Write CAN channel counter
CH 1 [7:4] Channel

1 Channel 1
2 Channel 2
else reserved

CNTY 1 [3:0] Counter Type

1 CAN frames received

2 CAN frames transmitted

3 CAN errors received

4 CAN errors transmitted

5 CAN Alert errors

6 CAN LEC errors

else reserved
DB3 2 [7:0] Counter Data Byte 3 [31:24]
DB2 3 [7:0] Counter Data Byte 2 [23:16]
DB1 4 [7:0] Counter Data Byte 1 [15:8]
DBO 5 [7:0] Counter Data Byte 0 [7:0]

6-21 [7:0] Dummy transfer

4.3.6.2 MRST Packet Description

There is no transmit packet for this API

Application Note 28 V1.00, 2007-06



(infineon.

AP08062

XC886 Stand-Alone MultiCAN

4.3.7

Description:
Read CAN Channel Counter

Application Program

APl 6: GetCanCounter

Interface (API)

4.3.7.1 MTSR Packet Description
MTSR (0) MTSR (1)
‘ API[7:0] ‘ CH [7:4] ‘ CNTY [3:0] ‘
Field Byte Bits Description
API 0 [7:0] API Function ID
0x06 Read CAN channel counter
CH 1 [7:4] Channel
1 Channel 1
2 Channel 2
else reserved
CNTY 1 [3:0] Counter Type
1 CAN frames received
2 CAN frames transmitted
3 CAN errors received
4 CAN errors transmitted
5 CAN Alert errors
6 CAN LEC errors
else reserved
- 2-21 [7:0] Dummy transfer
4.3.7.2 MRST Packet Description
MRST (0) MRST (1) MRST (2) MRST (3) MRST (4) MRST (5)
‘ API [7:0] ‘ CH [7:4] ‘ CNTY [3:0] ‘ DB3 [31:24] ‘ DB2 [23:16] DB1[15:8] DBO [7:0]
Field Byte Bits Description
API 0 [7:0] API Function ID
0x06 Read CAN channel counter
CH 1 [7:4] Channel
1 Channel 1
2 Channel 2
else reserved
CNTY 1 [3:0] Counter Type
1 CAN frames received
2 CAN frames transmitted
3 CAN errors received
4 CAN errors transmitted
else reserved
DB3 2 [7:0] Counter Data Byte 3 [31:24]
DB2 3 [7:0] Counter Data Byte 2 [23:16]
DB1 4 [7:0] Counter Data Byte 1 [15:8]
DBO 5 [7:0] Counter Data Byte 0 [7:0]
- 6-21 [7:0] Unused data

Application Note

29

V1.00, 2007-06



(infineon.

AP08062
XC886 Stand-Alone MultiCAN

4.3.8

Description:

Application Program Interface (API)

API 7: GetCanlrqgStatus

Get status of CAN channel 1 (2) interrupts

Not implemented in application note

4.3.8.1

MTSR (0)

MTSR Packet Description

MTSR (1)

‘ API [7:0]

CH [7:0]

Field

Byte

Bits

Description

API

[7:0]

API Function ID
0x07 CAN channel source interrupt status

CH

[7:0]

Channel

1 Channel 1
2 Channel 2
else reserved

[7:0]

Dummy transfer

4.3.8.2

MRST (0)

MRST Packet Description

MRST (1)

‘ API[7:0]

CH [7:4]

‘ RXIE‘TXIE ‘ ALIE ‘ i ‘

Field

Byte

Bits

Description

API

[7:0]

API Function ID
0x07 Read CAN channel interrupt status

CH

[7:4]

Channel

1 Channel 1
2 Channel 2
else reserved

RXIE

Receive Interrupt Pending

0 false

1 true

Cleared by slave firmware once the message object has been read by the host

TXIE

Transmit Interrupt Pending
0 false
1 true

Cleared by slave firmware once the message object has been successfully transmitted
on the CAN bus.

ALIE

Alert Interrupt Pending

0 false

1 true

Cleared by slave firmware TBD

LECIE

Last Error Code indicated Error Interrupt Pending
0 false

1 true

Cleared by slave firmware TBD

2-21

[7:0]

Unused data

Application Note

30 V1.00, 2007-06



o .. AP08062
@l neo/n XC886 Stand-Alone MultiCAN

Application Program Interface (API)

4.3.9 API 8: SetCanObject

Description:
Write CAN channel mailbox data

For the description of the mailbox data see Table 7 Mailbox Registers

4.3.9.1 MTSR Packet Description

MTSR (0) MTSR (1) MTSR (2) MTSR (21)
‘ API [7:0] ‘ OBJ [7:0] ‘ Mailbox MSB ‘ ‘ Mailbox LSB
Field Byte Bits Description
API 0 [7:0] API Function ID (DBO)
0x08 Write CAN mailbox data (message object)
OBJ 1 [7:0] Message Object Number (DB1)
2 [7:0] Mailbox MSB (DB2)
21 [7:0] Mailbox LSB (DB21)

4.3.9.2 MRST Packet Description

There is no transmit packet for this API

Application Note 31 V1.00, 2007-06



(infineon

AP08062

XC886 Stand-Alone MultiCAN

4.3.10 API9: GetCanObject

Description:

Read CAN channel mailbox data

For the description of the mailbox data see Table 7 Mailbox Registers

4.3.10.1 MTSR Packet Description

Application Program Interface (API)

MTSR (0) MTSR (1)
‘ API [7:0] ‘ OBJ[7:0] ‘
Field Byte Bits Description
API 0 [7:0] API Function ID
0x09 Read CAN mailbox data
OBJ 1 [7:0] Message Object Number
2-21 [7:0] Dummy transfer

4.3.10.2 MRST Packet Description

MTSR (0) MTSR (1) MTSR (2) MTSR (21)
‘ API [7:0] ‘ OBJ [7:0] ‘ DB2 ‘ ‘ DB21
Field Byte Bits Description
API 0 [7:0] API Function ID (DBO)
0x09 Read CAN mailbox data
OBJ 1 [7:0] Message Object Number (DB1)
2 [7:0] Mailbox MSB (DB2)
21 [7:0] Mailbox LSB (DB21)

Application Note

32

V1.00, 2007-06



o .. AP08062
@l neo/n XC886 Stand-Alone MultiCAN

Application Program Interface (API)

4311 API 10: SetCanBitRate

Description:
Write CAN channel (Node Bit Timing Register NBTR)
- 1 Bit Time -
Lt TSeg1 e TSegZ -
—--lrSynE-—-Ime—- Tm —— sz -—
S e B B B LN B S
Sync. A A
1 Time Quantum {.fq}
Sample Point Transmit Point
tq = (BRP + 1)/ fCAN if DIV8 =0 (fCAN = 48MHz)
=8 x (BRP+1) / fCAN if DIV8 =1
TSync =1x tq
Teegt = (TSEGT+1)xt;  (min.31,) $SJW= (TSJW +_|_1) x g
_ , Seg12 [sJw + Tprop
Tsegz =(TSEG2 + 1) x (min. 2 tg) Tseg2 > Tsw
bit time = Tsync + TSeg1 + TSegZ (mln 8 tq)
Forumla for CAN baud rate (bit time):
baud rate = fCAN / (BRP + 1) X (Tsync + Tsegt *+ Tseg2))
Example for 250 Kbaud: BTR = 0x494B
4.3.11.1 MTSR Packet Description
MTSR (0) MTSR (1) MTSR (2) MTSR (3)
‘ API [7:0] ‘ CH[7:0] ‘ NBTRH[15:8] ‘ NBTRL[7:0]
15 14 13 12 11 10 9_8 7 6 5 4 3 2 1 0
Dive TSEG2 TSEG1 SJwW BRP
Field Byte Bits Description
API 0 [7:0] API Function ID
0x0A Write CAN channel (Node Bit Timing Register NBTR)
CH 1 [7:0] Channel

1 Channel 1
2 Channel 2
else reserved

NBTRH 2 [7:0] NBTR [15:8]
NBTRL 3 [7:0] NBTR [7:0]
- 4-21 [7:0] Dummy transfer

4.3.11.2 MRST Packet Description

There is no transmit packet for this API

Application Note 33 V1.00, 2007-06



con

AP08062

XC886 Stand-Alone MultiCAN

4.3.12

Description:

Application Program Interface (API)

APl 11: GetCanBitRate

Read CAN channel (Node Bit Timing Register NBTR). See API 10: SetCanBitRate for definition of the NBTR

value.

4.3.12.1 MTSR Packet Description

MTSR (0) MTSR (1)
‘ API [7:0] CH [7:0] ‘
Field Byte Bits Description
API 0 [7:0] API Function ID
0x0B Read CAN channel (Node Bit Timing Register NBTR)
CH 1 [7:0] Channel
1 Channel 1
2 Channel 2
else reserved
2-21 [7:0] Dummy transfer

4.3.12.2 MRST Packet Description

MRST (0) MRST (1) MRST (2) MTSR (3)

‘ API [7:0] CH [7:0] ‘ NBTRH[15:8] ‘ NBTRL[7:0]
Field Byte Bits Description
API 0 [7:0] API Function ID

0x0B Read CAN channel (Node Bit Timing Register NBTR)
CH 1 [7:0] Channel

1 Channel 1

2 Channel 2

else reserved
NBTRH 2 [7:0] NBTR [15:8]
NBTRL 3 [7:0] NBTR [7:0]

2-21 [7:0] Unused data

For description of NBTR bits see API 10: SetCanBitRate

Application Note

34

V1.00, 2007-06



o .. AP08062
@l neo/n XC886 Stand-Alone MultiCAN

Application Program Interface (API)

4.3.13 API 12: SetCanRegData

Description:
Write CAN channel register (32-bits)

4.3.13.1 MTSR Packet Description

MTSR (0) MTSR (1) MTSR (2) MTSR (3) MTSR (4) MTSR (5) MTSR (6) MTSR (7)
‘ API [7:0] ‘ Data3[31:24] ‘ Data?2[23:16] ‘ Data1[15:8] Data0[7:0] ADDRH[13:10] ADDRLI[9:2] ADCON [7:0]
Field Byte Bits Description
API 0 [7:0] API Function ID

0x0C Write CAN channel register (32-bits)
DATA3 1 [7:0] CAN Data [31:24]
DATA2 2 [7:0] CAN Data [23:16]
DATA1 3 [7:0] CAN Data [15:8]
DATAO 4 [7:0] CAN Data [7:0]
- 5 [7:4] Must be zero
ADH 5 [4:0] CAN Address [13:10]
ADL 6 [7:0] CAN Address [9:2]
ADCON 7 [7:0] CAN Address Control Register
8-21 [7:0] Dummy transfer

4.3.13.2 MRST Packet Description

There is no transmit packet for this API

Application Note 35 V1.00, 2007-06



AP08062

o~ _.
@l neon XC886 Stand-Alone MultiCAN

/

Application Program Interface (API)

4.3.14  API 13: GetCanRegData

Description:
Read CAN channel register (32-bits)

4.3.14.1 MTSR Packet Description

MTSR (0) MTSR (1) MTSR (2) MTSR (3)
‘ API [7:0] ‘ ADDRH[13:10] ‘ ADDRL[9:2] ‘ ADCON [7:0]
Field Byte Bits Description
API 0 [7:0] API Function ID
0xOD Read CAN channel register (32-bits)
- 1 [7:4] Must be zero
ADH 1 [4:0] CAN Address [13:10]
ADL 2 [7:0] CAN Address [9:2]
ADCON 3 [7:0] CAN Address Control Register
4-21 [7:0] Dummy transfer

4.3.14.2 MRST Packet Description

MRST (0) MRST (1) MRST (2) MTSR (3) MTSR (4) MTSR (5) MTSR (6)

‘ API[7:0] ‘ Data3[31:24] ‘ Data2[23:16] ‘ Data1[15:8] Data0[7:0] ADDRH[13:10] ADDRL[9:2]
Field Byte Bits Description
API 1 [7:0] API Function ID
0xOD Read CAN channel register (32-bits)
DATA3 2 [7:0] CAN Data [31:24]
DATA2 3 [7:0] CAN Data [23:16]
DATAL 4 [7:0] CAN Data [15:8]
DATAO 5 [7:0] CAN Data [7:0]
ADH 6 [4:0] CAN Address [13:10]
ADL 7 [7:0] CAN Address [9:2]
8-21 [7:0] Unused data

Application Note 36

V1.00, 2007-06



(infineon.

AP08062
XC886 Stand-Alone MultiCAN

Application Program Interface (API)

4.3.15 API 14: SetCpuClock

Description:

Change the CPU Clock Frequency

Not implemented in application note

4.3.15.1 MTSR Packet Description

MTSR (0)

MTSR (1)

‘ API [7:0]

CLKSEL

Field

Byte

Bits

Description

API

0

[7:0]

API Function ID
0xOE Change the CPU Clock Frequency

CLKSEL

[7:0]

CPU Clock Frequency Selection
9.6MHz internal oscillator (default)
4 MHz external oscillator

6 MHz external oscillator

8 MHz external oscillator

12 MHz external oscillator

else reserved

A WO N -~ O

2-21

[7:0]

Dummy transfer

4.3.15.2 MRST Packet Description

There is no transmit packet for this API

Application Note

37 V1.00, 2007-06



AP08062

o~ _.
@l neon XC886 Stand-Alone MultiCAN

/

Application Program Interface (API)

4.3.16  API 15: GetCpuClock

Description:
Read CPU Clock Frequency

4.3.16.1 MTSR Packet Description

MTSR (0)
‘ API [7:0] ‘
Field Byte Bits Description
API 0 [7:0] API Function ID
0xOF Read the CPU Clock Frequency
- 4-21 [7:0] Dummy transfer

4.3.16.2 MRST Packet Description

MRST (0) MRST (1)
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
‘ : : : API :[7:0] : : : : ND:IV : ‘VCOBYP‘OSCDISC‘ RESLD ‘ LOCK ‘
w w w w w w w w w w w w w w rwh rh
Field Byte Bits Description
API 0 [7:0] API Function ID
0x0F Read the CPU Clock Frequency
NDIV 1 [7:4] PLL N-Divider
0000 N =10 0001 N =12 0010 N =13 0011 N =14
0100 N =15 0101 N =16 0110 N =17 0111 N =18
1000 N =19 1001 N =20 1010N =24 1011 N =30
1100 N = 32 1101 N =36 1110 N =40 1111 N =48
VCOBYP 1 3 PLL VCO Bypass Mode Select
0 Normal operation (default)
1 VCO bypass mode (PLL output clock is derived from input clock divided by P-
and K-dividers).
OSsCDsC 1 2 Oscillator Disconnect
0 Oscillator is connected to the PLL.
1 Oscillator is disconnected from the PLL.
RESLD 1 1 Restart Lock Detection
Setting this bit will reset the PLL lock status flag and restart the lock detection. This bit
will automatically be reset to 0 and thus always be read back as 0.
0 No effect
1 Reset lock flag and restart lock detection
LOCK 1 0 Restart Lock Detection
PLL Lock Status Flag
0 PLL is not locked.
1 PLL is locked.
- 2-21 [7:0] Unused data

Application Note 38

V1.00, 2007-06



o .. AP08062
@l neo/n XC886 Stand-Alone MultiCAN

Application Program Interface (API)

4.4 Data flow example (SSC mode)

1)  The Host waits for the XC886MultiCanController to be ready; the hardware should have a weak pull
down resistor connected to the CTS pin of the XC886. Once the XC886MultiCanController is ready it
will drive the CTS pin high (logic ‘17).

2)  Host controller initializes the XC886MultiCanController:

e SetCanBitRate(1, 0x494B) - set CAN channel 1 to 250 Kbaud

e SetCanBitRate(2, 0x494B) - set CAN channel 2 to 250 Kbaud

o SetCanObject(MAILBOX_9) - set mailbox (object 9 receive, CAN channel 1)
o SetCanObject(MAILBOX_25) - set mailbox (object 25 receive, CAN channel 2)

Total number of bytes transferred:
4 (transfers) * 22 (bytes for each transfer) = 88 bytes
3) Host controller wishes to transmit a CAN frame on the XC886MultiCanController's CAN channel 1
¢ MailBox_8 will be used for a transmit object on CAN channel 1.
If “CTS” signal is high (logic ‘1’) then the host sends the message SetCanObject(MAILBOX_8)

The XC886MultiCanController will drive the CTS line low (logic ‘0’) indicating that a message has been
received and queued for transmission as a CAN message.

Once the XC886MultiCanController has configured the CAN object, the XC886MultiCanController will assert
the CTS pin (logic ‘1’). This indicates it's ready to accept another message from the host.

Total number of bytes transferred: 22 bytes
4) Host controller receives a CAN frame from XC886MultiCanController (either channel).
The XC886MultiCanController receives a message object according to its acceptance mask.

The “DA” line is driven high (logic ‘1’) by the XC886MultiCanController indicating its transfer buffer has data
ready for the host to read.

The Interrupt line from XC886MultiCanController to host controller is driven low (logic ‘0’) by the
XC886MultiCanController.

The host controller’s interrupt service routine checks if both the “DA” and “CTS” signals are high (logic ‘1’)
and then performs a message transfer with the XC886MultiCanController.

Total number of bytes transferred: 22 bytes (note: the send queue on the XC886MultiCanController is double
buffered and may result in two transfers to get the received message (44 bytes).

Application Note 39 V1.00, 2007-06



(infineon

AP08062

XC886 Stand-Alone MultiCAN

Application Program Interface (API)

4.5 Bandwidth calculations (SPI)

Worst case bus loading would be receiving simultaneous message objects on both nodes at 100% bus

utilization (with zero data bytes and no additional stuff bits).

The needed SPI throughput for 22 bytes in a packet (176 bits) is:

For a standard message object this would occur within 46-bit time quanta.
((176) /46) * 2 = 7.65 Mbit

For an extended message object this would occur within 67-bit time quanta.
((176) / 67) * 2 = 5.25 Mbit

Assuming 8 data bytes (and no additional stuff bits):

((176) / (46+64)) * 2 = 3.20 Mbit for a Standard object

((176) / (67+64)) * 2 = 2.69 Mbit for an Extended object

Note: assuming both CAN buses are operating at 1MBit, SPI transfer overhead is not included

For 250Kbaud CAN buses simply divide the 1MBaud values by 4.

Additional messages can be added to reduce the host/slave packet lengths.

4.6 Logic Analyzer Diagrams of some transfers
4.6.1 Transmit a message on the CAN bus
r)I—>Y: 219.530 us
¥X: 0 n=
¥Y: 219.530 us
e o | |0 usiDiv Y204 160 us m

F

CAN_BUS u1| oo

¥
Marms @ | 20 us/Div 200.000 us

d

LI

[scc I SO

5LS [

01| 00

00| 00

[
|
| | |
[
[:AN_IHIJm ol I
|

01) 00 A O O I O B
Figure9  CAN Transmit
Application Note 40 V1.00, 2007-06




o .. AP08062
@I I'IEO/n XC886 Stand-Alone MultiCAN

Application Program Interface (API)

4.6.2 Receive a message from the CAN bus

X-+¥: 125.900 us
X: 190.180 us
¥: 316.080 us

R e |mnus/Dw ¥ 350,505 us m
ot O] | I m - T Ey
0o] 00 | | BT L R
oof 00 | | [ e
1 I h M |
S i e o e
|
1 I n S E—
E—— U V110 01000
I O
BN N
MEE Y0145 us _m
[vorse |0 N | I o 1 U
[« [ IR L T ET o
0nfm [
oo
oo| o1 \
CAN_IRGQ g ] [
CAM_BUSEI RN}

Figure 10 CAN Receive

4.6.3 Read data from a register on MultiCAN

¥->¥: 379.520 us

X: 0 ns
| B0 ueDi ¥200.000 us m
ﬁ T L E L

¥: 379.520 us

Mame:

'

=
=
=]
=

i
]I

5 o1

7
=t

= DK |

m 00| 01 | | [ I

o[ — | P —

o[ o] ! ! !

OEE

o o [y |usDi Tns %_Elm

m oo 01] I I I I ﬁ 1 I T ‘ 1 I ‘

(T o[ |

N [ |

N [ |

=]
=
=]
=

can_Ira [l

LI 01 01

Mmoo +——1Lnn_____
@[ |MMNMN“WMWN“WMMMWNHNMNNMWMWMWN“MNMNMWNWMWMN
|

=
=]

Figure 11 Read

Application Note 41 V1.00, 2007-06






	1 Stand-Alone XC886MultiCanController Device
	1.1 Introduction
	1.2 Architectural Overview
	1.3 Application Fields
	1.4 Basic Requirements of the XC886MultiCanController device
	1.5 Firmware Code
	1.5.1 Keil Software
	1.5.1.1 Keil Debugger
	1.5.1.2 HiTop Debugger for XC800 
	1.5.1.3  FLOAD UART Downloader


	1.6 Pin Definition and Functions
	1.6.1 Pin Configuration

	1.7 Device Description
	1.7.1 Clock Generation Unit
	1.7.2 PLL Mode

	1.8 Power Management
	1.8.1 Overview
	1.8.2 Power-Down Mode

	1.9 Port Control
	1.9.1 Mode Selections
	1.9.2 Input Port Configuration
	1.9.2.1 Special action configured to an input pin
	1.9.2.2 Port pin used as a Trigger for a CAN Message Transfer

	1.9.3 Output Port Configuration
	1.9.4 Spare I/O


	2 Serial Interfaces
	2.1 Communication via the Universal Asynchronous Receivers/Transmitters (UART)
	2.2 Communication via the Synchronous Serial Channel (SSC)
	2.2.1 SSC in Slave Mode
	2.2.2 Transfer length
	2.2.2.1 Handshake

	2.2.3 Baud Rate Generation
	2.2.4 Register Address Map
	2.2.5 Error Handling


	3 MultiCAN Module Description
	3.1 MultiCAN Register Address Map

	4 Application Program Interface (API)
	4.1 Mailbox Layout (2+20 bytes):
	4.2  Structure for a 32-bit Little Endian machine (TriCore)
	4.3  API to communicate between host and slave controllers 
	4.3.1  API 0: NOP
	4.3.1.1 MTSR Packet Description
	4.3.1.2 MRST Packet Description

	4.3.2  API 1: SetCanChannelOnOff
	4.3.2.1 MTSR Packet Description
	4.3.2.2 MRST Packet Description

	4.3.3  API 2: GetCanChannelOnOff
	4.3.3.1 MTSR Packet Description
	4.3.3.2 MRST Packet Description

	4.3.4  API 3: SetCanIrqOnOff
	4.3.4.1 MTSR Packet Description
	4.3.4.2 MRST Packet Description

	4.3.5  API 4: GetCanIrqOnOff
	4.3.5.1 MTSR Packet Description
	4.3.5.2 MRST Packet Description

	4.3.6   API 5: SetCanCounter
	4.3.6.1 MTSR Packet Description
	4.3.6.2 MRST Packet Description

	4.3.7  API 6: GetCanCounter
	4.3.7.1 MTSR Packet Description
	4.3.7.2 MRST Packet Description

	4.3.8 API 7: GetCanIrqStatus
	4.3.8.1 MTSR Packet Description
	4.3.8.2 MRST Packet Description

	4.3.9  API 8: SetCanObject
	4.3.9.1 MTSR Packet Description
	4.3.9.2 MRST Packet Description

	4.3.10  API 9: GetCanObject
	4.3.10.1 MTSR Packet Description
	4.3.10.2 MRST Packet Description

	4.3.11  API 10: SetCanBitRate
	4.3.11.1 MTSR Packet Description
	4.3.11.2 MRST Packet Description

	4.3.12  API 11: GetCanBitRate
	4.3.12.1 MTSR Packet Description
	4.3.12.2 MRST Packet Description

	4.3.13  API 12: SetCanRegData
	4.3.13.1 MTSR Packet Description
	4.3.13.2 MRST Packet Description

	4.3.14  API 13: GetCanRegData
	4.3.14.1 MTSR Packet Description
	4.3.14.2 MRST Packet Description

	4.3.15  API 14: SetCpuClock
	4.3.15.1 MTSR Packet Description
	4.3.15.2 MRST Packet Description

	4.3.16  API 15: GetCpuClock
	4.3.16.1 MTSR Packet Description
	4.3.16.2 MRST Packet Description


	4.4  Data flow example (SSC mode)
	4.5  Bandwidth calculations (SPI)
	4.6 Logic Analyzer Diagrams of some transfers
	4.6.1 Transmit a message on the CAN bus
	4.6.2 Receive a message from the CAN bus
	4.6.3 Read data from a register on MultiCAN



