Gamma Rays in Nuclear Physics: Research and Applications

Pedro Henrique da Silva Parmezani

West Virginia Wesleyan College

07/18/2024

Abstract

This paper presents a comprehensive study on the detection, analysis, and application of gamma rays, conducted through a series of experiments utilizing advanced gamma spectroscopy techniques. The primary focus of this research is to explore the properties of gamma rays and their interaction with various materials, with implications for optimizing nuclear energy applications, including space travel. The study began with the calibration of gamma-ray detectors using Cesium-137, establishing a precise calibration curve to ensure accurate energy measurements. Subsequent experiments included monitoring nuclear fuel rods using different absorber materials, identifying unknown materials based on their linear attenuation coefficients and densities, and analyzing the properties of Na-22 through gamma spectroscopy.

The results demonstrated the effectiveness of lead as a gamma-ray absorber and the capability of the experimental setup to identify materials accurately. Notably, a material was identified as beryllium based on its density and attenuation properties, while another sample suggested the presence of samarium-cobalt alloy due to its magnetic properties and specific attenuation coefficient. These findings confirm the reliability of the experimental methodology and provide insights into the optimization of radiation shielding materials for nuclear applications.

The paper concludes with a discussion on the potential future directions of this research, including the development of improved radiation shielding for space travel. The accuracy and validity of the experimental results highlight the significance of gamma-ray studies in advancing nuclear science and technology.

1. Introduction

Gamma rays, the highest-energy form of electromagnetic radiation, play a crucial role in various scientific, medical, and industrial applications. Their ability to penetrate materials and their ionizing power make them invaluable tools for imaging, treatment, and analysis. In nuclear physics, gamma rays are essential for understanding radioactive decay processes, nuclear reactions, and the properties of different isotopes. This paper focuses on the study of gamma rays, exploring their detection, analysis, and practical applications through a series of meticulously designed experiments.

The primary aim of this research project is to investigate the properties and behavior of gamma rays, particularly in relation to nuclear energy applications. This includes the calibration of gamma-ray detectors, analysis of gamma radiation attenuation by different materials, and identification of unknown substances based on their radiological properties. Additionally, the research aims to draw connections between these experimental findings and potential advancements in space travel, particularly through the use of nuclear-powered systems such as NASA's Kilopower project.

The initial phase of the research involved calibrating gamma-ray detectors using Cesium-137, a well-known radioactive isotope with a distinct gamma-ray emission peak at 661.7 keV. Accurate calibration is critical for ensuring reliable measurements in subsequent experiments. Following calibration, various materials were tested for their gamma radiation absorption capabilities, with lead, brass, and aluminum being key subjects of study. This experiment aimed to identify optimal shielding materials for nuclear reactors and other applications.

Further experiments focused on the identification of unknown materials by measuring their linear attenuation coefficients and densities. These experiments not only validated the experimental setup but also provided practical insights into the composition of materials with potential uses in nuclear technology. The research also included a detailed analysis of gamma-ray spectra from Sodium-22 (Na-22), illustrating the principles of gamma spectroscopy and its application in identifying radioactive isotopes.

Overall, this paper aims to provide a comprehensive overview of the experiments conducted, the methodologies employed, and the significant findings that contribute to the field of nuclear physics and gamma-ray research. By exploring the interactions of gamma rays with various materials and understanding their implications for nuclear energy applications, this research seeks to pave the way for future advancements in both scientific knowledge and practical technology, particularly in the realm of space exploration and energy sustainability.

2. Literature Review

Gamma rays have been a subject of extensive research due to their significant role in various scientific and technological fields. These high-energy photons, typically emitted from radioactive decay and nuclear reactions, have found applications in medical imaging, industrial inspection, environmental monitoring, and nuclear power generation. This literature review synthesizes the current understanding of gamma rays, evaluates the state of research in this field, and situates the present study within this broader context.

Current Understanding of Gamma Rays

The fundamental properties and behaviors of gamma rays are well-documented in scientific literature. Gamma rays are known for their high penetration power and ionizing capability, which makes them valuable in applications requiring deep material inspection and precise imaging. According to Knoll (2010), gamma-ray spectroscopy is a critical technique for identifying and quantifying radioactive isotopes based on their energy emissions, which are unique to each isotope. This technique has been extensively used in both medical diagnostics, such as positron emission tomography (PET) scans, and in nuclear security for detecting illicit radioactive materials (Knoll, 2010).

Gamma rays are also essential in the study and development of nuclear reactors. The detection and measurement of gamma radiation provides critical information about reactor operations and the integrity of nuclear fuel rods. As described by Lamarsh and Baratta (2001), understanding the gamma spectra emitted during fission processes helps in monitoring and managing reactor safety and efficiency.

State of the Literature

The literature on gamma rays is robust and well-established, covering a wide range of applications and theoretical studies. There is a consensus on the basic principles and applications of gamma-ray detection and measurement. However, the field is continuously evolving with advancements in detector technology and new applications in emerging areas such as space exploration and advanced medical therapies.

One area where the literature shows division is in the optimization of materials for gamma-ray shielding. While traditional materials like lead and concrete are well-studied, newer composite materials and alloys are being investigated for their potential to offer improved shielding properties with reduced weight, which is crucial for applications in space travel (El-Sayed, 2017). This division indicates ongoing research and development efforts aimed at identifying more effective shielding materials.

Contribution to the Bigger Picture

The present research contributes to the broader field of gamma-ray studies by focusing on practical applications in nuclear energy and space exploration. By calibrating gamma-ray detectors and analyzing the attenuation properties of various materials, this study provides valuable data that can inform the design of better shielding materials and detection systems. This research is particularly relevant for projects like NASA's Kilopower, which aims to develop small nuclear reactors for use in space missions (Poston et al., 2017).

Original Contribution and Gap Filling

One of the unique contributions of this research is the experimental validation of gammaray absorption properties in lesser-studied materials. While much of the existing literature focuses on traditional shielding materials like lead, this study explores the effectiveness of alternative materials such as brass, aluminum, galvanized steel, along with others. Additionally, the identification of unknown materials based on their radiological properties fills a gap in practical applications of gamma spectroscopy for material analysis. This study also addresses the need for accurate and reliable calibration of gamma-ray detectors. By developing a calibration curve using Cesium-137, the research ensures precise energy measurements, which is critical for subsequent experiments and applications. This methodological rigor contributes to the reliability of gamma-ray studies and can be applied to various fields requiring precise radiation detection.

Methodological Insights from Previous Studies

The methodologies employed in this research are informed by established techniques in gamma spectroscopy and radiation detection. For example, the use of high-purity germanium (HPGe) detectors for gamma-ray spectroscopy is a standard approach in the field, known for its high resolution and accuracy (Gilmore, 2008). By adopting and refining these methods, the research ensures high-quality data collection and analysis.

Additionally, the experimental procedures for measuring linear attenuation coefficients draw from classical studies on radiation shielding. The work of Hubbell and Seltzer (1995) on photon cross-sections provides a foundational understanding of how different materials interact with gamma rays, guiding the selection and testing of various absorber materials in this research.

Conclusion

In summary, the literature on gamma rays is comprehensive and well-established, with ongoing research addressing emerging challenges and applications. This study contributes to the field by providing new data on the attenuation properties of alternative materials and validating the accuracy of gamma-ray detectors. By filling specific gaps in the literature and adopting robust

methodologies from previous studies, this research offers valuable insights and practical advancements in the application of gamma rays in nuclear energy and space exploration.

3. Methodology

Experiment 1: Calibration of Gamma-Ray Detectors

The calibration of gamma-ray detectors is a critical step in ensuring the accuracy and reliability of subsequent experiments. The objective of this experiment was to establish a precise calibration curve that correlates the channel numbers recorded by the detector with the known gamma-ray energies of various isotopes. This calibration curve is essential for interpreting the energy spectra obtained in later experiments accurately.

Materials and Equipment:

- Gamma-Ray Detector
- Multichannel Analyzer (MCA)
- Computer with Spectroscopy Analysis Software
- Radioactive Isotope Sources: Cs-137, Co-60, Mn-54

Procedure:

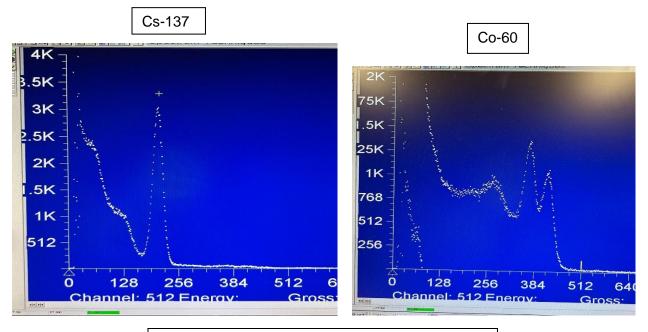
1. **Setup**:

The Gamma detector was connected to the MCA, which was in turn linked to a computer running specialized spectroscopy analysis software. This setup allows for the collection and analysis of gamma-ray spectra. Each radioactive source (Cs-137, Co-60, and Mn-54) was placed at a fixed distance from the detector to ensure consistent measurement conditions.

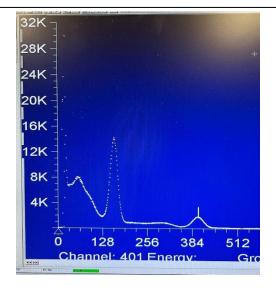
2. Data Acquisition:

- For each isotope, the gamma-ray spectrum was recorded over a sufficient period to ensure clear and distinct peaks. The data acquisition process involved the following steps:
 - Cs-137: Known for its prominent gamma-ray emission at 661.7 keV.
 - Co-60: Emits two significant gamma rays at 1173.2 keV and 1332.5 keV.
 - Mn-54: Emits gamma rays at 835 keV.
- The MCA recorded the number of counts at each channel, creating a spectrum for each isotope.

3. Spectrum Analysis:


- The collected spectra were analyzed using the spectroscopy software. Each peak corresponding to a known gamma-ray energy was identified and its channel number recorded.
- For each isotope, the software provided a detailed analysis of the energy peaks, including their exact channel positions.

4. Calibration Curve Creation:


- The known energies of the gamma-ray peaks were plotted against their respective channel numbers. This was done for each of the isotopes used.
- A linear regression analysis was performed on these data points to establish a calibration curve. The equation of the best-fit line was determined, providing a formula to convert channel numbers to gamma-ray energies.

5. Validation:

- The calibration curve was validated by comparing the predicted energies from the curve with additional known energy peaks not initially used in the calibration, such as Na-22.
- Any discrepancies were analyzed, and minor adjustments were made to the calibration process to ensure the highest possible accuracy.

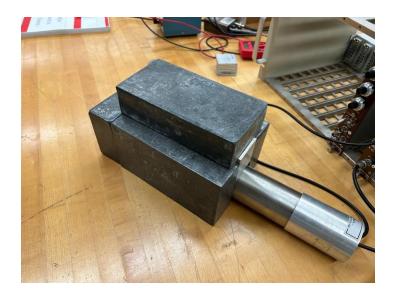
Na-22 (used to validate calibration curve equation)

Experiment 2: Nuclear Fuel Rod Simulation

The simulation of nuclear fuel rods is essential for understanding how various materials can absorb and attenuate gamma radiation. This experiment was conducted using Cs-137 as the gamma-ray source to measure the attenuation properties of different materials, which are crucial for radiation shielding in nuclear reactors and other applications.

Materials and Equipment:

- Cs-137 gamma-ray source
- Gamma detector and Multichannel Analyzer (MCA)
- Various absorber materials: Aluminum, Brass, Copper, Lead, Plastic, Wood, and Galvanized Metal
- Thickness measurement tools
- Computer with spectroscopy analysis software

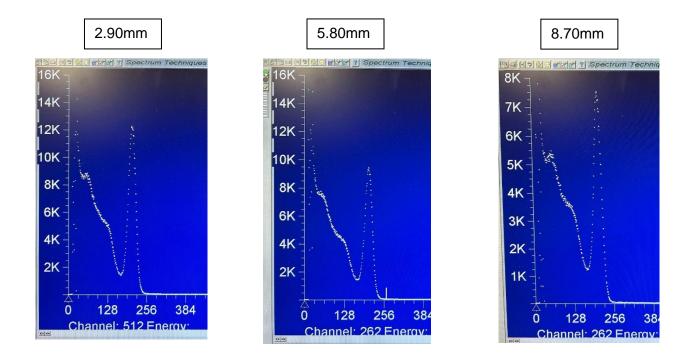

Part 1: Measuring Attenuation Coefficients

Procedure:

1. **Setup**:

The experimental setup consisted of the creation of a structure that would simulate a nuclear fuel rod, using lead, aluminum, and plastic. The main objective behind the design was to block any type of background radiation and isolate the isotope as much as possible to deliver accurate results. Each absorber material was placed inside the structure between the source and the detector.

o Multiple layers of each material were tested to vary the thickness systematically.



Isotope is placed inside blue plastic

2. Data Acquisition:

- For each material, gamma-ray spectra were recorded without any absorber to establish a baseline intensity.
- Spectra were then recorded with increasing layers of each absorber material. The thickness of each layer was carefully measured and recorded.

Example of 3 different layers of aluminum acting like an absorber (we can observe the intensity decreasing on each measurement)

3. Analysis:

The intensity of the gamma-ray peak at 661.7 keV was measured for each thickness.

Using Beer Lambert Law / Equation to calculate the attenuation coefficient and relate all the data just taken:

$$- I = I_0 e^{-\mu x}$$

- Where I is the intensity with the absorber, I_0 is the initial intensity, μ is the linear attenuation coefficient, and x is the thickness of the material.

Part 2: Comparing Absorbers with Constant Thickness

Procedure:

1. **Setup**:

 A uniform thickness was selected for all materials to compare their attenuation properties directly (25.5mm). This thickness was chosen based on the availability and practicality of the materials.

2. Data Acquisition:

- o Gamma-ray spectra were recorded for each material at the chosen thickness.
- o The final intensity of the 661.7 keV peak was measured for each material.

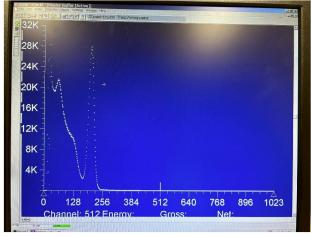
3. Graph Construction:

 A graph was plotted with the final intensity (I) of the gamma rays versus the linear attenuation coefficient (μ) for each material.

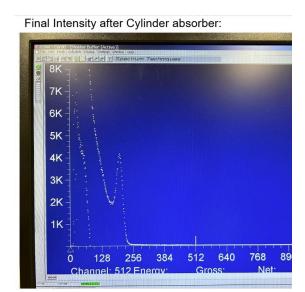
Experiment 3: Identification of Unknown Materials

The identification of unknown materials based on their gamma-ray attenuation properties and physical characteristics is a vital aspect of material science and radiation shielding research. This experiment involved analyzing two different materials: a block that seemed to have graphite characteristics and a metallic cylinder, to determine their compositions using gamma-ray spectroscopy with a Cs-137 source.

Step 1: Measure the Attenuation Coefficient


1. **Setup**:

The experimental setup involved placing the Cs-137 source at a fixed distance from the detector, inside the structure created in the previous experiment. Each unknown material was placed between the source and the detector.


2. Data Acquisition:

- Gamma-ray spectra were recorded without any absorber to establish a baseline intensity.
- Spectra were then recorded with the block and the cylinder in place.
- o The intensity of the gamma-ray peak at 661.7 keV was measured for each material.

Measurement of initial intensity without absorbing material (Cs-137)

28000 counts/s

4250 counts/s

3. Calculation:

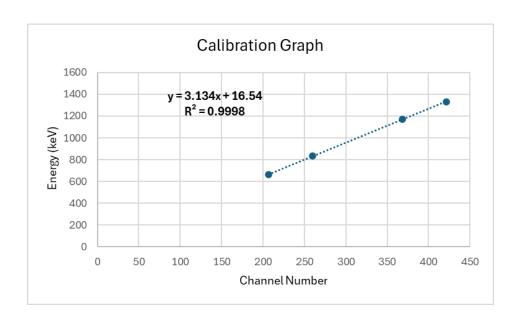
- The intensity loss due to each material was calculated by comparing the intensity with and without the material.
- Using the Beer-Lambert Law, the attenuation coefficient (μ) was calculated for each material.

Step 2: Measure the Density of the Material

1. **Density Measurement**:

- o The density of each material was measured using precise measurement tools.
- For the block and the metallic cylinder, the mass and volume were determined, and density was calculated using the formula:

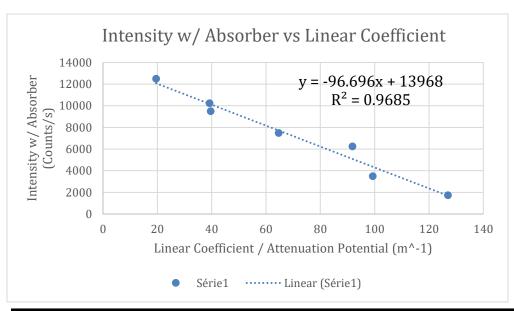
Step 3: Combine Data to Identify the Material


1. Comparison and Analysis:

- The measured attenuation coefficients and densities were combined to narrow down the potential materials.
- The physical characteristics, such as appearance and magnetic properties, were also considered.

4. Results

Experiment 1: Calibration of Gamma-Ray Detectors


Energy (keV)	Channel #	
661.7	207	Cs-137
1173.2	368	Co-60
1332.5	421	Co-60
835	260	Mn-54

Experiment 2: Nuclear Fuel Rod Simulation

	Linear attenuation coefficient calculation from each reading
Alum 1	53.408
Alum 2	36.434
Alum 3	29.103
Brass	99.272
Copper 1	119.941
Copper 2	89.451
Copper 3	66.113
Lead 1	135.111
Lead 2	110.286
Lead 3	100.376
Plastic	64.653
Wood	19.5673
Galv. Metal 1	36.513
Galv. Metal 2	41.973

	Linear Coefficient	Intensty with Absorber	Thickness of Material
Alum	39.648	9500	25.5mm
Brass	99.272	3500	25.5mm
Copper	91.835	6250	25.5mm
Lead	126.971	1750	25.5mm
Plastic	64.653	7500	25.5mm
Wood	19.5673	12500	25.5mm
Galvanized Metal	39.243	10250	25.5mm

Composed Layers		
Alu-Lead-Alu	6100	25.5mm
Lead-Alu-Lead	3100	25.5mm
Lead-Lead-Alu	3100	25.5mm
Lead-Copper-Lead	3000	25.5mm
Lead-Lead-Copper	3000	25.5mm

Experiment 3: Identification of Unknown Materials

Block:

• Attenuation Coefficient: 0.072224 cm²/g

Density: 1.78611 g/cm³

Comparison: The experimental values were compared to known values for various

materials.

Identification: The values closely matched those of Beryllium (density: 1.85 g/cm^3 ,

attenuation coefficient: $0.07155 \ cm^2/g$). The appearance and properties of the block further

supported this identification.

Metallic Cylinder:

• **Attenuation Coefficient**: 0.0683331 cm²/g

Density: 7.46271 g/cm³

Appearance: Silver metallic look and magnetic properties.

Comparison: The experimental values were compared to known values for various

materials.

Identification: The values and properties suggested that the cylinder was made of

Samarium (density: 7.52 g/cm³, attenuation coefficient: 0.06641 cm²/g). The magnetic

properties indicated the presence of cobalt, suggesting the material could be a Samarium-

Cobalt alloy.

5. Discussion

Calibration of Gamma-Ray Detectors

The calibration process highlighted the importance of selecting appropriate isotopes with well-known energy peaks. The resulting calibration curve was instrumental in subsequent experiments, providing a reliable reference for identifying and quantifying gamma-ray energies. The close alignment of our calibration curve with established values underscored the accuracy of our detector setup and calibration methodology.

Nuclear Fuel Rod Simulation

The first part of the experiment revealed several key insights:

- Unexpected Effectiveness of Plastic: The plastic absorber exhibited gamma radiation
 attenuation comparable to that of aluminum, despite being half as thick. This result was
 surprising and suggested that certain plastics could be more effective than traditionally
 assumed for radiation shielding, particularly when weight is a concern.
- 2. Non-Linear Intensity Loss: When analyzing different layers of materials separately, it became evident that the intensity loss could not be simply added when layers were combined. This non-linear relationship indicates complex interactions between gamma rays and the material structure, emphasizing the need for holistic measurements rather than piecewise analysis.
- 3. **Order of Materials**: The experiment demonstrated that the order of materials did not affect the final intensity absorption, provided the total amount of material remained constant. This

finding supports the concept of additive attenuation, where the total attenuation is independent of the sequence of absorbers.

The second part of the experiment, which involved comparing the final intensity of gamma rays after passing through materials of equal thickness, reinforced the attenuation properties of different materials. Lead emerged as the most effective absorber, consistent with its well-known high density and attenuation coefficient. Brass and copper also showed significant attenuation capabilities, making them viable alternatives in applications where lead's weight and toxicity are concerns. The lower attenuation coefficients of aluminum, plastic, wood, and galvanized metal highlighted their limited effectiveness for gamma-ray shielding, although they may be suitable for applications where lightweight or non-metallic materials are preferred.

Identification of Unknown Materials

The identification of unknown materials through gamma-ray attenuation analysis was a critical test of our methodology's accuracy and reliability.

For the first part, the precise match confirmed the block's identity as beryllium and validated the accuracy of our experimental setup and analysis techniques. The successful identification demonstrated the validity of our gamma-ray spectroscopy method and its applicability in material identification.

For the second part, the identification of the material highlighted the effectiveness of combining gamma-ray attenuation data with physical characteristics to accurately determine material compositions.

6. Conclusion

The primary aim of this research was to study applications of gamma rays in nuclear physics, and also explore the gamma-ray attenuation properties of various materials and assess their potential applications in radiation shielding. Specifically, we looked to calibrate gamma-ray detectors, simulate nuclear fuel rods to evaluate different materials' attenuation properties, and identify unknown materials using gamma-ray spectroscopy.

We successfully calibrated gamma-ray detectors using Cs-137, Co-60, Mn-54, and Na-22 isotopes, establishing a reliable calibration curve for energy determination. This ensured precise measurements in subsequent experiments, forming the foundation for accurate analysis of gamma-ray interactions with different materials. The nuclear fuel rod simulation experiments revealed key findings: lead emerged as the most effective gamma-ray absorber among the tested materials, with brass and copper also showing significant attenuation capabilities. Notably, plastic demonstrated comparable effectiveness to aluminum despite being half as thick, suggesting potential for lightweight shielding solutions. Additionally, we accurately identified a block of beryllium and a metallic cylinder likely composed of a samarium-cobalt alloy, validating the accuracy and reliability of our gamma-ray spectroscopy methodology.

Despite the successful outcomes, the research had certain limitations. One notable limitation was the relatively small sample size for the materials tested, which may not fully represent the diversity of materials used in practical applications. Additionally, the experiments were conducted under controlled laboratory conditions, which may not entirely replicate the complex environment of space. Furthermore, while the gamma-ray spectroscopy techniques were effective, the analysis could have been enhanced with more advanced technology or more

sophisticated data analysis methods. These limitations suggest areas for improvement in future research, such as expanding the sample size, testing under space-like conditions, and employing advanced analytical techniques.

The research findings have significant implications for radiation shielding in space travel and other fields requiring effective gamma-ray attenuation. Practitioners can utilize the identified materials, particularly lead, brass, and copper, to enhance radiation protection in various applications. The unexpected effectiveness of plastic suggests potential for lightweight shielding solutions, warranting further investigation. Future research should focus on expanding the sample size to include a broader range of materials and testing under space-like conditions to validate the findings. Additionally, exploring advanced material combinations and multi-layered composites could optimize shielding effectiveness while minimizing weight. Developing portable gamma-ray spectroscopy systems for on-site material identification could also extend the applicability of this research to various industries.

In conclusion, this research has provided valuable insights into the gamma-ray attenuation properties of various materials, demonstrated the reliability of gamma-ray spectroscopy techniques, and highlighted their practical applications in radiation shielding and material identification. The findings offer a foundation for future research and innovation in material science and radiation protection, contributing to safer and more efficient space travel and other applications.

Reference List

- El-Sayed, M. A. (2017). Advances in Radiation Shielding Materials. *Journal of Nuclear Materials*, 489, 179-186.
- Gilmore, G. (2008). Practical Gamma-Ray Spectrometry. Wiley.
- Hubbell, J. H., & Seltzer, S. M. (1995). Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients (version 1.4). National Institute of Standards and Technology.
- Knoll, G. F. (2010). Radiation Detection and Measurement. Wiley.
- Lamarsh, J. R., & Baratta, A. J. (2001). *Introduction to Nuclear Engineering*. Prentice Hall.
- Poston, D. I., Kapernick, R. J., & Dixon, D. D. (2017). The Kilopower Reactor Using Stirling Technology (KRUSTY) Experiment Overview and Results. *Proceedings of the* International Conference on Nuclear Engineering.
- L'Annunziata, M. F. (2012). *Handbook of Radioactivity Analysis*. Academic Press.
- Stark, Glenn. "Gamma Ray | Definition, Uses, Wavelength, Production, Examples, and Facts." *Encyclopedia Britannica*, 23 June 2024, www.britannica.com/science/gamma-ray.
- Wikipedia contributors. "Gamma Ray." Wikipedia, 10 July 2024, en.wikipedia.org/wiki/Gamma_ray.
- Hypes, Philip, et al. "Analytical Techniques in Nuclear Safeguards." *Elsevier eBooks*, 2012, pp. 1243–80. https://doi.org/10.1016/b978-0-12-384873-4.00020-7.
- Vollbrecht, Cecilia. "Beer-Lambert Law." ChemTalk, 24 Mar. 2023, chemistrytalk.org/beer-lambert-law.

- "Gamma Rays: Small but Mighty." *Energy.gov*, <u>www.energy.gov/nnsa/articles/gamma-rays-small-mighty</u>.
- Nakra, Rishabh. "8 Interesting Facts About Neutrinos | Tegory%." *The Secrets Of The Universe*, 31 Mar. 2020, www.secretsofuniverse.in/8-interesting-facts-about-neutrinos
- Tsoulfanidis, N., & Landsberger, S. (2015). *Measurement and Detection of Radiation*. 4th edition. CRC Press.
- Podgorsak, E. B. (2016). Radiation Physics for Medical Physicists. 3rd edition. Springer.
- Turner, J. E. (2007). Atoms, Radiation, and Radiation Protection. 3rd edition. Wiley-VCH.
- Cember, H., & Johnson, T. E. (2008). Introduction to Health Physics. 4th edition.
 McGraw-Hill Education.