Material Balances

Video Series Notes & Cheatsheets

Part 1: <u>Material Balance Made Easy | Basic Theory</u> <u>Explained</u>

- Matter can neither be created nor destroyed
- Law of Conservation of Mass: M_{in}- M_{accumulate} = M_{out}
- Accumulation:
 - o Change in the mass contained inside the system
 - Can be negative if the system loses mass overall
- The mass balance equation we write depends on the state of the system at a given time:
 - The terms represent the TOTAL mass that has entered, left, or accumulated UP TILL the time of observation
 - Subtracting the mass balance equations at two different time instants gives the total change in the mass entering, leaving, or accumulating in the system
 - o Dividing the total change by the time interval gives the average rate of change
 - At $\Delta t \rightarrow 0$: the average rate of change becomes the time derivative
- Mass flow rate balance:
 - Rate of mass entering the system Rate of mass accumulating in the system =
 Rate of mass leaving the system
 - $\circ (dM_{in} / dt) (dM_{accumulate} / dt) = (dM_{out} / dt)$
- At steady state, the system does not change with time:
 - M_{accumulate} = 0
 - \circ dM_{accumulate} / dt = 0
 - $\circ (dM_{in} / dt) = (dM_{out} / dt)$
- The material balance equation (both total mass and mass flow rate forms) holds for:
 - Every component individually
 - Total system (i.e., the sum of all components)

Summary of equations derived:

In This Video...

1. Law of conservation of mass:

$$\dot{M}_{in}$$
 - $\dot{M}_{accumulate}$ = \dot{M}_{out}

2. Steady state mass balance:

$$\dot{M}_{in} = \dot{M}_{out}$$

3. n-component system:

$$\dot{M}_{in}^{i}$$
 - $\dot{M}_{accumulate}^{i}$ = \dot{M}_{out}^{i} $\forall i \in [1,n]$

4. Total mass balance:

$$\sum_{i=0}^{n} M_{in}^{i} - \sum_{i=0}^{n} M_{accumulate}^{i} = \sum_{i=0}^{n} M_{out}^{i}$$

5. Steady state total mass balance:

$$\sum_{\substack{\text{input}\\\text{streams}}} \overset{\bullet}{\underset{\text{output}\\\text{streams}}} = \sum_{\substack{\text{output}\\\text{streams}}} \overset{\bullet}{\underset{\text{output}}{\underset{\text{output}}{\text{out}}}}$$

Part 2: Solve EVERY Material Balance Problem that EVER Existed

- Conservation of Mass is always valid
- Number of equations must be equal to number of unknown variables to be able to solve the problem
- Mass can be expressed in the form of:
 - Count
 - Density
 - Moles
 - Concentration
 - Concentration = (quantity of one component) / (quantity of mixture)
- Additional relationships may come from:
 - Summing up composition fractions
 - Stoichiometry
 - Selectivity
 - Conversion
- Ensure consistency of:
 - Units within an equation
 - Basis within the whole system of equations
- Basis is a reference quantity to simplify calculations. It can be

- Material quantity
- o Process time
- System constraint
- Material transformations:

Туре	Physical	Chemical
Examples	Melting ice, grinding salt, mixing paint, etc.	Burning wood, rusting, drying paint, etc.
Molecular Identity	Preserved	Changed
Mass Conserved	-Molecule type -Material form	-Atom type

- Transformations are accounted for in the multi-component material balance equations:
 - Mass of component ADDED Mass of component accumulating = Mass of component REMOVED
 - [Mass of component entering + Mass of component formed] Mass of component accumulating = [Mass of component leaving + Mass of component consumed]
- Synonymous terminologies:
 - o Formation: produced, generated, released, created
 - Consumption: converted, reacted, absorbed, destroyed
- Complete Solution Strategy:

1. PROCESS IT

- a. Read carefully
- b. Draw diagram & mark knowns
- c. Select a suitable basis

2. APPLY LOGIC

- a. Write the equation algebraically:
- For total system
- For each component
- During process:
 Balance flow rates
- After process: Balance total mass
- b. Make reasonable assumptions
- c. Use mass expressions

3. DO MATH

- a. Substitute numerical values with units
- b. Use conversion factors
- c. Calculate unknowns
- d. Scale as needed