MASS REPRESENTATIONS | Property | Mass Relationship
(M _i = total mass of
component i) | Symbols | |-------------------------|---|--| | Count | $M_i = m_i N_i$ | N _{item} = number of units of i
m _{item} = mass of 1 unit of i | | Density | $M_i = \rho_i V_i$ | ρ_i = density of material i
V_i = volume of material i | | Moles | $M_i = MW_i n_i$ | n _i = moles of species i
MW _i = molar weight of i | | Gas pressure | $M_{i} = \left(\frac{PV}{RT}\right)MW_{i}$ | P = pressure of gas V = volume of gas R = Gas Constant T = temperature MW = molar weight of gas i | | Mass percent | M% = 100% * M _i / m _{total} | M% = mass percent
m _{total} = total mass of mixture | | Volume percent | V% = 100% * V _i / V _{total} | V% = volume percent V _i = volume of material i V _{total} = total volume of mixture | | Mass by volume percent | $(m/v)\% = 100\% * M_i / V_{total}$ | (m/v)% = mass by volume percent
V _{total} = total volume of mixture | | Molarity
(solution) | $\mathbf{M} = n_i / V_{total} [L]$ | M = molarity n_i = moles of i V_{total} = total volume of mixture in liters | | Molality
(solution) | m = n _i / m _{solvent} [kg] | m = molality n_i = moles of i m_{solvent} = total mass of solvent in kilograms | | Normality
(solution) | $N = ge_i / V_{total} [L]$ | N = normality ge_i = gram equivalents of i V_{total} = total volume of mixture in liters | | Formality
(solution) | $\mathbf{F} = \operatorname{gfm}_{i} / \operatorname{V}_{\text{total}} [L]$ | F = formality gfm _i = gram formula masses of i V _{total} = total volume of mixture in liters | | Mole fraction | $x_i = n_i / n_{total}$ | x_i = mole fraction of i
n_i = moles of i
n_{total} = total number of moles in the mixture | | Parts per million | ppm = 10 ⁶ * u _i / u _{total} | Ppm = parts per million u _i = units of i u _{total} = total units of mixture *u can be mass/volume/mole and is consistent for u _i and u _{total} |