MASS REPRESENTATIONS

Property	Mass Relationship (M _i = total mass of component i)	Symbols
Count	$M_i = m_i N_i$	N _{item} = number of units of i m _{item} = mass of 1 unit of i
Density	$M_i = \rho_i V_i$	ρ_i = density of material i V_i = volume of material i
Moles	$M_i = MW_i n_i$	n _i = moles of species i MW _i = molar weight of i
Gas pressure	$M_{i} = \left(\frac{PV}{RT}\right)MW_{i}$	P = pressure of gas V = volume of gas R = Gas Constant T = temperature MW = molar weight of gas i
Mass percent	M% = 100% * M _i / m _{total}	M% = mass percent m _{total} = total mass of mixture
Volume percent	V% = 100% * V _i / V _{total}	V% = volume percent V _i = volume of material i V _{total} = total volume of mixture
Mass by volume percent	$(m/v)\% = 100\% * M_i / V_{total}$	(m/v)% = mass by volume percent V _{total} = total volume of mixture
Molarity (solution)	$\mathbf{M} = n_i / V_{total} [L]$	 M = molarity n_i = moles of i V_{total} = total volume of mixture in liters
Molality (solution)	m = n _i / m _{solvent} [kg]	 m = molality n_i = moles of i m_{solvent} = total mass of solvent in kilograms
Normality (solution)	$N = ge_i / V_{total} [L]$	 N = normality ge_i = gram equivalents of i V_{total} = total volume of mixture in liters
Formality (solution)	$\mathbf{F} = \operatorname{gfm}_{i} / \operatorname{V}_{\text{total}} [L]$	F = formality gfm _i = gram formula masses of i V _{total} = total volume of mixture in liters
Mole fraction	$x_i = n_i / n_{total}$	x_i = mole fraction of i n_i = moles of i n_{total} = total number of moles in the mixture
Parts per million	ppm = 10 ⁶ * u _i / u _{total}	Ppm = parts per million u _i = units of i u _{total} = total units of mixture *u can be mass/volume/mole and is consistent for u _i and u _{total}