

DECEMBER

Resilient Rural Economies

Bridging Human Rights, Sustainability,
and Inclusive Growth

December 2025 | Vol.2(12)

Indexed in: INTERNET ARCHIVES

The #1 source for in-depth analyses, expert opinions, and cutting-edge research on topics such as sustainable farming practices, global food security, agricultural policies, market trends, and technological innovations.

Human
Rights

Sustainability

Inclusive
Growth

Table of Contents

EDITORIAL	4
Resilience of Rural Economies for Global Sustainability	5
SPOTLIGHT	7
Sustainable Agriculture: A 21st Century Imperative	8
POLICY BRIEFS	10
Pakistan's Mangrove Forests: Ecological Recovery	11
Agricultural Protectionism in Pakistan: A Critical Analysis	15
Pakistan's Climate Crisis: Urgent Challenges Ahead	18
Ibrahim's Death: A Warning on Pakistan's Infrastructure Failure	21
RURAL INNOVATION	23
Strategic Harvest-Time Marketing in Agriculture	24
Advancing Agricultural Forecasting with Prediction Intervals	27
Innovative Solutions for Banana Cultivation Challenges	30
Chili Cultivation: Economic Impact in Pakistan	33
Transformative Drone Technology in Agriculture	36
Impact of Storms on Türkiye's Agriculture	39
RURAL COMMUNITY.....	42
Transforming Agriculture with Rural Infrastructure	43
Sustainable Falsa Cultivation in Semi-Arid Sindh	46
Pakistan Agriculture: Challenges & Growth Potential	49
Youth Participation in Pakistan's Environmental Future	52
RURAL FINANCE	55
Transforming Agriculture with Drone Technology	56
Modern Pricing Strategies for Competitive Markets	59
Digital Finance: Transforming Access to Money	61
FOOD AND NUTRITION.....	63

Probiotic Chocolate Spread: A Functional Food Innovation.....	64
Livestock: Key to Pakistan's Agricultural Economy	67
EDITORIAL ADVISORY TEAM.....	69

Resilience of Rural Economies for Global Sustainability

Explore how resilient rural economies are crucial for global sustainability and long-term prosperity. Addressing challenges like climate change and inequality, we urge policymakers, researchers, and rural leaders to collaborate in creating vibrant, sustainable, and just rural economies.

Muhammad Khalid Bashir

12/1/2025

As the year draws to a close, we find ourselves reflecting on a fundamental truth that often escapes the center of international discourse: the world's rural communities are not relics of the past; they are the foundation of our shared future. The December issue of *The Agricultural Economist* embraces the theme "Resilient Rural Economies: Bridging Human Rights, Sustainability, and Inclusive Growth," a theme that echoes with urgency at a time when global shifts, economic, climatic, technological, and demographic, are reshaping the lives of billions. Rural regions hold within them the seeds of global stability, prosperity, and environmental recovery, yet they remain among the most vulnerable. If humanity is to build a sustainable and equitable world, strengthening rural resilience must be a global priority.

Rural areas today are home to most of the world's impoverished populations and are responsible for a significant share of food, fiber, and natural resource production. However, they also face a convergence of threats: climate extremes that disrupt agriculture, entrenched inequalities that marginalize entire groups, health challenges that stifle productivity, and governance gaps that hinder development. These challenges are interconnected and so must be the solutions. Rural resilience is not the product of a single intervention; it grows from a combination of equitable access, environmental sustainability, strong health systems, transparent governance, economic dynamism, and empowered communities. To understand the urgency and opportunity before us, we must examine these pillars not as isolated ideas but as active forces shaping the landscape of rural development worldwide.

At the core of resilient rural economies is the principle of equitable access. Across continents, marginalized groups (women, indigenous communities, smallholder farmers, pastoralists, and people with disabilities) continue to face deeply rooted barriers to land ownership, credit, agricultural inputs, digital technology, training, and markets. These structural inequalities are not only unjust; they are economically inefficient. When individuals and communities lack the resources to realize their productive potential, entire economies suffer. The empowerment of historically excluded groups is therefore not merely a moral obligation; it is a strategic necessity. Global examples show what transformative change looks like when fairness is placed at the center of development. India's Forest Rights Act, for instance, has enabled tribal families to secure legal titles to their ancestral lands, shifting power dynamics and fostering dignity, autonomy, and economic independence. Similar movements elsewhere from women's land cooperatives in Ethiopia to indigenous territorial rights in Latin America demonstrate that equitable access fuels productivity, stability, and local innovation. A resilient rural economy must be built on the conviction that every person, regardless of gender, ethnicity, or ability, deserves the means to participate fully and meaningfully in agricultural and economic life.

The second pillar of resilience lies in recognizing that sustainability is no longer a desirable option; it is an existential requirement. For decades, rural landscapes have borne the heaviest costs of environmental degradation. Climate change is intensifying droughts, floods, heatwaves, soil erosion, and pest outbreaks, all of which diminish yields and

threaten food security. Unsustainable agricultural practices, including excessive tillage, chemical overuse, and poor water management, have degraded soils and ecosystems further. Yet, across the world, a quiet revolution is underway. Farmers are embracing practices that work with nature rather than against it. Agroforestry systems in Türkiye have restored fertility to exhausted lands, while innovations in regenerative agriculture from cover crops to conservation tillage are rebuilding soil structure and increasing water-retention capacity. In Kenya, sustainable honey production has become a striking example of how livelihoods can flourish while simultaneously enhancing forest health and biodiversity. These examples remind us that sustainability is not an obstacle to economic growth; it is its foundation. When ecosystems thrive, communities thrive with them.

Health and well-being form another essential building block for rural resilience. The connection between health and economic prosperity is undeniable: a healthy population works more productively, earns more consistently, and contributes more fully to community development. Yet rural areas remain underserved by healthcare systems. Diseases such as HIV/AIDS, tuberculosis, malaria, and waterborne infections continue to constrain development across Sub-Saharan Africa and South Asia. Community-led health models, however, are changing this narrative. Local volunteers trained in preventive care, nutrition, maternal health, and disease surveillance have made significant progress in improving outcomes where formal healthcare systems remain limited. In Pakistan, mobile clinics and telemedicine services are closing the distance between isolated villages and skilled medical professionals. Technology

has become a bridge, connecting rural communities to urban expertise and ensuring that critical health services are no longer the privilege of those living in cities. Inclusive health infrastructure, including accommodations for people with disabilities, ensures that all individuals can participate in economic and social life without barriers.

Transparent and accountable governance is equally indispensable for building trust and ensuring development interventions achieve their intended impact. Corruption, bureaucratic inefficiencies, and opaque land and resource allocation systems have long hindered sustainable rural development. However, innovations in digital governance offer promising models for reform. Rwanda's pioneering digital land registry has reduced land disputes, streamlined administrative procedures, and empowered citizens by granting them secure and verifiable land titles. Similar initiatives across Asia and Africa demonstrate that transparency is transformative: it builds trust between citizens and the state, encourages responsible investment, and reduces conflict over scarce resources. Effective governance is not only about creating rules; it is about fostering accountability and ensuring that communities have a voice in shaping their future.

While rural outmigration is often portrayed as a symptom of failure, it also presents opportunities. Migration can drain rural areas of youthful talent, yet the remittances migrants send home strengthen household incomes, fund local businesses, and improve access to education and healthcare. The challenge is not to stop migration but to create vibrant rural economies that offer meaningful opportunities so that leaving is no longer a forced choice but a voluntary one. China's targeted poverty alleviation campaign has achieved remarkable success by investing in rural entrepreneurship, vocational training, local industries, and sustainable agriculture. These programs provide rural

youth with reasons to stay, innovate, and build livelihoods within their home communities. When rural economies offer dignity, income security, and stability, migration becomes an option rather than an escape.

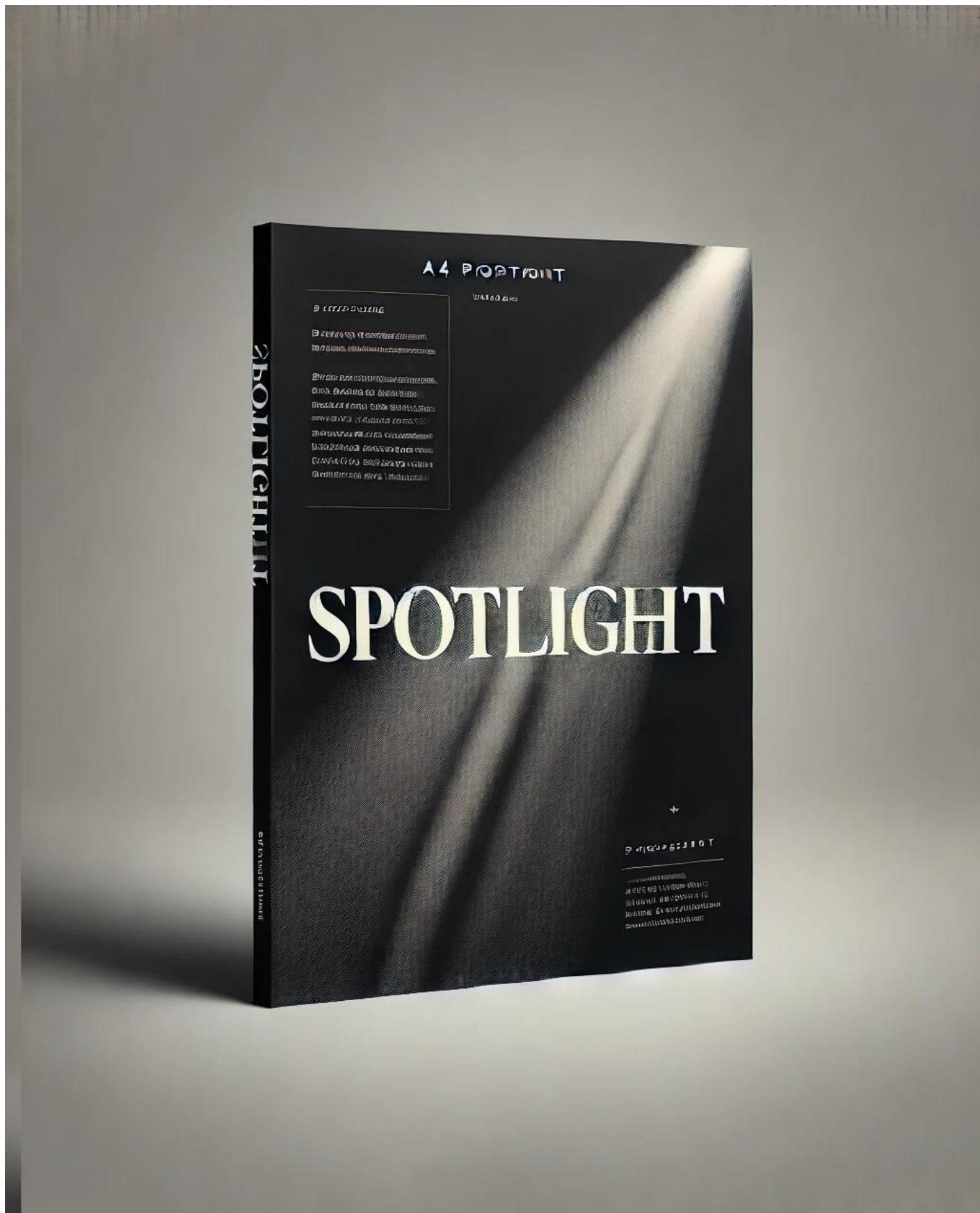
Ultimately, the most enduring transformations emerge from grassroots leadership. Rural resilience grows strongest when local people are the architects of their own development. Across the world, empowering women and youth through education, microfinance, and community organizations has produced deeply transformative results. Bangladesh's Grameen Bank stands as one of history's most influential examples, having provided millions of women with microloans that enabled them to start small businesses, educate their children, and escape poverty. In many African countries, volunteer-run literacy programs are reshaping futures by equipping rural youth with the skills needed to participate in modern economies. Such initiatives illustrate a fundamental truth: communities do not lack potential they lack access, opportunity, and platforms to lead.

December's global observances, Human Rights Day and the International Day of Persons with Disabilities, remind us that development must be anchored in dignity and inclusion. Rural resilience cannot be separated from human rights. It requires the protection of economic rights, land rights, social rights, environmental rights, and the right to participate in decision-making. It means ensuring that all rural residents have equal access to essential services such as healthcare, education, clean water, digital connectivity, and transportation. It means creating environments where people with disabilities can work, learn, and lead without barriers. It means fostering economic systems that reward effort and innovation rather than privilege.

As we consider the immense challenges and equally immense possibilities facing

rural economies, one thing becomes clear: the time for incremental change has passed. Climate change, global inequality, and food insecurity demand bold, integrated, and people-centered solutions. Resilient rural economies are not just essential for the well-being of rural populations; they are essential for the stability and prosperity of the entire world. If we invest in rural health, land rights, sustainable agriculture, digital empowerment, transparent governance, and grassroots leadership, we lay the foundation for resilient food systems, flourishing local industries, and vibrant landscapes capable of withstanding the shocks of a rapidly changing world.

The Agricultural Economist invites researchers, practitioners, policymakers, students, and rural leaders to join this critical dialogue. Share your insights, case studies, success stories, and research findings. Each contribution helps illuminate the path toward stronger, more equitable, and climate-resilient rural communities. Together, we can champion the policies and practices that empower rural people not only to survive but to thrive.


Let us envision, and work toward, a future where rural economies are not peripheral but central, not overlooked but valued, not vulnerable but resilient. A future where development is inclusive, growth is sustainable, and prosperity is shared. A future in which rural communities stand strong as the backbone of a just, stable, and flourishing world.

We welcome your contributions and look forward to your voice in shaping a more resilient tomorrow.

Together, let us champion resilience and inclusivity for rural economies across the globe.

Send your submissions to: editor@agrieconomist.com

Muhammad Khalid Bahir, Managing Editor

Sustainable Agriculture: A 21st Century Imperative

Explore the critical role of sustainable agriculture in addressing food security, climate change, and environmental degradation. Learn how traditional agricultural practices impact soil, water, and biodiversity.

Mithat Direk

12/19/2025

Agriculture, as one of the earliest and most enduring pillars of human civilization, has always been deeply intertwined with natural ecosystems. From its origins in subsistence farming to today's highly commercialized and technology-driven systems, agriculture has continuously reshaped landscapes, water systems, and biological diversity. In the modern era, the pursuit of higher productivity driven by population growth, market integration, and technological innovation has intensified this interaction, placing unprecedented pressure on natural resources. Globally, agriculture now occupies nearly 38 percent of the Earth's terrestrial surface and accounts for roughly 70 percent of total freshwater withdrawals, making it the single largest user of land and water resources worldwide (FAO, 2020).

While this intensification has been instrumental in expanding food supplies and reducing hunger for large segments of the global population, it has also generated substantial environmental externalities. Unsustainable land management practices have accelerated soil erosion, nutrient depletion, and salinization, undermining the long-term productive capacity of agricultural land. Heavy reliance on chemical fertilizers and pesticides has contributed to water pollution, eutrophication, and declining soil biodiversity, while the expansion of agricultural frontiers has been a leading driver of deforestation and habitat loss. Collectively, these processes have contributed to significant biodiversity decline and increased agriculture's vulnerability to climate change and ecosystem collapse.

In this context, sustainable agriculture has emerged not as a niche or idealistic alternative, but as a necessary framework for reconciling food production with environmental stewardship. Sustainable

agriculture seeks to balance productivity with conservation by promoting efficient resource use, maintaining soil health, protecting ecosystems, and ensuring economic viability for farmers. By integrating ecological principles with technological innovation and sound policy, sustainable agriculture offers a pathway to meet present food security needs without compromising the capacity of future generations to meet their own.

The Pressing Need for Systemic Change

The need for systemic change in global agricultural systems has become increasingly urgent as multiple pressures converge on food production and natural resources. Demographic expansion alone presents a formidable challenge. With the global population projected to reach 9.7 billion by 2050, agricultural output must rise substantially to meet growing demand for food, feed, and fiber (UN DESA, 2022). However, this requirement collides with a steady decline in arable land per capita, driven by urbanization, land degradation, and competing land uses. Continued expansion of cultivation into forests, grasslands, and wetlands risks further biodiversity loss and the disruption of critical ecosystem services such as carbon sequestration, water regulation, and climate moderation.

Equally concerning is the prevailing dependence on synthetic inputs to sustain productivity. The widespread application of nitrogen-based fertilizers has significantly increased crop yields, but it has also become a leading cause of terrestrial and aquatic eutrophication, degrading water quality and harming aquatic life. Pesticide use poses additional risks, with strong empirical evidence linking chemical exposure to declines in pollinators and other beneficial organisms essential for resilient food systems (IPBES,

2016). These pressures are compounded by widespread soil degradation. The FAO's 2022 assessment of the world's land and water resources estimates that more than one-third of global soils are moderately to highly degraded, directly undermining the long-term productive base of agriculture and increasing vulnerability to climate shocks.

Within this context, sustainable agriculture represents a strategic imperative rather than a voluntary choice. It is defined by production systems that meet present food and textile needs while safeguarding the capacity of future generations to do the same. By integrating environmental health, economic viability, and social equity, sustainable agriculture aims to decouple productivity gains from environmental harm. Achieving this transition requires the large-scale adoption of science-based, ecologically sound, and long-term practices that align agricultural growth with planetary boundaries and human well-being.

Implementing Sustainability: Key Action Areas for Transformative Agriculture

Implementing sustainability in agriculture requires a comprehensive shift from extractive, input-intensive practices toward systems that regenerate natural resources while maintaining economic viability. Central to this transformation is soil and water stewardship. Soil must be treated not merely as a growth medium but as a living ecosystem whose biological, chemical, and physical integrity underpins long-term productivity. Sustainable soil management begins with rigorous soil testing to guide balanced nutrient application and avoid both deficiencies and excesses. Practices such as conservation tillage, cover cropping, diversified crop rotations, and the application of organic amendments

play a critical role in rebuilding soil organic matter, which enhances nutrient cycling, water retention, and resilience to erosion. Integrated Soil Fertility Management further strengthens this approach by combining organic inputs with judicious use of mineral fertilizers to maximize efficiency and minimize nutrient losses to the environment.

Water management is equally pivotal in an era of intensifying scarcity and climate variability. Sustainable agriculture must prioritize water-use efficiency through a transition from traditional flood irrigation to precision systems such as drip and micro-sprinklers, which can significantly reduce water losses while improving crop yields. Effective irrigation scheduling, informed by real-time soil moisture monitoring and crop water requirements, ensures optimal application and reduces stress on freshwater resources. Protecting water quality is an inseparable component of stewardship, requiring strict control of nutrient runoff and leaching to prevent contamination of groundwater, rivers, and lakes with nitrates and phosphates.

Biodiversity conservation represents another cornerstone of sustainable agricultural systems. Farms and surrounding landscapes must be managed to enhance, rather than erode ecological diversity. Maintaining non-cropped habitats such as hedgerows, flowering field margins, and riparian buffers provides critical refuge for pollinators, natural enemies of pests, and other beneficial organisms. These ecosystem services reduce reliance on chemical inputs and increase system resilience. Crop diversification across seasons and landscapes further buffers farms against pest outbreaks, diseases, and climate shocks. Equally important is the protection of non-arable areas, including wetlands and woodlots, whose functions in water filtration, carbon sequestration, and habitat provision are both economically valuable and ecologically irreplaceable.

Sustainability also depends on optimizing energy use, waste management, and agricultural inputs. Reducing dependence on fossil fuels through renewable energy solutions such as solar-powered irrigation and improving machinery efficiency can significantly lower emissions and operating costs. Adopting circular economic principles allows organic waste, including crop residues and livestock manure, to be transformed into compost or biogas, returning nutrients to soils while reducing the need for synthetic fertilizers. Safe handling and disposal of chemical containers and hazardous wastes are essential to prevent long-term environmental contamination. Input optimization, guided by the principle of applying the right source at the right rate, time, and place, is reinforced through Integrated Pest Management and precision agriculture technologies that minimize waste and environmental harm.

Finally, sustainable agriculture is central to both climate change mitigation and adaptation. By enhancing soil carbon sequestration, improving nitrogen-use efficiency, and managing livestock waste more effectively, agriculture can reduce greenhouse gas emissions and even function as a net carbon sink. At the same time, resilience to climate impacts requires the adoption of drought- and heat-tolerant crop varieties, water-harvesting techniques, diversified farming systems, and climate-informed advisory services. Together, these interconnected action areas provide a practical and science-based pathway for aligning agricultural productivity with environmental sustainability and climate resilience.

Conclusion

Sustainable agriculture has emerged as a defining imperative of the twenty-first century, driven by the convergence of food security needs, environmental degradation, and climate change. As this article has demonstrated, the historical model of agricultural intensification while successful in expanding global food

supplies has imposed substantial ecological and social costs that now threaten the very foundations of agricultural productivity. Soil degradation, water scarcity, biodiversity loss, and rising greenhouse gas emissions collectively underscore the unsustainability of business-as-usual approaches.

The transition toward sustainable agriculture is therefore not a matter of preference but of necessity. By recognizing soil and water as finite and living resources, integrating biodiversity into production landscapes, optimizing energy and input use, and aligning farming systems with climate mitigation and adaptation goals, sustainable agriculture offers a viable pathway to reconcile productivity with environmental stewardship. Importantly, this transition does not imply abandoning technological progress; rather, it calls for harnessing science, innovation, and policy coherence to guide technology toward long-term ecological balance and social equity.

Achieving sustainable agriculture at scale will require coordinated action across farmers, researchers, policymakers, and markets. Supportive policies, investment in research and extension, and incentives that reward resource-efficient practices are essential to accelerate adoption. Ultimately, sustainable agriculture represents a strategic investment in resilience ensuring that food systems remain productive, ecosystems remain functional, and future generations retain the capacity to meet their own needs in an increasingly uncertain world.

References: FAO; IPBES; IPCC; Kremen & Miles; Savci; UN DESA.

Please note that the views expressed in this article are of the author and do not necessarily reflect the views or policies of any organization.

The writer is affiliated with the Department of Agricultural Economics, Selcuk University, Konya-Türkiye and can be reached at mdirek@selcuk.edu.tr

Pakistan's Mangrove Forests: Ecological Recovery

Discover the remarkable ecological recovery of Pakistan's mangrove forests in the Indus delta over the last three decades. Explore how restoration initiatives and policy attention have led to a near doubling of mangrove cover, enhancing biodiversity, coastal protection, and carbon sequestration.

Nazar Gul & Hafiz Abdul Salam

12/5/2025

Mangroves are vital coastal ecosystems that flourish in the intertidal zones of tropical and subtropical regions (Jia et al., 2023). They deliver a wide range of ecological and societal benefits, including biodiversity conservation, natural protection against storms, and significant carbon storage that contributes to climate change mitigation (Zhao et al., 2023). Around the world, mangroves support millions of people by providing diverse resources and livelihoods (Luo et al., 2025). Despite their immense value, these ecosystems are increasingly threatened by human-driven pressures such as logging, expanding urban development, and the growing impacts of climate change (Saoum & Sarkar, 2024).

Such disturbances directly alter mangrove functioning and the services they provide, affecting everything from patch size and connectivity which influence ecosystem stability and fish populations to the retention of organic matter and coastal protection (Carugati et al., 2018). The resulting loss of biodiversity and reduced carbon sequestration capacity can trigger cascading ecological consequences (Dabala et al., 2023). Moreover, human activities have been clearly linked to declines in the spatial complexity of mangrove landscapes, further underscoring their vulnerability (Liu et al., 2022). Understanding the extent, structure, and spatial dynamics of mangroves is therefore critical for designing effective national conservation strategies, assessing their response to climate change, and identifying the underlying causes of mangrove degradation (Mihautiate, 2023).

The Indus Delta in Pakistan is home to one of the world's largest arid-climate mangrove ecosystems, spanning nearly 600,000 hectares (Mehmood et al., 2025). Located along the coastline where the

Indus River meets the Arabian Sea, this vast delta forms a dynamic environment that supports diverse plant and wildlife communities. Like other coastal mangrove systems, the *Avicennia marina*-dominated forests of the Indus Delta play essential ecological roles, including shoreline protection, carbon sequestration, and the conservation of biodiversity (Haseeba et al., 2025). In semi-arid tropical regions, mangroves function as important sinks for terrestrial nutrients; however, Pakistan's mangroves have undergone severe degradation in recent decades due to reduced freshwater inflows, land-use changes, and climate-induced stresses (Liu et al., 2024a). Reflecting global trends, these forests have experienced continuous loss over the past 50 years (Bhatti et al., 2023). Restoration efforts began in the early 1990s (Qureshi, 1993), and large-scale initiatives have since helped expand mangrove cover back to nearly 600,000 hectares (Ahmed et al., 2025). Today, around 90% of Pakistan's mangroves are found in Sindh Province, which hosts the largest dry-climate mangrove forest on the planet. The country has become an active participant in global restoration movements such as the UN Decade on Ecosystem Restoration (2021–2030) and has used platforms like World Environment Day to highlight the critical role that rapid mangrove recovery can play in reducing ecosystem loss and supporting coastal livelihoods (Akçakaya et al., 2020).

Studies offering a long-term integrated perspective of Pakistani mangrove forest dynamics are scant. Assessing long-term spatial and structural changes in these forests is paramount to evaluating conservation efforts and understanding the relationship between mangrove rehabilitation and wider ecological trends. Mangroves are highly important for the

ecosystems as a nature-based solution for climate change adaptation and sustainable development. Focusing on the restoration of the Indus Delta mangroves also enhances the universal understanding of mangrove rehabilitation in arid and semi-arid environments, complementing global efforts led by initiatives such as the Global Mangrove Alliance.

The Indus River Delta

The Indus River Delta in Sindh Province, Pakistan, experiences average temperatures of 10–21 °C during winter and 21–30 °C in summer (Amjad et al., 2016). Characterized by an arid climate, the region receives less than 200 mm of annual rainfall. Despite these harsh conditions, the Delta sustains rich biodiversity, provides natural coastal protection, and supports the livelihoods of local communities (Masood et al., 2024). However, these mangrove forests face a range of anthropogenic and natural pressures, underscoring the importance of focused conservation and research efforts. The study area covers the entire coastal belt of Sindh (Hussain & Rahman, 2022), a landscape shaped by the combined influence of the Indus River and the Arabian Sea. The Sindh Forest Department oversees mangrove protection, supporting ecological services that benefit more than 28,000 coastal households across the Delta (UNEP, 2024).

The Indus Delta contains 97% of Pakistan's mangroves, occupying about 37% of the Delta's total area, while the remaining 3% is found along the Balochistan coast (Gilani et al., 2021). Today, only four mangrove species remain in the coastal regions of Sindh and Balochistan. *Avicennia marina* (Gray Mangrove) is the most dominant, particularly within the Indus Delta.

Rhizophora mucronata (Red Mangrove), Ceriops tagal (Spurred Mangrove), and Aegiceras corniculatum (River Mangrove) persist in much smaller populations. Historically, additional species were present, but deforestation, pollution, and declining freshwater inflows have led to their disappearance from these areas (Rafique, 2018).

Spatio-temporal dynamics of Pakistan mangrove forests

The spatial distribution of Pakistan's mangrove forests is heavily concentrated in the Indus Delta, which contains most of the country's mangrove cover. Ahmed et al. (2025) provides a comprehensive assessment of the historical trends, current conditions, and outlook of these ecosystems, using advanced monitoring tools to identify both progress and persistent challenges. Their findings reveal a clear upward trend in mangrove cover over the past several decades. Mangrove area declined slightly from 50,973.39 ha in 1990 to 49,253.11 ha in 2000 but rebounded to 70,760.38 ha by 2010. This recovery continued, rising to 100,462.56 ha in 2020 and 101,446.64 ha in 2023, illustrating substantial growth over 33 years. Within the Indus Delta, districts such as Karachi West, Karachi South, Malir, and Thatta all experienced notable increases in mangrove cover during this period.

Pakistan's mangroves extend along a 1,050 km coastline shared between Sindh (350 km) and Balochistan (700 km). The Indus Delta recognized as the world's fifth largest mangrove system and the most extensive dry-climate mangrove forest hosts 97% of the country's mangrove area (Abbas et al., 2012). The remaining 3% is scattered in smaller patches along the Balochistan coastline. Mangrove restoration provides significant ecological and economic benefits; ecosystem services from just one hectare of mangroves are valued between USD 33,000 and 57,000 annually (Ahmed et al., 2025). Beyond their economic value, mangroves offer critical functions such as shoreline stabilization, carbon sequestration, primary productivity, and nursery habitats for marine species.

The expansion of mangrove cover from 50,973.39 ha in 1990 to 101,446.64 ha in 2023 reflects the positive influence of large-scale initiatives like the Green Pakistan Project, which helped counter past degradation caused by reduced freshwater inflow, pollution, and unsustainable harvesting (Saeed, 2024). However, several pressures continue to threaten mangrove health. Altered hydrology due to upstream water management and sea-level rise linked to climate change are among the most significant. Additional factors including rapid urbanization, increased salinity, and declining water quality further exacerbate stress on these ecosystems by amplifying salinity levels and limiting freshwater availability (Asbridge et al., 2015).

Changes in landscape metrics

The evolution of Pakistan's mangrove patches over the past three decades shows clear signs of fragmentation and changing connectivity, reflecting broader patterns observed across regional coastal ecosystems. Landscape metrics from 1990 to 2023 highlight significant shifts in mangrove structure and composition. A leftward-shifting trend line indicates that overall mangrove area has nearly doubled during this period, with continuous growth in total area (TA), signaling a long-term expansion of mangrove coverage.

Patch dynamics are the key indicators of ecological stability which reveal important changes. The decline in the number of patches (NP) and patch density (PD) suggests reduced fragmentation, likely due to smaller patches merging into larger, more consolidated forest units. Although patch density declined slightly, indicating fewer patches per unit area, the remaining patches appear more tightly grouped, reflecting ongoing landscape reorganization. The increase in the Largest Patch Index (LPI) further confirms the expansion of major mangrove stands, even as the total number of patches decreased.

Other structural indicators point to a simplification of patch shapes, as reflected by the reduction in the Landscape Shape Index (LSI). While simpler patch shapes may limit edge habitats that support

diverse species, the significant increase in mean patch size (Area_MN) suggests that mangrove patches are becoming larger and potentially more resilient. Larger patches can support richer biodiversity and enhance ecosystem functioning, reinforcing their role in coastal protection and environmental stability (Ahmed et al., 2025).

The aggregation index (AI) increased steadily from 1990 to 2023, indicating that mangrove patches have become more clustered rather than widely dispersed. This increased clustering, supported by the decline in Euclidean nearest neighbor distance (ENN_MN), can facilitate ecological processes such as nutrient exchange, species movement, and genetic flow (Basnet et al., 2013). Despite these structural changes, overall connectivity remained relatively stable, as shown by minimal variation in the patch cohesion index (COHESION). This stability suggests that the physical connectedness of the mangrove network has been largely maintained across the study period. Similarly, the division index showed only slight decreases, reflecting a modest trend toward reduced fragmentation.

Extensive restoration efforts in the Indus Delta aligned with the UN Decade on Ecosystem Restoration (2021–2030) have been central to these positive changes. Governmental and non-governmental reforestation initiatives, combined with natural sediment deposition, have contributed to mangrove expansion. Unlike regions where increased sedimentation has caused degradation and fragmentation, such as parts of Iran (Guo et al., 2024), sediment accretion in the Indus Delta appears to have supported new mangrove colonization (Li et al., 2024). These contrasting outcomes underscore the importance of local geomorphological conditions in shaping mangrove resilience and recovery.

Influencing factors of mangrove patch changes: man-made and natural drivers

Mangroves in Pakistan particularly within the Indus Delta have shown remarkable recovery, nearly doubling in extent from about 50,973 ha in 1990 to 101,446 ha in

2023. This resurgence is largely attributed to the resilience of *Avicennia marina*, a dominant species well adapted to saline, arid conditions, along with extensive reforestation and conservation initiatives that recognized the ecological and socioeconomic value of these forests. Despite this progress, both natural and human-induced threats continue to challenge the stability and long-term recovery of these ecosystems.

Climate change remains a major natural pressure, intensifying sea level rise, storm activity, and precipitation variability all of which disrupt the delicate balance of salinity and freshwater critical for mangrove health (Asbridge et al., 2015). Severe cyclonic events, such as Cyclone 2A (1999), Cyclone Phet (2010), and Biparjoy (2023), have repeatedly caused large-scale inundation, flooding, and destruction of mangrove stands (Sunkur et al., 2023). These events are especially damaging to *Rhizophora* stands in the southern delta, resulting in uprooting, defoliation, and coastline erosion, and often delaying natural regeneration and reforestation efforts.

Anthropogenic pressures have further exacerbated these vulnerabilities. Rapid urbanization, industrial expansion, agricultural encroachment, and overexploitation for fuelwood, fodder, and aquaculture have contributed to habitat loss and degradation (Kumari & Pathak, 2023; Ofori et al., 2023). Agricultural runoff carrying pesticides and fertilizers alters soil and water chemistry, harming mangrove health and biodiversity (Emmerson et al., 2016). Diversion of freshwater flows has intensified salinity stress, placing additional pressure on mangrove resilience.

Despite these challenges, Pakistan has made substantial strides in mangrove conservation through reforestation programs, community participation, and strengthened policy frameworks (Gilani et al., 2021). Mangroves not only protect coastlines from erosion and storm surges but also support diverse wildlife, sequester carbon, and sustain local livelihoods. Ensuring a balance between economic development and ecosystem protection is

critical for long-term climate adaptation and coastal resilience (Choudhary et al., 2024). Moreover, the influence of cyclonic disturbances seen in suppressed or slowed patch expansion during certain years (e.g., 2000) highlights the need for restoration strategies that integrate storm resilience and post-disturbance recovery planning (Qureshi, 1993). Strengthening efforts to mitigate human pressures and build ecosystem resilience remains essential for safeguarding the future of mangroves in the Indus Delta.

Recommendations for mangrove conservation and restoration in Pakistan

Environmental and human-induced pressures continue to threaten Pakistan's mangrove ecosystems, complicating efforts to conserve and restore them (Numbere, 2023). Key challenges include reduced freshwater flow from the Indus River. Climate change further intensifies these threats through sea-level rise and more frequent extreme weather events (Gilman et al., 2008). Limited public awareness also hampers effective policy enforcement. Protecting and restoring mangroves therefore requires sustainable management practices, community participation, and strong governance. In the Indus Delta, mangroves fall under the authority of three major institutions, the Sindh Forest Department, the Port Qasim Authority, and the Sindh Board of Revenue, which collectively oversee nearly 600,000 hectares, most of which are designated as "protected forests" (World Bank, 2021). However, achieving long-term sustainability also depends on community cooperation, particularly in areas labeled as "government wasteland," where conservation enforcement tends to be weaker. Strengthening coordination among agencies and expanding protected areas remain critical steps for effective mangrove management.

Pakistan's Ten Billion Tree Tsunami Programme (TBTP), launched in 2019, serves as a major example of national-scale restoration. Supported by the United Nations Environment Programme (UNEP), the initiative aims to plant ten billion trees primarily mangroves by 2023. By mid-2021, it had already planted one billion

trees, signaling encouraging progress (UNEP, 2024). Beyond aiding ecological recovery, the program promotes biodiversity conservation, creates green employment opportunities, and underscores Pakistan's commitment to climate resilience and global environmental goals.

Sustainable mangrove conservation hinges on early and inclusive planning. Active local community involvement ensures long-term stewardship, while strong national policies such as those outlined in the National Adaptation Plan provide the legal support needed for protection. Ongoing research and monitoring are essential for guiding restoration and assessing outcomes. Best practices, including planting native species and adopting environmentally responsible coastal development, further enhance restoration success. Integrating economic tools such as carbon credit mechanisms can offer financial incentives to support conservation. These combined efforts position Pakistan to advance mangrove restoration and safeguard these critical ecosystems for future generations.

Valuable lessons can also be drawn from countries with similar ecological conditions. In Indonesia, community-based management and the integration of indigenous knowledge into environmental policy have significantly improved restoration outcomes (Yu et al., 2023). Adopting similar approaches especially those that emphasize community engagement and economic incentives like payments for ecosystem services could strengthen Pakistan's ongoing initiatives, including the Ten Billion Tree Tsunami Program (Sasmito et al., 2023; United Nations Environment Program, 2024).

Conclusion

Over the last three decades, Pakistan's mangrove forests particularly within the Indus Delta have demonstrated a rare and encouraging story of ecological recovery amid mounting environmental pressures. The near doubling of mangrove cover from 1990 to 2023 reflects the combined impact of large-scale restoration initiatives, the natural resilience of *Avicennia marina*, and

strengthened policy attention toward ecosystem protection. Improvements in landscape structure, including larger patch sizes, increased aggregation, and sustained connectivity, indicate growing ecological stability and enhanced capacity for coastal protection, biodiversity conservation, and carbon sequestration.

Nevertheless, this recovery remains fragile. Climate change–driven sea-level rise, intensifying cyclones, reduced freshwater inflows, urban encroachment, and pollution continue to threaten long-term resilience. The findings clearly show that restoration gains can be reversed without sustained governance, scientific monitoring, and community stewardship. National efforts such as the Ten Billion Tree Tsunami Program, alignment with the UN Decade on Ecosystem Restoration, and

community-based initiatives provide a strong foundation, but their success depends on institutional coordination, enforcement, and long-term financing mechanisms.

Going forward, mangrove conservation in Pakistan must evolve from short-term plantation targets toward integrated coastal resilience planning that balances ecological protection with livelihoods, climate adaptation, and sustainable development. If managed effectively, the Indus Delta mangroves can remain a global model of large-scale restoration in arid coastal environments and a critical nature-based solution for Pakistan’s climate future.

References: Abbas et al; Ahmed et al; Akçakaya et al; Amjad et al; Asbridge et al; Basnet et al; Bhatti et al; Carugati et al;

Choudhary et al; Dabala et al; Emmerson et al; Gilani et al; Gilman et al; Guo et al; Haseeba et al; Hussain; Jia et al; Kumari ;Li et al; Liu et al; Luo et al; Masood et al; Mahmood et al; Mihautiae; Numbere; Ofori et al; Qureshi; Rafique; Saeed; Saoum & Sarkar; Sasmito et al; Sunkur et al; United Nations Environment Program; World Bank.

Please note that the views expressed in this article are of the author and do not necessarily reflect the views or policies of any organization.

The writers are affiliated with the *Drainage and Reclamation Institute of Pakistan (DRIP)*, Pakistan Council of Research in Water Resources (PCRWR) and can be reached at nazargul43@gmail.com

Agricultural Protectionism in Pakistan: A Critical Analysis

This analysis examines Pakistan's agricultural protectionism, showing how tariffs, subsidies, and MSPs now distort markets, deepen inequality, and limit rural productivity.

Muhammad Ashir

12/12/2025

Agriculture remains the backbone of Pakistan's rural economy, anchoring livelihoods, food security, and social stability across vast segments of the population. As reported by the Pakistan Bureau of Statistics, the sector employs approximately 37.4 percent of the national workforce and contributes nearly 22.9 percent to gross domestic product (Pakistan Economic Survey 2023–24). Beyond these macroeconomic indicators, agriculture shapes rural culture, household welfare, and intergenerational employment patterns. For smallholders, tenants, and landless laborers alike, farm performance directly determines income security, access to education and health services, and resilience to economic shocks. Consequently, policy interventions in agriculture carry consequences that extend well beyond production statistics and trade balances.

Among the most enduring and contested interventions is agricultural protectionism. Through instruments such as import tariffs, export restrictions, price supports, subsidies on inputs, and state procurement programs, successive governments have sought to shield domestic producers from volatile international markets. These measures are often justified on the grounds of food self-sufficiency, income stabilization for farmers, and protection of nascent agro-industries. In a country frequently exposed to global commodity price fluctuations, climate stress, and foreign exchange constraints, protectionist policies have been perceived as tools of economic sovereignty and rural support.

However, the outcomes of such policies are complex and often uneven. While certain crop producers may benefit from guaranteed prices or restricted imports, protectionism can distort market signals, discourage diversification, and impose hidden costs on consumers and taxpayers.

Moreover, prolonged insulation from competition may reduce incentives for productivity growth, technological adoption, and sustainable resource use. This paper critically examines Pakistan's agricultural protectionist framework in its contemporary context, evaluating whether these policies have genuinely promoted inclusive and sustainable rural development or whether they have unintentionally limited the long-term potential of Pakistan's agrarian economy.

Evolving Policy Context: From Protection to Reform Pressure

Pakistan's agricultural policy has evolved through cycles of state control, partial liberalization, and renewed intervention, reflecting shifting political priorities and external economic pressures. In the decades following independence, agriculture was heavily regulated through administered prices, public procurement, input subsidies, and trade controls. These protectionist measures aimed to ensure food security, stabilize farm incomes, and support industrialization by providing cheap raw materials. However, by the late 1970s, growing fiscal imbalances, inefficiencies in public enterprises, and stagnant productivity prompted calls for reform.

The 1980s and 1990s marked a turning point, as Pakistan embarked on structural adjustment programs under the guidance of international financial institutions. These reforms promoted market liberalization, reduction of subsidies, deregulation of agricultural trade, and a greater role for private actors. While liberalization improved efficiency in some segments, its implementation was uneven and often reversed due to political resistance, food price sensitivities, and concerns over farmer welfare. As a result, Pakistan entered the 2000s with a hybrid policy

regime, neither fully liberalized nor coherently protected.

Today, this duality has become more pronounced. A 2024 International Monetary Fund (IMF) country report identifies weak governance, policy inconsistency, and persistent state intervention as key factors distorting market signals and undermining productivity growth. Price controls, ad hoc export bans, and commodity-specific subsidies continue to create uncertainty for farmers and investors alike. At the same time, the World Bank's Pakistan Development Update (April 2024) underscores declining export competitiveness as a structural driver of recurring balance-of-payments crises. High production costs, limited value addition, and inward-looking policies have constrained Pakistan's ability to integrate into global agricultural markets.

Within this context, rural protectionism faces increasing scrutiny. While intended to safeguard farmers, many protective measures now appear misaligned with the realities of climate stress, resource scarcity, and global competition. The tension between short-term political stabilization and long-term structural reform defines Pakistan's current policy landscape, setting clear limits on the effectiveness of traditional protectionist approaches in delivering sustainable rural development.

Contemporary Manifestations of Protectionism in Pakistan's Agriculture

Agricultural protectionism in Pakistan continues to operate through a combination of trade barriers, fiscal subsidies, administered prices, and direct market interventions. Although these instruments are often justified as mechanisms to stabilize farmer incomes and ensure food security, their contemporary application

reveals significant economic and institutional challenges.

Historically, high import tariffs on staple commodities such as wheat and sugar, at times reaching 60 percent, shielded domestic producers from external competition. While this insulation offered short-term relief, it also raised domestic prices and weakened incentives for efficiency and innovation. Recognizing these limitations, the government introduced the National Tariff Policy 2023–28, signaling a gradual shift from blanket protectionism toward a development-oriented tariff structure. As outlined in the Strategic Trade Policy Framework 2023–28, the new approach aims to rationalize tariffs, reduce anti-export bias, and enhance competitiveness across agriculture-linked industries. However, the transition remains incomplete, and legacy tariff structures continue to influence key food markets.

Subsidies represent another dominant pillar of protectionism but impose a heavy fiscal burden. Input subsidies on fertilizers, electricity, irrigation, and seeds are politically sensitive and difficult to withdraw. The Pakistan Economic Survey 2023–24 reports that power sector subsidies alone exceeded PKR 976 billion in the previous fiscal year. For the current year, total subsidies are budgeted at PKR 1.077 trillion, diverting scarce public resources away from infrastructure, research, and social services. While subsidies lower production costs, they often disproportionately benefit larger farmers and encourage inefficient resource use.

Minimum Support Prices (MSPs) and public procurement systems further shape market outcomes. Although MSPs aim to guarantee farmer incomes, evidence from PIDE (2023) indicates that procurement inefficiencies allow larger landowners and intermediaries to capture most benefits, while smallholders remain exposed. Moreover, MSPs discourage crop diversification and reinforce monocropping patterns.

Finally, ad hoc import bans such as restrictions on vegetable imports in 2023

illustrate reactive protectionism. As SDPI research shows, such interventions disrupt supply chains, increase price volatility, and undermine market confidence, often harming both consumers and agro-processors.

Multifaceted Impacts of Protectionism on Rural Pakistan

The cumulative effects of agricultural protectionism in Pakistan extend well beyond price stabilization and income support, shaping rural employment structures, food affordability, environmental sustainability, and long-term competitiveness. While the sector employs a large share of the population, the quality and inclusiveness of these livelihoods remain deeply compromised. Data from the Labour Force Survey 2020–21 show that most agricultural workers are engaged in vulnerable or informal employment, characterized by low wages, seasonal instability, and limited social protection. Protectionist instruments such as subsidies and Minimum Support Prices (MSPs) have not translated into broad-based income gains; instead, they are disproportionately captured by large landowners with better access to procurement channels and political influence. The IMF (2024) explicitly identifies subsidies and regulatory privileges as key contributors to widening income and wealth inequalities, reinforcing structural disparities within rural Pakistan.

Food security outcomes further reveal the contradictions of protectionism. Although MSPs are designed to incentivize staple crop production, Pakistan's continued reliance on wheat imports, 3.5 million metric tons in 2023 according to the USDA Foreign Agricultural Service, demonstrates persistent supply shortfalls. At the consumer level, tariffs, import bans, and market interventions contribute to price distortions and volatility. Rural food inflation averaged 30.7 percent in FY 2024 (Pakistan Bureau of Statistics), eroding purchasing power among low-income households and undermining nutritional security, particularly for women and children.

Environmental consequences are equally severe. Protectionist incentives favor water-intensive monocropping, especially sugarcane and rice. The Pakistan Council of Research in Water Resources (PCRWR, 2023) warns that the country is approaching absolute water scarcity, a risk exacerbated by policy-driven crop choices. Sugarcane alone consumes nearly 40 percent of irrigation water while occupying only 4 percent of cropped area (WWF Pakistan), representing a profound misallocation of natural resources.

Finally, protectionism suppresses competitiveness and innovation. By insulating producers from global price signals, it weakens incentives for efficiency, quality upgrading, and diversification. The World Bank (2024) notes stagnating agricultural productivity and Pakistan's marginal presence in global agricultural exports. The policy focus on a narrow set of staples has come at the cost of developing high-value, export-oriented subsectors, limiting rural growth and resilience.

Toward a Smarter and More Inclusive Agricultural Policy Framework

The accumulated evidence increasingly suggests that Pakistan's traditional reliance on broad-based agricultural protectionism has reached a point of diminishing returns. While such measures once played a stabilizing role, they now impose high fiscal, environmental, and efficiency costs without delivering commensurate gains in rural welfare. A strategic policy reorientation is therefore essential, one that replaces distortionary protection with targeted, productivity-enhancing, and equity-focused interventions.

A central pillar of this transition is the shift from blanket subsidies toward smart, targeted support. Instead of generalized subsidies on fertilizer, electricity, and water which disproportionately benefit larger farmers, public resources should be redirected toward climate-smart technologies such as drip and sprinkler irrigation, laser land leveling, and drought- and heat-tolerant seed varieties. Coupling these investments with direct income support for smallholders, as outlined in the

Planning Commission's "Pakistan 2025" framework, would enhance resilience while preserving market signals.

Equally important is an export-led diversification strategy. Continued protection of a narrow set of staples has constrained Pakistan's agricultural growth potential. The Trade Development Authority of Pakistan (TDAP) identifies horticulture, livestock, and value-added agro-processing as sectors with strong export prospects. Realizing this potential requires addressing structural bottlenecks, particularly post-harvest losses, which exceed 35 percent for fruits and vegetables according to FAO estimates. Investment in cold-chain infrastructure, grading systems, and applied research is critical to improving competitiveness and farmer incomes.

Social protection must also be decoupled from commodity pricing. Expanding and digitizing the Benazir Income Support Program (BISP) offers a more efficient and equitable safety net than price supports that distort markets. Evidence from the BISP Annual Report 2023 shows meaningful poverty reduction at relatively low fiscal and market costs.

Finally, governance reform is non-negotiable. As emphasized by the IMF, technical policy adjustments will fail without improvements in transparency, accountability, and monitoring of subsidy

and procurement systems. Only by aligning incentives, strengthening institutions, and prioritizing inclusive growth can Pakistan's agricultural policy support sustainable rural development.

Conclusion

This analysis demonstrates that while agricultural protectionism has long been a central feature of Pakistan's rural policy framework, its contemporary effectiveness is increasingly limited. Historically, protective instruments such as tariffs, subsidies, Minimum Support Prices, and trade controls were introduced to stabilize farmer incomes and safeguard food security in a volatile economic environment. However, in today's context of fiscal stress, climate vulnerability, water scarcity, and global competition, these measures have produced uneven and often counterproductive outcomes. Rather than fostering inclusive rural development, protectionism has tended to reinforce structural inequalities, distort market incentives, and constrain productivity growth.

The evidence presented shows that the benefits of protectionist policies are disproportionately captured by larger landholders and intermediaries, while smallholders and agricultural laborers remain trapped in vulnerable livelihoods. At the same time, consumers face high food inflation, and environmental

pressures intensify due to policy-induced monocropping and inefficient resource use. Pakistan's stagnating agricultural exports and limited diversification further underscore the costs of inward-looking policies.

Moving forward, the challenge is not the complete withdrawal of state involvement, but its strategic redesign. A shift toward targeted support, export-led diversification, effective social protection, and stronger governance offers a more sustainable pathway for rural development. By aligning agricultural policy with efficiency, equity, and environmental stewardship, Pakistan can transform its rural economy from one dependent on protection to one driven by resilience, competitiveness, and inclusive growth.

References: IMF; World Bank; Government of Pakistan; Mordor Intelligence; BISP; Modaes; PCRWR; WWF Pakistan.

Please note that the views expressed in this article are of the author and do not necessarily reflect the views or policies of any organization.

The writer is affiliated with the Institute of Agricultural & Resource Economics, University of Agriculture, Faisalabad Pakistan and can be reached at gondalashir6@gmail.com

Pakistan's Climate Crisis: Urgent Challenges Ahead

Pakistan faces a severe climate crisis, experiencing devastating impacts like floods and heatwaves despite minimal greenhouse gas emissions. This article explores the systemic threats to food security.

Aliya Qaiser, Saba Javed1 & Ammara Azam2

12/18/2025

Climate change is no longer a distant or abstract threat; it has become a pervasive and lived reality, particularly for developing countries that possess limited adaptive capacity. Pakistan stands at the epicenter of this global crisis, experiencing climate impacts with disproportionate intensity relative to its contribution to global greenhouse gas emissions. The country has entered an era of acute climatic volatility marked by intensifying heatwaves, erratic and concentrated rainfall, accelerated glacial melt, prolonged droughts, and increasingly frequent extreme weather events. Together, these stressors are undermining food security, degrading ecosystems, threatening public health, and weakening economic stability, rendering climate adaptation a matter of national survival rather than long-term planning.

Empirical evidence underscores the severity of Pakistan's exposure. The Global Climate Risk Index 2021 ranked Pakistan as the eighth most affected country by extreme weather events between 2000 and 2019 (Eckstein et al., 2021), reflecting repeated losses from floods, storms, and heat extremes. This chronic vulnerability was dramatically exposed in 2022, when unprecedented monsoon rains inundated nearly one-third of the country. According to the World Bank's Post-Disaster Needs Assessment (2023), the floods caused damages exceeding USD 30 billion, affected approximately 33 million people, and resulted in nearly 1,700 fatalities. Beyond immediate destruction, the floods disrupted livelihoods, displaced communities, damaged agricultural land, and strained already fragile health and social protection systems.

These events are consistent with projections from the Intergovernmental Panel on Climate Change (IPCC) Sixth

Assessment Report (2023), which warns of increasing frequency and intensity of heavy precipitation and flooding across South Asia due to anthropogenic climate change. Pakistan's heightened vulnerability is further shaped by its geographic and socio-economic context. Home to over 7,200 glaciers in the Hindu Kush–Karakoram–Himalayan ranges, one of the largest glacial reserves outside the polar regions, the country is highly sensitive to rising temperatures and glacial lake outburst floods. When combined with high population density, heavy dependence on climate-sensitive agriculture, infrastructure deficits, and limited institutional capacity, these factors create a compounding risk environment that amplifies climate shocks and constrains recovery.

Anthropogenic Drivers and the Paradox of Climate Responsibility in Pakistan

Despite contributing only a marginal share to global greenhouse gas emissions, approximately 0.9 percent of the global total, Pakistan faces a profound paradox of climate responsibility and vulnerability (Climate Watch, 2024). While global inequities in emissions place the primary burden of climate change on industrialized economies, Pakistan's domestic development pathways have intensified local environmental stress and amplified climate risks. These anthropogenic drivers interact with global warming to deepen the country's exposure to extreme weather and ecological degradation.

Deforestation and land-use change represent a critical pressure point. Large-scale clearing of forests for agriculture, fuelwood, and urban expansion has steadily reduced Pakistan's forest cover, weakening natural carbon sinks and watershed protection. According to the Food and Agriculture Organization (FAO,

2020), continued forest loss has heightened soil erosion, reduced biodiversity, and increased the severity of floods by limiting the landscape's capacity to absorb and regulate water flows. These impacts are particularly pronounced in upstream catchments, where deforestation accelerates downstream flooding.

Rapid and largely unplanned urbanization further compounds climate vulnerability. Expanding cities, often without adequate zoning or drainage infrastructure, have created dense heat islands and impermeable surfaces that exacerbate heat stress and urban flooding. Industrial expansion and transport congestion contribute to worsening air, water, and land pollution, undermining public health and environmental quality.

Agriculture, while central to livelihoods and food security, is another major driver of environmental stress. The sector employs over 37 percent of the labor force but remains dominated by water-intensive crops, inefficient flood irrigation, and excessive fertilizer use. These practices degrade soil health, deplete groundwater reserves, and increase methane and nitrous oxide emissions, particularly from rice cultivation and livestock systems.

Finally, energy inefficiency and reliance on fossil fuels sustain local pollution and economic vulnerability. While Pakistan's overall carbon footprint remains low by global standards, outdated energy systems and chronic power shortages hinder sustainable development. Collectively, these anthropogenic pressures highlight that although Pakistan is not a major global emitter, domestic policy and planning choices significantly shape its climate resilience and environmental trajectory.

Escalating Natural Hazards and Climate Feedback in Pakistan

Human-induced climate change is no longer acting in isolation; it is activating powerful natural feedback loops that are intensifying environmental hazards across Pakistan. Rising temperatures, altered precipitation patterns, and ecosystem stress are reinforcing one another, creating compounding risks that threaten water security, livelihoods, and long-term ecological stability.

One of the most critical manifestations is the rapid destabilization of the cryosphere in northern Pakistan. Accelerated warming in the Hindu Kush–Karakoram–Himalayan region has sharply increased glacial melt rates, undermining the long-term reliability of the Indus River System, which sustains agriculture, hydropower, and urban water supply nationwide. In the short term, this accelerated melt has led to the formation of thousands of glacial lakes, substantially elevating the risk of Glacial Lake Outburst Floods (GLOFs). According to UNDP estimates (2023), more than 3,000 glacial lakes now exist in Gilgit-Baltistan and Khyber Pakhtunkhwa, with at least 33 classified as highly dangerous, posing imminent threats to downstream communities and infrastructure.

Climate change is also destabilizing Pakistan's monsoon system and intensifying heat extremes. Shifts in ocean–atmosphere dynamics, including the Indian Ocean Dipole, have increased monsoon unpredictability, resulting in alternating cycles of catastrophic flooding and prolonged drought. At the same time, heatwaves are becoming more frequent and severe. Record-breaking temperatures exceeding 50°C in cities such as Jacobabad and Sibi in recent years reflect a broader warming trend that aligns closely with national climate projections (PMD, 2024), with serious implications for human health, labor productivity, and crop viability.

These climatic stresses are compounded by widespread ecosystem degradation. The decline of mangrove forests in the Indus Delta has weakened natural defenses against cyclones and storm surges, while the degradation of wetlands and loss of

biodiversity have eroded essential ecosystem services. Together, this feedback demonstrates how climate change is amplifying natural hazards and diminishing Pakistan's capacity to absorb and recover from environmental shocks.

Socio-Economic Consequences and the Challenge of Climate Governance in Pakistan

The socio-economic consequences of climate change in Pakistan extend from rural farms to rapidly expanding cities, affecting livelihoods, public services, and long-term development prospects. Agriculture, the backbone of rural employment and food security, is increasingly vulnerable to heat stress, erratic rainfall, and water scarcity. Staple crops such as wheat and cotton are already experiencing yield instability, undermining farmer incomes and increasing dependence on food imports. These pressures ripple through the broader economy. The Asian Development Bank (2023) estimates that climate-related damages could reduce Pakistan's annual GDP by up to 9 percent by 2030, a loss that would severely constrain poverty reduction and fiscal stability.

Water stress has emerged as a central transmission channel of climate risk. Reduced river flows, declining groundwater tables, and unpredictable hydropower generation threaten both energy security and industrial productivity. During extreme heat events, electricity demand for cooling rises sharply, straining an already fragile power system and increasing the likelihood of outages. Public health impacts are similarly severe. Heatwaves have led to rising cases of heatstroke and cardiovascular stress; while flooding and poor sanitation have fueled outbreaks of water-borne diseases. Air pollution, exacerbated by higher temperatures and urban congestion, further compounds health costs, particularly for children and the elderly.

Climate stress is also reshaping population dynamics. As rural livelihoods become less viable, climate-induced migration toward urban centers is accelerating. Cities such as Karachi, Lahore, and Faisalabad face

mounting pressure on housing, water supply, transport, and employment, deepening informal settlements and social inequality. This rural–urban spillover highlights that climate change is not solely an environmental issue but a driver of structural socio-economic transformation.

In response, Pakistan has articulated an ambitious climate policy framework. Instruments such as the National Climate Change Policy (2021), the National Adaptation Plan (2023), the Ten Billion Tree Tsunami Program, and the Living Indus Initiative collectively signal strong political intent. However, implementation gaps remain substantial. Limited and uncertain financing, weak inter-institutional coordination, and inadequate monitoring and evaluation have constrained impact. While donor-supported initiatives, including Green Climate Fund projects, represent meaningful progress, scaling these efforts to match the magnitude of risk remains Pakistan's most pressing climate governance challenge.

Conclusion

Pakistan's climate crisis illustrates a stark convergence of global inequity, domestic vulnerability, and urgent development challenges. Despite its negligible contribution to global greenhouse gas emissions, the country is experiencing some of the most severe and disruptive impacts of climate change, ranging from catastrophic floods and intensifying heatwaves to accelerating glacial melt and chronic water stress. These pressures are no longer episodic shocks; they represent a systemic threat to food security, public health, economic stability, and social cohesion. The evidence presented in this article demonstrates that climate change in Pakistan is deeply intertwined with structural factors, including dependence on climate-sensitive agriculture, unplanned urbanization, ecosystem degradation, and institutional constraints.

While Pakistan has articulated an ambitious climate policy framework, the gap between intent and implementation remains substantial. Fragmented governance, limited fiscal space, and weak

coordination continue to undermine the effectiveness of adaptation and mitigation efforts. At the same time, escalating climate risks are reshaping livelihoods, accelerating rural–urban migration, and amplifying inequality, underscoring that climate change is not only an environmental concern but a central development challenge.

Moving forward, resilience must become the organizing principle of national planning. This requires integrating climate adaptation into economic policy,

strengthening institutions, investing in nature-based solutions, and prioritizing vulnerable communities. Equally important is sustained international climate finance and technology transfer, reflecting principles of climate justice. Without decisive and coordinated action, climate change will continue to erode development gains; with it, Pakistan can still chart a more resilient and equitable future.

References: ADB; Eckstein et al; FAO; IPCC; MoCC; PMD; UNDP; World Bank; WRI.

Please note that the views expressed in this article are of the author and do not necessarily reflect the views or policies of any organization.

The writers are affiliated with the 1Institute of Agricultural & Resource Economics, & Center for 2Agricultural Policy, Law & Governance, University of Agriculture, Faisalabad Pakistan and can be reached at saba.javed@uaf.edu.pk

Ibrahim's Death: A Warning on Pakistan's Infrastructure Failure

The tragic death of Ibrahim must serve as a defining warning rather than another fleeting headline in Pakistan's history of infrastructure failure. It exposes a development model that prioritizes visibility over viability, construction over maintenance, and political symbolism over human safety.

Sadia Aslam

12/22/2025

The tragic death of young Ibrahim in Karachi, who fell into an uncovered manhole, stands as a stark and painful symbol of systemic governance failure in Pakistan. His mother's unimaginable grief exposes a brutal and recurring reality: the chronic neglect of basic public infrastructure is not merely an administrative lapse, but a matter of life and death. Such incidents shatter public trust and highlight how state failure manifests most cruelly against the most vulnerable. While this tragedy occurred in a major metropolitan city, it should not be dismissed as an isolated urban anomaly. Rather, it reflects a broader national crisis in development planning, institutional accountability, and infrastructure maintenance, one that is equally, if not more, pronounced in rural Pakistan, where oversight is weaker and risks often go undocumented.

The question of responsibility is unambiguous. Although multiple actors share blame, including local contractors, utility agencies, and weak civic enforcement, the primary responsibility rests with the Sindh government and the Karachi Metropolitan Corporation, which are legally mandated to ensure public safety in shared spaces. Allowing an uncovered manhole to exist in a public thoroughfare represents a profound failure of governance and duty of care. Technically, such hazards constitute a direct violation of the BS EN 124 standard, the internationally recognized benchmark for manhole and gully cover design, installation, and load-bearing safety. This standard requires secure placement, appropriate positioning within road alignments, and rigorous material and load testing to withstand vehicular and pedestrian traffic (British Standards Institution, 2013).

In Pakistan, however, non-compliance with engineering and safety standards has become normalized. According to the Pakistan Engineering Council (2022), more than 60 percent of urban drainage and utility covers nationwide fail to meet any certified safety standard. This widespread disregard for technical norms transforms roads and streets into latent death traps. Ibrahim's death, therefore, is not an accident; it is the predictable outcome of institutional negligence, weak regulation, and the absence of accountability in public infrastructure governance.

A Mirror to Rural Development: Beyond Urban Catastrophes

This urban tragedy serves as a stark mirror reflecting the precarious state of rural development in Pakistan. Just as young Ibrahim was failed by a missing manhole cover in Karachi, millions of rural citizens are exposed daily to risks created by absent, incomplete, or substandard public infrastructure. The prioritization of commercial plazas, real estate projects, and short-term revenue generation over public safety in urban centers finds a clear parallel in the chronic neglect of rural roads, sanitation systems, drainage networks, and water supply schemes. In both contexts, infrastructure is treated as a one-time political achievement rather than a long-term public responsibility requiring sustained investment and oversight.

The development gap in rural Pakistan is particularly alarming. According to the Pakistan Bureau of Statistics (2023), only 48 percent of the rural population has access to safe sanitation facilities, exposing communities to preventable health hazards, waterborne diseases, and environmental degradation. Rural road

networks, where they exist at all, are frequently poorly designed, inadequately maintained, and unsafe. These conditions contribute to high accident rates, restrict market access for farmers, and critically delay access to emergency healthcare, often turning treatable injuries into fatalities. Much like uncovered manholes in cities, broken culverts, eroded embankments, and unsafe bridges in rural areas remain invisible until tragedy strikes.

The administrative apathy evident in Karachi is mirrored in the sluggish and uneven performance of rural welfare and infrastructure programs. Flagship initiatives such as the Benazir Income Support Program and rural water supply schemes continue to suffer from inefficiency, weak monitoring, and governance failures. The Asian Development Bank's Pakistan Rural Development Report (2022) highlights that spending on operation and maintenance remains below 20 percent of actual requirements, resulting in rapid infrastructure decay soon after project completion. This chronic neglect of O&M—whether failing to replace a manhole cover or maintain a rural water scheme—reveals a deeper governance crisis, where preventable lapses repeatedly produce avoidable human costs.

A Unified Call for Accountable and Standards-Driven Development

Excuses, excuses, and reactive apologies are profoundly insufficient. They will not bring back Ibrahim, nor will they repair broken roads, cover lethal manholes, provide safe drinking water, or build resilient schools in Pakistan's neglected villages. The tragedy forces an uncomfortable but necessary question:

how many more lives, urban and rural alike, must be lost before accountable governance replaces complacency and neglect? Without systemic reform, such incidents will continue to be mourned briefly and forgotten quickly, perpetuating a cycle of avoidable human suffering.

This moment must serve as a national inflection point for standard-driven and people-centered development. Pakistan urgently requires mandatory, transparent safety audits of all public infrastructure, regardless of whether it is in a metropolitan center or a remote rural district. These audits must enforce compliance with PSQCA-adopted international standards and assign clear institutional responsibility, ensuring that negligence carries legal and administrative consequences rather than being absorbed into bureaucratic silence. Infrastructure should no longer be inaugurated for political optics and abandoned thereafter.

Equally critical is correcting the entrenched imbalance between urban and rural investment. While cities receive disproportionate attention and funding, rural Pakistan, home to over 60 percent of the population, continues to face severe deficits in sanitation, road safety, drainage, and public utilities. Redirecting development budgets toward these foundational needs is not a matter of charity; it is an economic and social necessity for inclusive growth, food security, and national cohesion.

Finally, accountability cannot be imposed solely from the top. Community-centric governance must be institutionalized by empowering local bodies, village councils, and neighborhood committees to monitor infrastructure projects, report hazards, and demand timely maintenance. When citizens are enabled to participate in oversight, development shifts from a symbolic exercise to a shared public contract. Only through such integrated accountability can Pakistan prevent future tragedies and honor lives lost through

meaningful reform rather than hollow remorse.

In the name of Ibrahim, and all unnamed victims of neglect:

In the name of Ibrahim, and of all the unnamed victims of neglect, this moment demands more than mourning. Life does move on, but when institutions fail in their most basic obligation, to protect human life, it moves forward burdened with grief, anger, and collective shame. Each preventable death exposes not fate, but failure: failure to maintain, to regulate, to inspect, and ultimately to care. When such failures become routine, they erode public trust and normalize injustice, especially for the poor and voiceless.

As a nation, Pakistan must rise above symbolic statements and episodic outrage. True unity begins with shared accountability, where responsibility is neither deflected nor diluted across institutions. Every child's right to safety must be treated as sacred, whether that child walks on a crowded street in Karachi or along an unpaved path in a remote village. Safety cannot remain a privilege determined by geography, income, or political visibility.

Let this sorrow be transformed into resolve. Resolve to demand functioning systems, enforce standards, and prioritize human life over expediency and profit. Honoring Ibrahim does not require monuments or slogans; it requires unwavering action, consistent maintenance, transparent governance, and community vigilance. Only when protection of the vulnerable becomes the measure of governance can we claim moral progress. May the lives lost compel us to build institutions that do not merely exist, but serve, protect, and uphold the dignity of every citizen.

Conclusion

The death of Ibrahim must stand as a defining warning rather than another fleeting headline in Pakistan's long history of preventable tragedies. It

exposes a development model that prioritizes visibility over viability, construction over maintenance, and political symbolism over human safety. From uncovered manholes in Karachi to crumbling roads, unsafe bridges, and failing water systems in rural districts, the pattern is consistent: infrastructure is built without accountability and abandoned without consequence. This is not a technical failure alone; it is a governance failure rooted in weak enforcement, fragmented responsibility, and indifference to human cost.

If Pakistan is to break this cycle, reform must be systemic, not reactive. Safety standards must be treated as non-negotiable, operation and maintenance must be institutionalized as a core budgetary priority, and negligence must carry real legal and administrative penalties. Equally important is bridging the artificial divide between urban and rural development. Human life carries equal value whether lost in a megacity or a remote village, and public investment must reflect this moral and economic truth.

Ultimately, honoring Ibrahim requires more than grief, it requires courage to reform institutions, empower communities, and demand integrity in public service. Only when governance is measured by the protection it affords the most vulnerable can Pakistan move toward genuine, inclusive development and restore public trust in the state.

References: ADB; British Standards Institution; Pakistan Bureau of Statistics; Pakistan Engineering Council; World Bank.

Please note that the views expressed in this article are of the author and do not necessarily reflect the views or policies of any organization.

The writers are affiliated with the Institute of Agricultural Extension, Education & Rural Development, University of Agriculture, Faisalabad Pakistan and can be reached at sadia.aslam@uaf.edu.pk

RURAL INNOVATION

Strategic Harvest-Time Marketing in Agriculture

Discover how strategic harvest-time marketing transforms agriculture into a competitive enterprise. Learn about profitability through timing, quality differentiation, and innovative promotion. Explore how farmers can reduce distress selling and access premium markets with smart marketing strategies.

Mithat Direk

12/5/2025

The culmination of the agricultural cycle, the harvest, is not merely a point of completion but a decisive financial moment for farmers. At this stage, the market becomes highly sensitive to supply fluctuations, and prices often decline due to bulk arrivals of produce. This leads to uncertainty, as farmers may not receive the price levels projected at the time of sowing. However, strategic and proactive marketing planning can meaningfully transform this risk into opportunity, often allowing farmers to secure prices higher than prevailing market averages. Such marketing success is no longer accidental; it is the outcome of informed decisions, timing, and the adoption of market-smart practices.

Although product quality remains the first determinant of marketability, post-harvest strategies now play an equally critical role in determining income levels. One important decision is whether to sell immediately after harvest or to store produce for later sale. In regions with access to cold storage or modern warehousing systems, often supported by warehouse receipt financing, farmers can delay sales, reduce distress selling, and capitalize on seasonal price increases. Studies from grain markets in South Asia highlight that delayed selling can increase prices received by farmers by 8–20%, depending on commodity type and timing.

Further, direct marketing channels such as contract farming arrangements, farmer markets, cooperative selling systems, and digital platforms allow farmers to bypass multiple intermediaries, thereby capturing a larger share of consumer price. Participation in farmer producer organizations (FPOs) or collective bargaining groups enhances negotiation capacity, reduces transportation costs

through shared logistics, and enables bulk selling that attracts institutional buyers.

To maximize outcomes, farmers increasingly rely on real-time market intelligence, price forecasts, demand trends, quality grading requirements, and export prospects. In an era of integrated markets, strategic harvest marketing is no longer optional; it has become a critical pillar of farm competitiveness, income stability, and long-term sustainability.

Consumer-Centric Production and Quality Differentiation as Drivers of Market Advantage

Achieving successful farm marketing begins long before the harvest starts with strategic decisions made at the production stage. Increasingly, agriculture is shifting from a supply-driven model to a consumer-centric system in which farmers must align their production choices with market expectations. The traditional approach of growing familiar, low-yield crop varieties no longer ensures profitability in competitive markets. Instead, farmers who adopt improved seed varieties, follow Good Agricultural Practices (GAP), and integrate certification standards position themselves to command significantly higher prices.

Evidence reinforces this shift. A 2023 FAO assessment revealed that commodities meet traceable quality and safety standards, especially in fresh produce segments, often secure price premiums ranging from 10% to as high as 30%. This advantage is particularly visible for fruits, vegetables, and premium grains, where consumers increasingly value attributes such as pesticide-free cultivation, nutrient density, and visual uniformity. Modern retail chains, export markets, and institutional buyers actively screen suppliers based on standardized grading

and compliance assurances rather than simply on volume.

Quality begins at the production stage through choices such as adopting disease-resistant seed varieties, using certified inputs, following integrated pest management practices, and ensuring compliance with food safety standards. Farmers incorporating environmentally friendly practices, residue-free farming, or organic methods find access to niche markets and specialized buyers who offer premium rates. Additionally, certification schemes, Global G.A.P., organic certification, HACCP, or local farm assurance programs, strengthen market credibility and expand selling opportunities.

Consumer-centric production also involves understanding consumption patterns, dietary trends, and emerging health consciousness. Increasing demand for low-sugar fruits, high-protein grains, and sustainably grown crops reflect changing preferences. By aligning production decisions with such signals, farmers move beyond commodity trading into market-oriented value creation.

Ultimately, quality differentiation transforms agricultural output into branded, value-rich produce, enabling farmers to move up the value chain. In a competitive marketplace, those who invest in quality not only secure better prices but build long-term market relationships that ensure stable income and sustained profitability.

Value Addition through Packaging and Branding

Packaging plays a pivotal role in transforming an ordinary agricultural commodity into a high-value branded product by enhancing its market appeal,

safety, and economic worth. When products are sold in standardized, attractive, and well-labeled packaging rather than in loose or bulk form, they command higher consumer trust and greater price premiums. Proper packaging protects produce from physical damage, contamination, and spoilage during transportation and storage, thereby significantly reducing post-harvest losses, one of the major challenges in agricultural value chains, particularly in developing countries.

Evidence from Kenya demonstrates the powerful income effects of this transformation. According to a study by the Alliance for a Green Revolution in Africa (AGRA, 2022), smallholder farmers who adopted standardized packaging for leafy vegetables increased their incomes by up to 25 percent, largely due to reduced product wastage and improved retail pricing. Similar outcomes have been observed in horticultural markets across Asia and Africa, where packaging innovations have enabled farmers to access urban supermarkets and premium export markets.

Beyond protection and profitability, packaging also functions as a strategic branding tool. Labels communicate essential information such as product origin, quality certification, nutritional value, organic status, and environmental sustainability. In today's competitive food markets, consumers increasingly demand transparency, traceability, and ethical production practices. Through branding, farmers and agribusinesses can convert these attributes into market advantages, differentiating their products from generic alternatives.

Moreover, strong branding encourages consumer loyalty and repeat purchases, creating stable demand and reducing farmers' dependence on volatile spot markets. It also enables producers to build identities around regional specialties, indigenous crops, and climate-resilient farming systems. In the long run, investments in packaging and branding strengthen the entire agricultural value chain by fostering entrepreneurship, improving market efficiency, and

promoting inclusive rural economic growth.

Thus, value addition through packaging and branding is not merely a marketing strategy; it is a development intervention that enhances farmer incomes, reduces food losses, improves food safety, and integrates smallholders into modern, high-value agricultural markets.

Innovative Sales and Promotion Techniques in Agricultural Marketing

Innovative sales and promotion techniques, widely used in retail and e-commerce, can be successfully adapted to agricultural marketing to enhance farmers' incomes, improve market access, and strengthen customer relationships. One effective strategy is bundling, which involves combining complementary products such as tomatoes with basil, potatoes with onions, or wheat flour with pulses. Bundling increases convenience for consumers, encourages higher purchase volumes, and helps farmers move more inventory in a single transaction. This approach mirrors popular "buy-one-get-one" and mixed-box schemes used by online retailers, which are designed to increase basket size while offering perceived value to buyers.

Another impactful strategy is the use of loyalty promotions, where repeat customers are rewarded with discounts, free produce, or bonus items after a certain number of purchases. These incentives build long-term customer relationships and help stabilize demand in markets that are otherwise highly volatile. With the expansion of digital tools such as mobile payment systems, QR codes, and farm-to-consumer apps, tracking customer purchases and managing loyalty schemes has become easier and more affordable, even for small farmers and rural vendors.

Although many farmers hesitate to adopt such techniques due to perceived additional costs, these expenditures should be viewed as strategic investments rather than expenses. Avoiding marketing initiatives often forces farmers to rely on intermediaries, who capture a substantial share of the final consumer price. The World Bank (2021) reports that in some

developing-country value chains, intermediaries account for 40–60 percent of the retail price, leaving producers with a disproportionately small share of the value they create. By engaging directly in promotion and sales, farmers can reclaim this lost value, improve price transparency, and strengthen their negotiating position.

Ultimately, innovative sales and promotion techniques empower farmers to shift from being price-takers to active market participants, fostering entrepreneurship, boosting profitability, and enhancing the overall efficiency and resilience of agricultural value chains.

Digital Marketplaces and Collective Action as Catalysts for Agricultural Transformation

Digital technologies and collective action are rapidly reshaping agricultural marketing systems, particularly for smallholder farmers who have traditionally struggled with limited market access, information asymmetries, and weak bargaining power. Digital platforms now allow farmers to obtain real-time price information, connect directly with buyers, and receive payments through secure digital channels. Mobile-based applications reduce dependence on middlemen, enhance price transparency, and enable farmers to make informed selling decisions. A prominent example is India's government-backed National Agricultural Market (e-NAM), which links over 1,000 wholesale markets across the country. By integrating digital auctions and price discovery, e-NAM has helped reduce regional price disparities and strengthened transparency, although adoption challenges related to digital literacy and infrastructure persist (NITI Aayog, 2022). Similarly, agri-e-commerce platforms allow farmers to sell directly to consumers, retailers, and processors, shortening supply chains and significantly increasing producers' profit margins.

While digital tools expand individual market access, their true potential is magnified when combined with collective organization. Strong farmer cooperatives and producer organizations enable smallholders to achieve economies of scale

in input procurement, storage, transportation, branding, and market negotiation. The success of European agriculture is closely linked to this model. For instance, over 90 percent of Dutch dairy farmers are members of the Friesland Campina cooperative, which manages processing and marketing and ensures stable and predictable incomes (European Commission, 2023). In contrast, cooperatives in many developing regions remain weak due to governance failures, lack of managerial expertise, and limited access to capital. Strengthening these institutions requires professional leadership, transparent management systems, digital integration, and firm adherence to democratic principles. Evidence from IFAD (2022) shows that farmers who are members of well-managed producer organizations can achieve 20–50 percent higher net incomes than non-members. Together, digital marketplaces and robust collective action offer a powerful pathway toward inclusive growth, improved market efficiency, and sustainable rural transformation.

Conclusion

Strategic harvest-time marketing has emerged as a decisive factor in transforming agriculture from a subsistence activity into a competitive, market-oriented enterprise. As this article demonstrates, profitability today depends not only on production volumes but on timing of sales, quality differentiation, value addition, innovative promotion, and the intelligent use of digital and collective marketing systems. Farmers who integrate storage, real-time market intelligence, and direct marketing channels can significantly reduce distress selling and capture higher price premiums. At the same time, consumer-centric production, supported by quality standards and certification, enables producers to move into premium and export-oriented markets.

Value addition through packaging and branding further strengthens market positioning by reducing post-harvest losses, building consumer trust, and fostering brand loyalty. Innovative sales techniques such as bundling and loyalty programs empower farmers to engage directly with consumers and regain value otherwise absorbed by intermediaries. Equally important is the role of digital

marketplaces and producer organizations, which together enhance price transparency, bargaining power, and income stability. Evidence consistently shows that farmers linked to strong cooperatives and digital platforms achieve substantially higher net returns.

In a rapidly evolving global food economy, successful farming increasingly depends on market intelligence, organizational strength, and innovation-led marketing strategies. Strategic harvest-time marketing is therefore no longer optional; it is a core pillar of farm competitiveness, income resilience, and sustainable rural transformation.

References: AGRA; European Commission; FAO; IFAD; NITI Aayog; World Bank.

Please note that the views expressed in this article are of the author and do not necessarily reflect the views or policies of any organization.

The writer is affiliated with the Department of Agricultural Economics, Selcuk University, Konya-Türkiye and can be reached at mdirek@selcuk.edu.tr

Advancing Agricultural Forecasting with Prediction Intervals

Transitioning from standalone point forecasts to structured prediction intervals enhances agricultural forecasting. This approach accounts for multidimensional uncertainties in agricultural systems, providing stakeholders with a clearer understanding of expected outcomes and their possible ranges.

Zainab

12/8/2025

For several decades, agricultural decision-making frameworks have been predominantly shaped by deterministic point forecasts. These forecasts typically deliver a single numerical estimate, for example, projecting that wheat productivity will be 3.2 tons per hectare in each season. While such figures offer simplicity, they also present a narrow and often misleading perspective. Agriculture is fundamentally uncertain, influenced by biophysical variability, weather fluctuations, disease outbreaks, market shocks, and errors in model calibration. When decision-makers rely solely on a single predicted value, they tend to assume unrealistically stable conditions, overlooking the range of possible outcomes.

Recent scientific work highlights the limitations of these traditional forecasting approaches. A 2024 meta-analysis published in Agricultural Systems emphasized how deeply embedded this deficiency is. According to the study, more than 85 percent of crop simulation models publish only point-based predictions, whereas fewer than 30 percent provide any formal quantification of uncertainty, such as prediction intervals or probability distributions (Smith et al., 2024). As a result, farmers, policy planners, insurance providers, and supply chain actors operate under what analysts often describe as “blind risk exposure.” They are informed about expected outcomes but lack systematic knowledge of the likelihood of adverse deviations from those expectations.

The consequences of relying solely on single-point projections can be severe. Farmers may overcommit to costly fertilizers, irrigation, or mechanization when projected yields are unrealistically high. Conversely, an underpredicted yield

may lead to procurement shortfalls, weak inventory planning, and financial losses for traders and processors. In volatile environments, such risks undermine farm resilience and destabilize markets.

The shift toward probabilistic forecasting, particularly through the structured communication of prediction intervals (PIs), is therefore both technically and economically significant. Probabilistic information allows actors to quantify risk, compare alternative scenarios, optimize resource allocation, and design adaptive response strategies. Most importantly, it establishes a more transparent scientific foundation for agricultural decision-making, one that acknowledges uncertainty instead of ignoring it.

The Anatomy of Uncertainty in Agricultural Data

The construction of prediction intervals in agricultural analytics entails far more than simple statistical computation; it demands an explicit acknowledgement of the multiple layers of uncertainty embedded in agricultural systems. When a model is applied to predict a future, unseen observations such as next season's yield or expected input responsiveness it must consider uncertainty arising not only from the dataset but also from the structure and behavior of the predictive model itself. Model uncertainty represents the first and most visible layer. Agricultural systems are dynamic, requiring models to approximate biological responses, climate interactions, and temporal trends. When the model is mis-specified or built on assumptions that later become invalid, its predictions become systematically biased. For example, a model calibrated on historical rainfall patterns may underestimate yield volatility under a new climate regime or emerging pest infestation, ultimately

producing prediction intervals that are too narrow.

The second component, parameter uncertainty, reflects the fact that model coefficients are estimates formed from noisy samples rather than known constants. Even if the model structure is theoretically correct, the estimated effect of fertilizer, irrigation timing, or planting density is derived from data subject to measurement error, sampling bias, and omitted variables. Advanced computational tools such as posterior sampling, Monte Carlo estimation, and bootstrapping are essential for quantifying how unstable those parameter estimates are and how much their imprecision influences model outputs.

Finally, irreducible noise forms the baseline randomness that cannot be eliminated through better measurement or modeling. Agriculture routinely experiences variability from micro-environmental conditions, spatial soil differences, biological responses, and idiosyncratic management decisions. As empirical evidence shows, especially under conditions of stress such as drought, heat episodes, or nutrient deficiency, the spread of possible outcomes widens considerably, demanding a broader predictive interval (Basso et al., 2023). Therefore, credible prediction intervals must scale appropriately when uncertainty increases, ensuring that decision-makers receive realistic bounds rather than false precision.

Methodologies for Prediction Interval Estimation

Prediction intervals have evolved considerably as agricultural analytics have shifted from simple parametric modelling to advanced machine learning architectures. Classical statistical methods

represent the earliest and most structured approach to PI construction. In linear and generalized linear modelling frameworks, PIs are derived analytically from estimated residual variance and model parameters. However, these methods depend heavily on restrictive assumptions such as linear relationships, normally distributed errors, and constant variance across observations. Such assumptions are rarely satisfied in agricultural datasets, which are often influenced by nonlinear biophysical processes, clustered field observations, and asymmetric shocks, thereby limiting practical reliability.

Bayesian methodologies provide a fundamentally different lens by treating parameters, predictions, and latent variables as distributions rather than fixed values. Through posterior sampling, a complete predictive distribution is generated. PIs, referred to as credible intervals, are extracted directly from this distribution. Unlike classical intervals, Bayesian credible intervals permit intuitively meaningful statements; for example, an agricultural planner can express that with 90 percent certainty a given hectare of wheat will yield between defined bounds. This feature significantly improves interpretability when communication is directed toward nontechnical stakeholders.

Machine learning and ensemble-based approaches offer heightened predictive accuracy but require additional mechanisms to quantify uncertainty. Emerging tools such as Quantile Regression Forests explicitly estimate conditional quantiles rather than central tendencies, allowing intervals to expand in conditions of high volatility. Empirical evidence from Brazilian sugarcane demonstrates gains in nominal coverage and decision reliability when these methods are used. Meanwhile, deep learning ensembles and stochastic regularization approaches simulate sampling variability by executing repeated model passes, thereby generating empirical distributions of predictions.

Finally, conformal prediction presents a distribution-free methodology gaining rapid adoption. It operates independently

of model structure by calibrating prediction residuals on a validation dataset, yielding intervals with guaranteed coverage probabilities under mild conditions. Because it can be applied post-hoc to any model, conformal prediction serves as a highly adaptable uncertainty quantification framework for modern agricultural prediction systems.

Evaluating Prediction Intervals: Beyond Generation

Producing a prediction interval is only the first step in uncertainty-aware modelling; its validity must be verified on independent data to ensure that the interval serves its intended decision support function. Evaluation begins with assessing coverage probability, which reflects whether the interval captures observed outcomes at the expected frequency. For instance, when a model claims 95 percent coverage, the true yield should fall inside the predicted bounds in roughly 95 percent of previously unseen observations. Persistent deviations from this benchmark indicate structural flaws. Under-coverage is particularly problematic, as it implies unwarranted confidence and exposes farmers and planners to substantial downside risk. Alternatively, intervals that routinely exceed their nominal coverage become too conservative, thereby losing operational value.

Interval width forms the second essential dimension of evaluation. In agricultural contexts, narrow intervals are preferred when they still maintain adequate coverage, because they allow more precise planning of input demand, logistics scheduling, and crop insurance pricing. A method that achieves correct coverage but generates excessively wide intervals effectively communicates uncertainty but provides minimal actionable insight.

Together, these two attributes create what is commonly referred to as the coverage-width trade-off. Narrow intervals tend to reduce coverage, while intervals widened arbitrarily secure high coverage at the expense of meaningful guidance. A balanced assessment therefore requires integrated scoring approaches. The Interval Score, for example,

simultaneously rewards accurate containment of observed values and penalizes unnecessary width, creating a unified performance benchmark. Through such metrics, researchers and practitioners can compare uncertainty estimation strategies rigorously and select methodologies offering both reliable protection against error and strong informational value for real-world agricultural decision-making.

Practical Utility and Decision-Centric Evaluation

Prediction intervals acquire real value only when they meaningfully support economic, operational, or risk-mitigation decisions. Statistical accuracy alone is insufficient; the interval must be interpretable within the constraints and objectives of specific stakeholders. For farmers, an early-season PI on expected yield serves as a probabilistic window into revenue prospects. By estimating the likelihood that yields may fall below an indemnity threshold, farmers can make informed decisions on crop insurance purchase levels, timing of selling forward contracts, or altering fertilizer allocations before irreversible costs are incurred. This transforms uncertainty from abstract statistics into a quantified financial exposure.

Similarly, agribusinesses and exporters rely on prediction intervals at national or regional scales. When national-level production forecasts are accompanied by narrow and empirically reliable intervals, exporters can confidently engage in forward selling, minimize the need for high buffer stocks, and negotiate transport contracts with more accurate load estimates. This materially reduces penalties arising from under-delivery or excess storage requirements.

Evidence from applied research reinforces these operational benefits. A recent IFPRI investigation (2024) showed that replacing typical point forecasts with uncertainty-calibrated 80 percent intervals for harvest volumes resulted in up to an 18 percent reduction in post-harvest supply chain losses across several East African corridors. These savings emerged because

logistics providers could plan transport capacity, storage allocations, and cross-border shipments with realistic lower-bound expectations.

Thus, evaluation of prediction intervals must extend beyond statistical benchmarking and encompass their decision-centric value. The most effective intervals are those that enable better risk-adjusted planning, reduce transaction uncertainty, and ultimately enhance profitability or resilience across the agricultural value chain.

Conclusion

Transitioning from standalone point forecasts toward structured prediction intervals represents one of the most meaningful methodological advances in agricultural forecasting. Agricultural systems inherently exhibit multidimensional uncertainties stemming from environmental variability, biological interactions, sampling limitations, and model misspecification. Point estimates, although convenient, ignore this

uncertainty and consequently expose stakeholders to decisions based on incomplete information. Prediction intervals address this structural deficiency by explicitly communicating both expected outcomes and the range within which these outcomes may realistically fall.

The literature reviewed demonstrates that credible prediction intervals require careful statistical construction, robust evaluation, and contextual interpretation. Techniques spanning classical parametric models to Bayesian inference, ensemble learning, and conformal prediction illustrate that multiple avenues exist for uncertainty quantification, depending on the nature of data and modelling objective. However, statistical rigor alone does not guarantee relevance. Evaluating intervals in terms of both empirical coverage and interval width ensures that forecasts are not only accurate but also meaningfully precise.

Ultimately, the value of prediction intervals lies in their decision usefulness. Farmers, processors, insurers, and exporters can utilize probabilistic forecasts

to optimize input allocation, price strategies, risk financing, and supply chain coordination. Evidence from recent applied studies confirms measurable economic gains when uncertainty is explicitly incorporated. Therefore, embedding prediction intervals within forecasting systems is not simply a statistical enhancement; it is an essential shift toward resilient and informed agricultural decision-making.

References: Basso et al; Gneiting & Raftery; IFPRI; Silva & Ribeiro; Smith et al.

Please note that the views expressed in this article are of the author and do not necessarily reflect the views or policies of any organization.

The writer is affiliated with the Department of Statistics, Faculty of Agricultural Social Sciences, Sindh Agriculture University, Tandojam, Pakistan and can be reached at zainabmohsin387@gmail.com

Innovative Solutions for Banana Cultivation Challenges

Explore the innovative integrated furrow plantation and alternating irrigation system addressing the challenges of banana cultivation in Sindh, including freshwater scarcity, salinity management, climate variability, and disease pressures.

Nazar Gul & Hafiz Abdul Salam

12/12/2025

Banana cultivation plays a pivotal role in global food systems, rural livelihoods, and international trade. With the global banana market projected to reach approximately USD 143.33 billion in 2025, the crop remains indispensable for both subsistence farmers and commercial supply chains (The Business Research Company, 2025; World Population Review, 2025). Major producing countries such as India, China, and Indonesia dominate global output, but the industry is simultaneously confronted by mounting biological, environmental, and economic threats. Climate variability has intensified droughts, floods, heat stress, directly affected yields and increasing production uncertainty.

Compounding these pressures is the rapid spread of Fusarium wilt Tropical Race 4 (TR4), a soil-borne fungal disease that devastates plantations and persists for decades. Additionally, the high carbon and water footprint of conventional practices has raised sustainability concerns, prompting global calls for regenerative and resource-efficient farming systems (FAO, 2025).

These global challenges are magnified in Pakistan's Sindh province, one of the country's most prominent banana-producing regions. Here, freshwater scarcity has reached critical levels due to excessive extraction, erratic canal water supply, and chronic groundwater salinity. Despite the crop's moderate water requirements, traditional farming practices continue to depend on flood irrigation, often supplying more than 5,000 mm of water annually. This exceeds the crop's evapotranspiration demand by a wide margin and triggers a cascade of agronomic problems, including waterlogging, nutrient leaching, declining soil fertility, and progressive salinization

(Gul et al., 2023; Panigrahi et al., 2021). These inefficiencies ultimately depress yields and erode farm profitability, leaving growers increasingly vulnerable to climate and market fluctuations.

Given this context, transitioning to precision water management is no longer optional; it is a strategic necessity. Techniques such as drip irrigation, soil moisture monitoring, deficit irrigation scheduling, and controlled fertigation can dramatically improve water-use efficiency while enhancing yield stability. For Sindh's banana sector, adopting such innovations offers the most viable pathway toward long-term sustainability, resilience, and economic viability.

Integrating Furrow Plantation and Alternating Irrigation for Efficient Banana Production

The Integrated Furrow Plantation and Alternating Irrigation System offers a practical, climate-resilient solution to the water management challenges confronting banana producers, particularly in semi-arid environments such as Sindh. This system combines structural field redesign with a scientifically informed irrigation protocol to maximize water-use efficiency, improve soil health, and stabilize yields. By integrating agronomic best practices with controlled water application, it provides a transformative alternative to the traditional flat-basin flood irrigation method that has long dominated the region.

The furrow-bed configuration forms the foundation of this system. Instead of flat basins that promote waterlogging and salinity buildup, the land is first laser-leveled and then reshaped into raised beds measuring approximately 1.50 meters in width, separated by furrows about 0.60 meters wide. Banana corms are planted

along the furrow edges to facilitate optimal root-zone moisture and aeration. As the crop matures, the furrows are manually widened to 0.90 meters after five to six months to accommodate sucker development and maintain unobstructed water movement. Complementary agronomic practices, standardized fertilization schedules, systematic desuckering to sustain ideal plant density, and the application of crop residues as organic mulch, enhance the system's performance by conserving moisture, improving soil structure, and slowing surface salt accumulation.

The irrigation component builds on two central principles designed to align with Sindh's warabandi-based canal distribution. First, water sources are alternated between canal water and marginal groundwater. This approach reduces the risk of salinity toxicity by diluting the salts inherent in groundwater, a technique increasingly supported by research on partial root-zone drying and alternate irrigation under semi-arid conditions. Second, irrigation timing is governed by soil moisture deficit (SMD). Field evidence suggests that initiating irrigation at 50 percent SMD yields the best balance between water conservation and crop performance. Practically, this translates into irrigating every 10–15 days during summer and 15–21 days during winter, with water delivered directly into the furrows to ensure precise and efficient soil moisture replenishment.

Comparative Efficiency Gains of the Integrated Furrow and Alternating Irrigation System

The comparative performance of the Integrated Furrow Plantation and Alternating Irrigation System against conventional farmer practices

demonstrates a substantial leap in resource efficiency, crop productivity, and long-term soil sustainability. Quantitative field evidence underscores that this system is not merely an incremental improvement but a structural transformation in banana cultivation, particularly under the water-scarce and salinity-prone conditions of Sindh. The measured outcomes across water use, yield performance, and salinity management confirm its superiority and highlight its potential for widespread adoption.

A central finding is the extraordinary reduction in total annual water applied. Under the 50 percent Soil Moisture Deficit (SMD) schedule, the integrated system used only 1,228 mm of water annually compared to 2,866 mm under conventional flood irrigation. This represents a 57 percent reduction, equivalent to more than 1,600 mm of water saved per hectare each year. Notably, the 50 percent SMD threshold outperformed more frequent irrigation regimes, such as 30 or 40 percent SMD, affirming that well-calibrated moisture thresholds optimize banana water requirements without compromising yield (Gul et al., 2025).

The yield response further strengthens the case for adoption. The integrated system produced 33,592 to 43,867 kg per hectare, marking roughly a 24 percent increase over traditional practices. When paired with the drastic reduction in water input, Water Use Efficiency (WUE) rose by an impressive 67 percent. For farmers facing escalating water scarcity, this improvement translates into enhanced resilience, higher net returns, and improved viability of banana cultivation as a commercial enterprise.

Equally important is its effectiveness in soil salinity management. The alternation between canal water and marginal groundwater prevented the accumulation of harmful salts, maintaining soil electrical conductivity within safe limits for banana production. This confirms that marginal-quality water, often considered unsuitable, can become a productive input when scientifically managed. Collectively, these outcomes illustrate that the integrated system offers a robust pathway for improving water productivity, sustaining

yields, and rehabilitating stressed agro-ecosystems.

A Model for Sustainable Intensification in Banana Cultivation

The Integrated Furrow Plantation coupled with Alternating Irrigation exemplifies a practical and scalable approach to sustainable intensification in banana production, particularly under the water-scarce and salinity-prone conditions of Sindh. Environmentally, the system reduces reliance on over-extracted freshwater sources and effectively harnesses marginal-quality groundwater, transforming a conventional liability into a productive input. This reduces waterlogging and soil salinization, mitigating long-term degradation and contributing to the restoration of agro-ecosystem health. By aligning water application with precise soil moisture thresholds, the method also minimizes wastage, promoting resource-efficient agriculture in arid zones.

Economically, the system delivers measurable benefits. Field trials demonstrate substantial yield increases coupled with significant reductions in water usage, directly enhancing Water Use Efficiency (WUE) and translating into higher net income per unit of water. For smallholder farmers, these gains improve resilience to climate variability, stabilize production costs, and reduce vulnerability to seasonal water scarcity. The low capital and technical requirements of the system ensure that adoption is feasible even for resource-constrained households, enabling broad-based economic impact without necessitating heavy mechanization or advanced infrastructure.

Socially, the model supports knowledge-intensive, participatory farming practices. Training in soil moisture monitoring, desuckering, and nutrient management empowers farmers, creating local expertise and encouraging the uptake of climate-smart agriculture techniques. On a policy level, supportive interventions, such as subsidies for drip irrigation, capacity-building programs, and incentives for water-efficient practices, can accelerate adoption and facilitate the replication of

this approach across other high-value crops and arid regions.

Overall, the Integrated Furrow and Alternating Irrigation System provides a replicable blueprint for sustainable intensification. It demonstrates that intelligent resource integration and adaptive management can simultaneously enhance productivity, conserve critical natural resources, and strengthen rural livelihoods, offering a resilient pathway for the future of banana cultivation under climate and resource pressures.

Conclusion

The challenges facing banana cultivation in Sindh, scarce freshwater, salinity, climate variability, and disease pressures, demand innovative and resource-efficient solutions. The Integrated Furrow Plantation and Alternating Irrigation System represents a practical, scalable response to these pressures, combining structural field redesign with precise water management to optimize productivity and sustainability. Field evidence demonstrates that this system drastically reduces water use by 57 percent, increases yields by roughly 24 percent, and enhances Water Use Efficiency by 67 percent, while effectively managing soil salinity.

Beyond quantitative gains, the system embodies sustainable intensification by simultaneously addressing environmental, economic, and social dimensions. Environmentally, it conserves freshwater, mitigates soil degradation, and converts marginal-quality groundwater into a productive input. Economically, it improves farm-level resilience, reduces input costs, and ensures higher net returns per unit of water, benefiting smallholder farmers who constitute the backbone of Sindh's banana sector. Socially, the approach promotes participatory learning, builds local technical expertise, and facilitates broader adoption through training and extension support.

The success of this integrated model underscores the importance of adaptive, knowledge-driven interventions in water-stressed and salinity-prone agro-ecosystems. By aligning agronomic practices with precise irrigation scheduling

and low-cost structural innovations, the system offers a replicable blueprint for sustainable banana production. Its adoption not only strengthens rural livelihoods but also contributes to long-term food security, climate resilience, and the sustainable management of vital natural resources, making it a cornerstone for future agricultural policy and practice in semi-arid regions.

References: Bluebook Services; de Sá et al; FAO; Gul et al; IWMI; Panigrahi et al; StrategyMRC; The Business Research Company; Wikifarmer; World Population Review; Xing & Wang.

Please note that the views expressed in this article are of the author and do not necessarily reflect the views or policies of any organization.

The writers are affiliated with the *Drainage and Reclamation Institute of Pakistan (DRIP)*, Pakistan Council of Research in Water Resources (PCRWR) and can be reached at nazargul43@gmail.com

Chili Cultivation: Economic Impact in Pakistan

Explore the economic and nutritional significance of chili cultivation in Pakistan, especially in Sindh province. Despite being a leading producer, challenges like productivity decline and pest pressures hinder farmers. Learn how these issues affect chili production and export opportunities.

Nazar Gul & Hafiz Abdul Salam

12/19/2025

Chili, commonly known as red pepper (*Capsicum annuum* L.), is one of the most widely cultivated and consumed vegetable crops belonging to the family Solanaceae. It holds significant economic, nutritional, and cultural importance, particularly in developing countries such as Pakistan. Chili is highly valued by the farming community because of its relatively high market demand and attractive income returns compared to many traditional crops. From a nutritional perspective, chili is a rich source of health-promoting compounds, including vitamins (A, C, and E), minerals, dietary fiber, carotenoids, fatty acids, and proteins, which contribute to improved human health and dietary diversity (Qi et al., 2019).

Pakistan is recognized as one of the major producers of red chili globally and ranks as the fourth-largest producer according to FAO estimates (FAO, 2017). Chili cultivation is concentrated primarily in Sindh Province, which accounts for approximately 85–90 percent of the total area and production. The red chili produced in Pakistan enjoys a strong reputation in international markets, particularly in the Middle East and the European Union, due to its distinctive color and pungency. In 2017–18, chili was cultivated on about 157.9 thousand acres in Pakistan, producing approximately 142.9 thousand tonnes, with Sindh contributing the dominant share (GoP, 2018).

Despite its large cultivated area and export potential, chili production in Pakistan has shown a declining trend in both productivity and quality. National yield growth has fallen markedly over the last decade, while total production declined from 172.8 thousand tonnes to 126.2 thousand tonnes by 2016–17 (GoP, 2017; Rais et al., 2021). Export performance has also weakened, reflecting quality issues,

high post-harvest losses, and inconsistent supply. Limited access to modern production technologies, inadequate pest and disease management, and weak extension services have further constrained productivity. Compared to other chili-producing countries, yields in Pakistan remain significantly lower, underscoring an urgent need to improve production efficiency and quality.

In this context, enhancing chili productivity requires widespread dissemination and adoption of improved production technologies across all stages from land preparation and nursery raising to harvesting and post-harvest handling. Bridging farmers' knowledge gaps through effective extension and capacity-building is essential to unlock the full yield and export potential of this high-value crop.

Potential Chili Varieties for Widespread Cultivation in Sindh Province

Sindh Province, owing to its diverse agro-climatic conditions and long tradition of chili cultivation, supports a range of locally adapted chili varieties with distinct agronomic and market characteristics. The selection of appropriate varieties is a critical determinant of yield, quality, market price, and overall profitability for farmers. Several traditional and improved chili varieties have demonstrated strong performance across different districts of Sindh and are widely preferred by growers and traders alike.

The **Ghotki** variety is commonly cultivated in districts such as Ghotki, Khairpur, Shikarpur, and Kotri, where sowing is typically undertaken during February and March. This variety is characterized by thin, long, and straight fruits with a relatively low seed content, making it attractive for both processing and consumption. Due to its appealing shape

and quality attributes, farmers cultivating Ghotki chili generally receive favorable market prices, contributing to its popularity in northern and central Sindh.

Longi is another widely grown variety, particularly in Mirpurkhas, Nawabshah, and Tharparkar districts. Its nursery is usually raised in January or February, allowing timely transplantation and crop establishment. Longi produces moderately long fruits and offers an average yield ranging between 35 and 50 pounds per acre under conventional management practices. Its adaptability to arid and semi-arid conditions makes it a suitable choice for the eastern parts of Sindh.

The **Talhar** variety is predominantly grown in Badin, Talhar, and parts of Hyderabad. It is considered a late-maturing variety, with nursery raising during June and July and transplantation in August. The fruits are long, thick, and finger-like, with a high yield potential of approximately 80 to 100 pounds per acre, making it economically attractive for late-season production.

Sanam is a high-yielding and versatile variety grown mainly in Karachi and successfully adopted in Mirpurkhas and Hyderabad. It performs well in both winter and summer seasons, producing long, cylindrical fruits and yielding between 100 and 150 pounds per acre.

Finally, **Kunri**, locally known as Longi Dandi Cut, is a renowned variety produced in the Kunri region. It is distinguished by its bright red color, unique aroma, round-tipped shape, and strong pungency, which collectively enhances its domestic and export market demand.

Agro-Climatic and Crop Management Requirements for Successful Chili Production

Chili is a warm season crop that performs best under tropical and sub-tropical climatic conditions. It is highly sensitive to cold and frost, and low temperatures can severely damage seedlings and mature plants. Optimal growth occurs under warm conditions with moderate humidity, while dry weather during the maturity and harvesting stages is particularly desirable for good fruit quality. The ideal temperature range for chili growth lies between 24°C and 32°C. Temperatures exceeding 35°C, especially when accompanied by hot and dry winds, can result in flower and fruit drop, leading to significant yield losses. Therefore, careful alignment of planting time with prevailing climatic conditions is essential for successful chili cultivation.

Soil characteristics play an equally critical role in determining crop performance. Chili grows well in fertile, well-drained clay loam to clay soils with good moisture-holding capacity. Waterlogged, saline, or alkali soils are unsuitable, as they restrict root development and increase disease incidence. Since chili roots generally penetrate 6–8 inches into the soil, deep and thorough land preparation is required. The field should be ploughed at least twice with a mould-board plough, followed by leveling to ensure uniform distribution of irrigation water and fertilizers. Proper leveling also helps avoid stagnant water, which is particularly harmful to chili plants. After land preparation, ridges approximately 2.5 feet wide are prepared to facilitate drainage and efficient irrigation.

Healthy seedlings are the foundation of profitable chili production. In the plains of Sindh, nurseries are typically raised during October–November, with transplanting carried out in mid-February. In cooler or mountainous regions, nursery raising is done during January–March, followed by transplanting in April or May, depending on temperature conditions. About 125–150 grams of high-quality seed is sufficient to raise nursery plants for one acre. Seeds are sown on raised nursery beds, lightly covered with soil, protected with straw, and irrigated gently until germination. Seedlings are usually ready for transplanting within six weeks.

Transplanting is best done in the evening to reduce heat stress, and seedlings should be placed in moist soil rather than standing water to minimize disease risk.

Balanced nutrition is essential for achieving high yields and good fruit quality. For commonly grown local varieties, recommended fertilizer rates are around 120-90-105 kg/ha of nitrogen, phosphorus, and potassium. All phosphorus and potassium, along with half of the nitrogen, should be applied before transplanting, while the remaining nitrogen should be split into three applications after transplanting. Incorporation of farmyard manure at about 8 tons per hectare during land preparation significantly improves soil fertility and net returns. Foliar fertilization can further enhance yields, but excessive nitrogen should be avoided as it promotes excessive vegetative growth and delays maturity.

Water management is another key determinant of success. Chili requires approximately 706–810 mm of water during its growing season, with peak demand in early summer. Timely and properly scheduled irrigation, especially immediately after transplanting, during flowering, and fruit development—is critical to avoid water stress, nutrient leaching, and root suffocation. Proper ridge irrigation and avoidance of over-irrigation are particularly important in Sindh, where shallow groundwater tables increase the risk of waterlogging and salinity.

Crop Care, Pest Management, and Disease Control in Chili Cultivation

Effective crop management practices are essential to ensure healthy growth and optimum yields in chili cultivation. Regular weeding is one of the most important field operations, as weeds compete aggressively with chili plants for water, nutrients, light, and space. Due to their fast growth and strong vigor, weeds often outgrow the crop and consume a disproportionate share of soil nutrients, resulting in substantial yield losses if not controlled in time. Weeding should therefore be carried out at fortnightly or monthly intervals, or whenever weed pressure becomes noticeable. Along with

weeding, earthing up at the flowering stage plays a vital role in supporting plant growth. This practice strengthens the root zone, improves aeration, enhances nutrient uptake, and provides stability to plants, reducing the risk of lodging during irrigation or strong winds.

Chili crops are vulnerable to a range of insect pests throughout different growth stages. Aphids, commonly known as green plant lice, attack the crop at both nursery and early field stages, usually within two to three weeks after transplanting. Apart from sucking plant sap, aphids transmit viral diseases such as chili mosaic, which can cause yield losses of up to 30 percent. Termites pose another serious threat by damaging plant roots, often leading to sudden wilting. Good field sanitation, removal of crop residues, and proper intercultural practices help minimize termite infestation. Fruit borer is another destructive pest; its larvae bore into fruits and feed on seeds, causing premature flower and fruit drop and direct yield losses. Deep summer ploughing and destruction of infested fruits are effective cultural control measures.

Diseases also significantly affect chili productivity, particularly under warm and humid conditions. Anthracnose, a fungal disease, causes dark circular spots on fruits, leading to premature fruit drop. Phytophthora blight spreads rapidly during the rainy season and results in sudden plant wilting. Viral diseases such as chili leaf curl, mainly transmitted by whiteflies, cause leaf curling, stunted growth, and malformed fruits. Another serious fungal disease, dieback, appears at the flowering stage and leads to drying of twigs from the tip backward. The use of healthy, disease-free seed, proper seed treatment, crop rotation, removal of infected plants, and timely plant protection measures are critical for managing these diseases. An integrated approach combining cultural, mechanical, and chemical methods ensures sustainable chili production and reduces avoidable yield losses.

Harvesting Time and Post-Harvest Handling Protocol for Chilies

Harvesting is a critical stage in chili production, as it directly influences both yield quality and market value. Chilies should be harvested only when fruits are fully mature, uniformly developed, and have attained their characteristic bright red color. Harvesting at proper maturity ensures better pungency, color intensity, and higher dry matter content, which are important quality traits for both domestic consumption and export markets. In Sindh and similar agro-climatic regions, the first picking of chilies generally starts by the end of June, followed by subsequent pickings during July and August, depending on the sowing time and crop vigor. Multiple pickings are usually required, as fruits do not mature simultaneously.

During harvesting, special care is required because chili plants are soft and delicate. Rough handling may damage branches or uproot plants, which can reduce yield in later pickings. Fruits should be picked manually, preferably in the early morning or late afternoon, to minimize heat stress and mechanical injury. Immediately after harvesting, chilies should be spread in a thin layer on clean mats or drying floors under sunlight to ensure uniform drying and to prevent fungal growth and rotting. At night, dried chilies must be covered with polythene sheets to protect them from dew and moisture absorption. At the time of harvest, fruit moisture content is

typically around 70–75 percent, which should be gradually reduced to about 8–10 percent through proper drying to ensure safe storage, longer shelf life, and better market acceptance.

Conclusion

Chili cultivation holds substantial economic, nutritional, and export significance for Pakistan, particularly for Sindh Province, which dominates national production. Despite Pakistan's strong position as one of the world's leading chili producers and the international recognition of its distinctive red chili, the sector faces persistent challenges related to declining productivity, quality inconsistencies, pest and disease pressure, and post-harvest losses. These constraints have limited farmers' incomes and weakened the country's competitiveness in high-value export markets, even though demand remains robust.

This article demonstrates that many of the challenges confronting chili production are manageable through the systematic adoption of improved, science-based production and management practices. Appropriate variety selection, alignment of planting schedules with local agro-climatic conditions, balanced nutrient and water management, and timely weed, pest, and disease control are all critical to achieving higher and more stable yields. Equally important are proper harvesting and post-

harvest handling practices, which directly influence quality, shelf life, and market acceptance.

Moving forward, strengthening agricultural extension services, improving farmers' access to quality inputs, and promoting integrated crop management approaches are essential for unlocking the full potential of chili cultivation. With targeted policy support, farmer training, and greater emphasis on quality-oriented production, chili can continue to serve as a high-value crop that enhances rural incomes, supports agro-based exports, and contributes meaningfully to Pakistan's agricultural growth and food system resilience.

References: Altaf et al; Baloch et al; Channa et al; FAO; GoP; Hussain & Abid; Kumar; Praveen et al; Qi et al; Rais et al; Rao et al; Salam et al.

Please note that the views expressed in this article are of the author and do not necessarily reflect the views or policies of any organization.

The writers are affiliated with the *Drainage and Reclamation Institute of Pakistan (DRIP)*, Pakistan Council of Research in Water Resources (PCRWR) and can be reached at nazargul43@gmail.com

Transformative Drone Technology in Agriculture

Discover how drone technology is revolutionizing agriculture through precision interventions. Learn about the economic benefits, including reduced costs and improved crop quality. Explore the role of agricultural drones in enhancing operational efficiency and sustainability.

Komal Arshad

12/19/2025

The global agricultural sector is experiencing a profound technological shift, with drone technology formally known as Unmanned Aerial Vehicles (UAVs) emerging as a transformative force in modern farming systems. Once viewed as experimental or niche tools, drones have rapidly evolved into essential components of precision agriculture, offering data-driven solutions to long-standing challenges related to productivity, cost efficiency, and environmental sustainability. As agriculture faces mounting pressure from rapid population growth, climate change, shrinking arable land, and increasing input costs, UAVs provide farmers with the ability to make informed, timely, and economically sound decisions.

Drone technology integrates advanced robotics, artificial intelligence, big data analytics, and the Internet of Things (IoT) to create intelligent and responsive agricultural systems. Equipped with multispectral and thermal sensors, drones can monitor crop health, detect nutrient deficiencies, identify pest and disease outbreaks, and assess soil moisture variability at an early stage. This real-time, high-resolution information allows farmers to shift from uniform field management to site-specific interventions, significantly reducing wastage of fertilizers, pesticides, water, and labor. As a result, input costs decline while crop yield and quality improve, directly enhancing the monetary value of agricultural output.

From an economic perspective, the adoption of drone-based precision techniques supports sustainable intensification producing more food per unit of land without increasing environmental degradation. According to PwC Global (2024), a projected 56 percent gap between current food production and

global demand by 2050 underscores the urgency of adopting efficiency-enhancing technologies. Drones address this gap by improving yield predictability, minimizing crop losses, and enabling better risk management under climate uncertainty. Furthermore, improved crop quality and traceability facilitated by UAV data can enhance market access and price premiums, particularly in export-oriented and high-value crop systems. In this context, drone technology is not merely an innovation but an economic necessity for ensuring long-term agricultural viability and global food security.

Market Evolution and Economic Significance of Agricultural Drones

The global market for agricultural drones has entered a phase of accelerated expansion, reflecting their growing economic relevance within modern farming systems. Recent market assessments indicate that the agricultural drone sector was valued at approximately USD 5.86 billion in 2025 and is projected to reach nearly USD 23.73 billion by 2032, registering a robust compound annual growth rate of about 22.1 percent. This rapid growth significantly exceeds earlier projections made during the initial commercialization phase of technology and signals a structural shift in how agricultural monitoring and management are conducted. The sharp upward revision of market estimates illustrates both technological maturity and strong demand from producers seeking cost-efficient and data-driven solutions.

From a regional perspective, North America currently dominates the global market, accounting for roughly 45 percent of total adoption, driven by large-scale commercial farming, high labor costs, and supportive regulatory and innovation ecosystems. At the same time, the Asia-

Pacific region is emerging as the fastest-growing market due to expanding agricultural mechanization, government-backed digital agriculture initiatives, and the prevalence of smallholder systems that benefit from precision services. This geographical diversification underscores the global relevance of drone technology across varying farm sizes and production systems.

Adoption rates further highlight the economic significance of drones in agriculture. It is estimated that nearly three-quarters of large-scale agricultural enterprises worldwide now employ drones for crop monitoring, yield estimation, and input optimization. Importantly, the scalability of drone technology has enhanced its accessibility for small and medium-sized farms through service-based business models, rental platforms, and farmer cooperatives. These arrangements reduce upfront capital costs while allowing producers to capture efficiency gains. Rising labor costs, increasing pressure to adopt environmentally sustainable practices, and the need to improve productivity under climate uncertainty remain the primary drivers of adoption. Collectively, these trends position agricultural drones as a core enabling technology with substantial long-term economic impact on global food systems.

Core Drone Applications Driving Crop Value Enhancement

Drone technology enhances the monetary value of crops by enabling highly precise, data-driven interventions that optimize input use, protect yields, and reduce operational costs. One of the most valuable applications lies in advanced crop health monitoring. Equipped with multispectral and thermal sensors, modern agricultural drones capture detailed imagery that reveals plant stress well before it becomes

visible to the naked eye. By analyzing vegetation indices such as the Normalized Difference Vegetation Index (NDVI), farmers can identify nutrient deficiencies, pest infestations, disease outbreaks, and water stress at an early stage. Early detection allows for timely and localized corrective measures, preventing widespread damage and substantial yield losses. Empirical evidence shows that drone-based scouting can be dramatically more efficient than manual field inspection, reducing labor requirements by up to 95 percent while covering large areas in a fraction of the time. These labor savings translate directly into lower production costs and improved profitability.

Precision spraying represents another economically transformative application. Unlike conventional blanket spraying, drones enable site-specific application of pesticides, herbicides, and fertilizers, ensuring that chemicals are applied only where required and at optimal doses. This targeted approach has been shown to reduce chemical usage by approximately 40–60 percent, significantly lowering input costs while minimizing environmental contamination. In addition, drones can operate in conditions where ground-based machinery is ineffective, such as waterlogged fields or dense crop canopies. Timely aerial spraying under such conditions has been associated with yield increases of around 20 percent in certain crops, as diseases and pests are controlled before causing irreversible damage.

Field mapping and irrigation management further enhance crop value by improving resource allocation. High-resolution drone-generated maps reveal spatial variability in soil properties, elevation, and crop vigor within a single field. This information supports variable rate application of seeds and fertilizers, reducing fertilizer use by 20–30 percent while maintaining or improving yields. Thermal imaging also allows precise identification of water-stressed zones, enabling better irrigation scheduling. As a result, water savings of 25–40 percent can be achieved without compromising crop health. Collectively, these applications demonstrate how drones

function not merely as monitoring tools, but as strategic assets that directly strengthen farm-level economic performance.

Impact on Crop Monetary Value: Direct Economic Benefits of Drone Technology

The adoption of drone technology in agriculture directly enhances crop monetary value through several interconnected mechanisms, each contributing to improved profitability and resource efficiency. One of the most significant impacts is yield optimization and loss prevention. Drones equipped with multispectral and thermal sensors enable early detection of plant stress caused by pests, diseases, or nutrient deficiencies. This timely intervention allows farmers to implement targeted measures before issues escalate, safeguarding the crop's full yield potential. A PwC study on Drone AG's users in the UK revealed that such interventions prevented substantial yield losses, directly translating into higher revenue (PwC UK, 2022).

Another crucial economic benefit is input cost reduction. Precision spraying of fertilizers, herbicides, and pesticides ensures that chemicals are applied only where needed and at the correct dosage, reducing waste and lowering input expenses. Studies indicate that chemical use can decrease by 40–60%, while variable-rate fertilizer application reduces nutrient input by 20–30% without compromising yield (Avary Drone, 2025; Farmonaut, 2025). These reductions in input costs directly enhance net farm profitability, making precision agriculture economically compelling.

Finally, drones contribute to labor efficiency and operational savings. Manual scouting of large fields is time-consuming and labor-intensive, often requiring hundreds of work hours per season. Drones can survey the same area in mere minutes, providing real-time actionable insights. This efficiency allows farmers to reallocate labor to other critical farm operations, improving overall productivity and reducing operational costs (PwC UK, 2022). Collectively, these factors—yield protection, cost reduction, and labor

optimization—demonstrate that drone technology is not merely a tool for monitoring crops, but a strategic investment that enhances both economic and operational outcomes for modern agriculture.

Barriers to Adoption and Policy Considerations in Agricultural Drone Use

Despite the clear economic and operational advantages of drones, several barriers continue to limit widespread adoption in agriculture. A primary challenge is the high initial investment required. Advanced drones equipped with multispectral or thermal sensors, GPS guidance systems, and precision spraying capabilities can be prohibitively expensive, particularly for smallholder farmers in developing countries. Without financial support, many farmers are unable to justify the upfront costs, despite the long-term efficiency and yield benefits.

Regulatory complexity presents another major hurdle. Drone operations, especially for aerial spraying of chemicals, are tightly regulated in many countries. Regulations often impose strict requirements on flight permissions, liquid volumes, and safety protocols. For instance, in the UK, the adoption of spray drones has been limited because regulations mandate higher liquid volumes per hectare than in other countries, reducing operational flexibility and cost-effectiveness (PwC UK, 2024). These legal and procedural barriers can discourage farmers from integrating drone technology into routine farm management.

A third constraint is the technical knowledge gap. Operating drones effectively and interpreting the rich datasets they generate require specialized skills in UAV handling, data analytics, and precision agriculture practices. Many farmers lack access to training and digital literacy programs, which hampers adoption and prevents optimal utilization of drone capabilities.

Policy interventions can mitigate these barriers. Governments and agricultural agencies should consider developing agriculture-specific regulatory frameworks to simplify permissions and standardize

operational guidelines for rural drone use. Financial incentives, such as targeted subsidies, grants, or low-interest loans like the UK's Farming Equipment and Technology Fund, can reduce entry costs. Finally, expanding training and extension services focused on UAV operation and data interpretation will empower farmers to harness the full potential of drone technology, ensuring both economic and environmental benefits for modern agriculture.

Conclusion

Drone technology has emerged as a transformative force in modern agriculture, offering solutions that extend far beyond conventional monitoring tools. By integrating robotics, artificial intelligence, and advanced sensors, drones enable precision interventions that optimize input use, protect yields, and enhance operational efficiency. The direct economic benefits are substantial: early detection of pests, diseases, and nutrient deficiencies prevents yield loss; precision spraying reduces chemical and fertilizer costs by 40–60% and 20–30%,

respectively; and labor efficiency is dramatically improved through rapid field surveys, freeing labor for other critical tasks. Collectively, these advantages translate into higher profitability, improved crop quality, and more sustainable farming practices.

The rapid growth of the agricultural drone market valued at USD 5.86 billion in 2025 and projected to reach USD 23.73 billion by 2032 reflects their increasing economic significance and adoption across both large-scale and smallholder farming systems. North America has adopted, while the Asia-Pacific region shows the fastest growth, highlighting the global relevance of UAV technology. However, barriers such as high initial costs, regulatory constraints, and technical knowledge gaps continue to limit full-scale adoption. Addressing these challenges through supportive policies, financial incentives, and targeted training programs is critical to ensuring equitable access and maximizing the technology's potential.

In conclusion, drones are not merely an innovation in agriculture, they are a

strategic tool for value creation, risk mitigation, and sustainable intensification. By improving yield predictability, reducing input costs, and enhancing crop quality, UAVs offer a pathway to economic resilience and global food security, positioning them as an essential component of modern, efficient, and environmentally responsible agricultural systems.

References: Avary Drone; Coherent Market Insights; Drone Industry Insights; Farmonaut; GlobeNewswire; MarketsandMarkets; PwC Global.

Please note that the views expressed in this article are of the author and do not necessarily reflect the views or policies of any organization.

The writer is affiliated with the Institute of Agricultural and Resource Economics, University of Agriculture, Faisalabad, Pakistan and can be reached at [komalarashad883@gmail.com](mailto:komalashad883@gmail.com)

Impact of Storms on Türkiye's Agriculture

Explore the critical effects of storms on Türkiye's agriculture, focusing on the intersection of climate change, crop yields, and the socio-economic stability of smallholder farmers. Understand how extreme weather events threaten food security and rural livelihoods.

Mithat Direk

12/26/2025

Agriculture remains among the economic sectors most critically exposed to climatic extremes, largely because it functions as an “open-air factory” with minimal physical protection from atmospheric forces. Unlike manufacturing or services, agricultural production depends directly on weather conditions, making it exceptionally sensitive to changes in temperature, precipitation, wind intensity, and the frequency of extreme events. The Intergovernmental Panel on Climate Change (IPCC, 2022) underscores that climate change is intensifying the severity and unpredictability of such extremes, increasing the likelihood of sudden and destructive storms that can disrupt entire production cycles within hours.

In Türkiye, storms represent a growing and multifaceted threat to agricultural systems. These events often take the form of intense rainfall leading to floods and waterlogging, hailstorms that physically damage crops at critical growth stages, strong winds that flatten orchards and greenhouses, and abrupt temperature fluctuations that stress plants and reduce yields. Beyond crop losses, storms frequently damage irrigation infrastructure, storage facilities, farm machinery, and rural roads, compounding economic losses and delaying recovery. For small and medium-scale farmers, who dominate Türkiye's agricultural landscape, such shocks can translate into severe income instability and long-term indebtedness.

The macroeconomic implications are equally significant. Agriculture contributes approximately 6.5 percent to Türkiye's gross domestic product and provides livelihoods for nearly 18 percent of the national workforce (TÜİK, 2023; FAO, 2023). Storm-induced disruptions therefore extend beyond the farm gate,

affecting food supply chains, price stability, agro-industrial inputs, and export performance. Repeated weather shocks also undermine investment incentives in agriculture, discouraging modernization and adoption of productivity-enhancing technologies.

Given this central role, understanding storm dynamics and strengthening adaptive capacity is no longer optional but essential. Investments in climate-resilient farming practices, early warning systems, improved drainage and infrastructure, and risk management tools such as agricultural insurance are critical to safeguarding food security and sustaining rural livelihoods. As climate variability intensifies, Türkiye's agricultural resilience will increasingly determine not only sectoral performance but also broader economic and social stability.

Defining Storms and Their Socio-Economic Reach

A storm can be broadly defined as an extreme meteorological event characterized by intense rainfall, strong winds, hail, lightning, or abrupt temperature changes that disrupt normal atmospheric equilibrium. While storms are natural phenomena, their increasing frequency and intensity, driven by climate change, have amplified their socio-economic consequences. Storms do not merely represent short-term weather disturbances; they trigger cascading effects across ecosystems, infrastructure networks, and human well-being. In agricultural contexts, even a single severe storm can destroy standing crops, erode fertile soil, damage irrigation systems, and compromise future planting seasons, thereby extending impacts far beyond the immediate event.

The socio-economic reach of storms extends well beyond the farm sector. In coastal and maritime regions, storms pose serious risks to navigation, fisheries, and port operations. Historically, maritime regulations and safety protocols have been aligned with predictable seasonal weather patterns. However, the growing unpredictability of storm events increasingly undermines these systems, exposing fishers, transport operators, and coastal communities to heightened physical and financial risks. Disruptions in maritime activities also affect food supply chains, export flows, and regional trade, linking storm impacts directly to national economic performance.

In Türkiye, the economic toll of storm-related damage to agriculture is substantial, yet often underestimated in official statistics. Crop losses from hail, flooding, and wind damage, along with destruction of greenhouses, orchards, and rural infrastructure, impose significant costs on farmers each year. According to the World Bank (2021), these losses disproportionately affect smallholder farmers, who constitute the majority of agricultural producers and typically lack adequate savings, insurance coverage, or access to formal credit. For these households, storm damage can trigger income shocks that push families into debt, reduce food consumption, and accelerate rural-urban migration.

Beyond material losses, storms also generate psychological and social stress. Recurrent exposure to extreme weather events undermines farmers' sense of security and planning capacity, weakening long-term investment decisions. Recognizing storms as a socio-economic risk, not merely a climatic event, is therefore essential. Integrating disaster risk assessment, farmer

protection mechanisms, and climate-resilient policies into agricultural planning is critical to reducing vulnerability and safeguarding rural livelihoods in Türkiye.

The Kocakarı Takvimi: Indigenous Climate Knowledge and the Historical Memory of Storms in Türkiye

In Türkiye, long before the emergence of modern meteorology, rural communities relied on an indigenous knowledge system known as the *Kocakarı Takvimi*, commonly translated as the “Old Women’s Calendar.” This traditional storm calendar is built upon centuries of careful observation of seasonal weather patterns, particularly the timing and intensity of recurring storms. Farmers, shepherds, and seafarers used these empirically derived dates often accurate within a margin of one to two days to guide critical decisions such as sowing, harvesting, livestock movement, and maritime travel. In agrarian societies where livelihoods depended directly on weather stability, this calendar functioned as a practical risk management tool, reducing exposure to climatic shocks and enhancing survival prospects. As Şen (2021) notes, the *Kocakarı Takvimi* represents a sophisticated form of indigenous climatology, where accumulated experience was transmitted across generations through cultural practice rather than written records.

The historical depth of storm awareness in Anatolia extends far beyond folk calendars and is embedded in ancient belief systems. Climatic forces, particularly storms, were so central to survival that they became deified in early civilizations. The Hittite storm god Teşub, frequently portrayed holding lightning bolts and standing atop mountains, symbolized both destruction and fertility reflecting the dual nature of storms as agents of damage and renewal. This reverence highlights how early Anatolian societies sought to understand, appease, and coexist with powerful atmospheric forces that governed agricultural success and societal stability.

Archaeological evidence reinforces this long-standing engagement with climatic phenomena. The discovery in 2002 of a statue of Teşub, dated to approximately 5000 BCE and unearthed at Kuşadası Kadı Castle, now housed in the Aydın Museum, provides tangible proof of humanity’s enduring effort to interpret and ritualize recurring storms (Ünal, 2019). Together, traditional calendars and archaeological records illustrate that storm prediction in Türkiye is not merely a modern scientific endeavor but a deeply rooted cultural and historical process.

The Meteorological Basis of Seasonal Storms and Integrating Traditional Knowledge

Modern meteorology provides a scientific explanation for the seasonal storm patterns long observed in Türkiye. Storms arise from the complex interaction of pressure systems, jet stream variability, and regional topography. Typically, the collision of contrasting air masses generates strong winds, intense rainfall, and sometimes hail, directly affecting agriculture and infrastructure. For example, the spring storms of April and May usually correspond with the northward progression of the polar front, bringing abrupt temperature shifts and precipitation to the Anatolian plateau. Autumn storms, in contrast, are often linked to the active Mediterranean cyclone season, which can deliver heavy rains, flooding, and damaging winds across coastal and inland agricultural zones (Turkish State Meteorological Service – MGM, 2023). These seasonal mechanisms explain the empirical accuracy of traditional knowledge systems like the *Kocakarı Takvimi*, which effectively captured these recurring meteorological events.

However, climate change is altering the landscape of storm risk. While traditional storm dates largely persist, their intensity, frequency, and unpredictability are increasing. For instance, the late-spring frost events of 2025, coinciding with the so-called “Blossom Storm” period, were markedly severe, resulting in significant crop losses. Research indicates that extreme rainfall events in the Eastern

Mediterranean have increased in intensity by 15–20% over the past three decades, amplifying the destructive potential of seasonal storms (Zittis et al., 2023; MGM, 2025).

This evolving context underscores the importance of integrating traditional knowledge with modern meteorological science. The *Kocakarı Takvimi* can continue to provide heuristic guidance on high-risk periods, while contemporary forecasts offer precise, short-term predictions to inform adaptive measures. By combining these approaches, farmers can optimize irrigation schedules, adjust fertilization, protect crops physically, and plan harvests more effectively. Such a hybrid strategy enhances agricultural resilience, bridging centuries of cultural experience with the predictive power of modern science to mitigate storm impacts in an era of climate volatility.

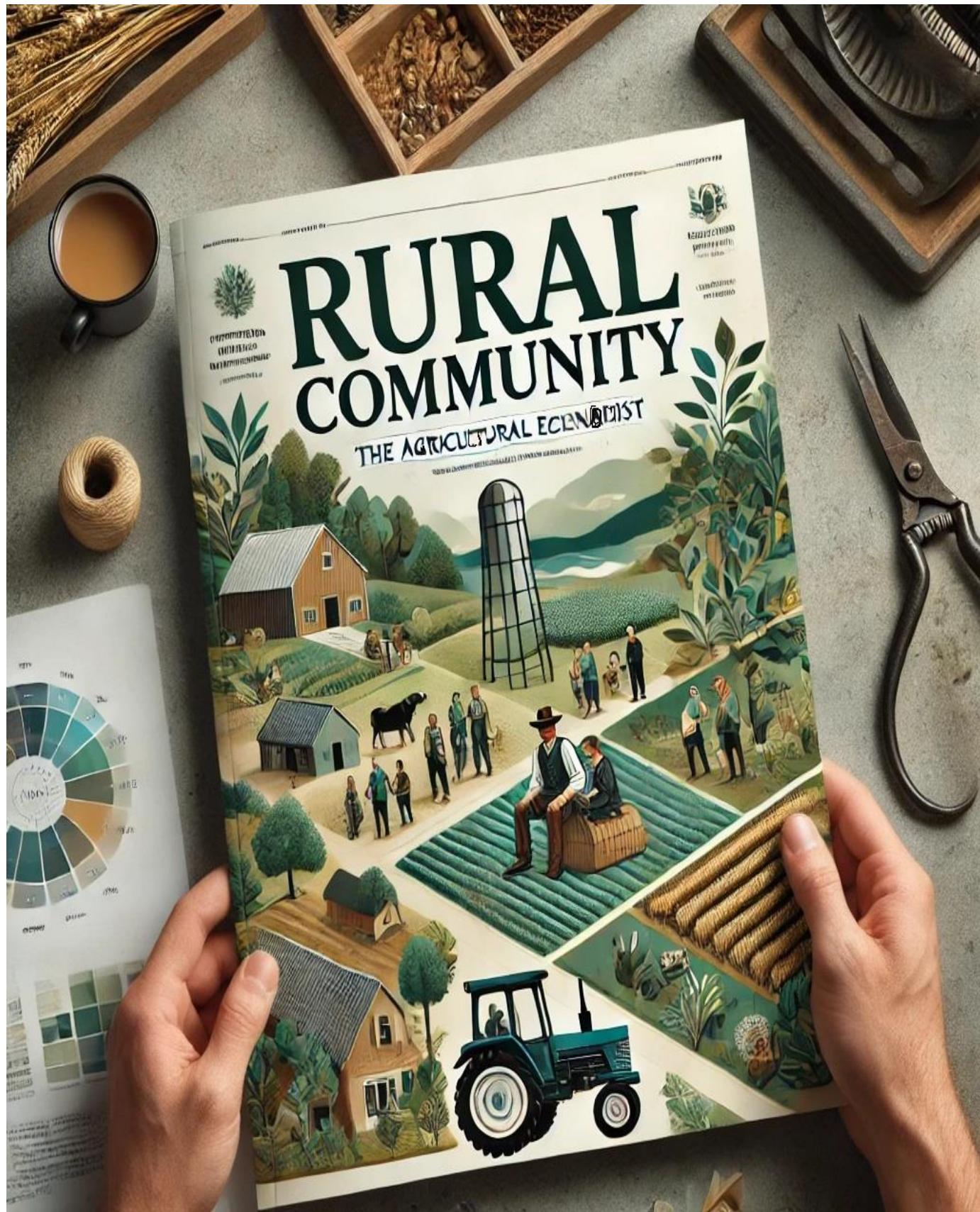
Conclusion

The analysis of storms and their impacts on Türkiye’s agriculture highlights a critical intersection of history, culture, and modern science. Agriculture, inherently exposed to atmospheric forces, faces increasing risks as climate change amplifies the intensity, frequency, and unpredictability of extreme weather events. Storms, ranging from intense rainfall and hail to damaging winds and abrupt temperature shifts, affect not only crop yields but also rural infrastructure, supply chains, and the socio-economic stability of smallholder farmers, who form the backbone of Türkiye’s agricultural workforce. The cumulative effects of these events extend beyond material losses, undermining investment incentives, food security, and long-term rural livelihoods.

The *Kocakarı Takvimi*, Türkiye’s traditional storm calendar, demonstrates that indigenous knowledge systems have long played a pivotal role in guiding agricultural decisions and reducing vulnerability. Coupled with archaeological and historical evidence, it illustrates that understanding and anticipating storms is deeply embedded in the cultural fabric of Anatolia. Modern

meteorology complements this knowledge by explaining the underlying atmospheric mechanisms and providing precise, short-term forecasts.

Integrating traditional calendars with contemporary scientific tools offers a hybrid strategy that can enhance resilience. Farmers can identify high-risk periods through the heuristic guidance of the Kocakari Takvimi and implement protective measures informed by


meteorological forecasts. Such an approach not only mitigates crop losses but also strengthens food security, safeguards rural livelihoods, and ensures broader economic stability. In an era of climate volatility, combining centuries of empirical wisdom with modern predictive science provides the most robust pathway for sustainable agricultural adaptation in Türkiye.

References: FAO; IPCC; MGM; Şen; TÜİK; Ünal; World Bank; Zittis et al.

Please note that the views expressed in this article are of the author and do not necessarily reflect the views or policies of any organization.

The writer is affiliated with the Department of Agricultural Economics, Selcuk University, Konya-Türkiye and can be reached at mdirek@selcuk.edu.tr

Transforming Agriculture with Rural Infrastructure

Explore how rural infrastructure plays a vital role in enhancing agriculture and economic resilience in developing regions. Discover the impact of irrigation, transport, electrification, and digital connectivity on improving livelihoods and boosting productivity.

Syed Saqlain Shah

12/3/2025

Agriculture remains the backbone of rural economies across the developing world, yet its full potential is constrained by persistent gaps in infrastructure that hinder efficiency, access, and resilience. Rural infrastructure comprising physical assets such as roads, irrigation systems, energy access, storage facilities, and increasingly, broadband connectivity plays an indispensable role in shaping agricultural outcomes and livelihoods. Strong infrastructure reduces transportation costs, minimizes postharvest losses, expands market access, and accelerates the adoption of modern technologies. It also facilitates access to critical services, including education, financial institutions, and healthcare, which indirectly enhances agricultural productivity through improved labor capacity and knowledge diffusion.

The debate around infrastructure investment in rural areas is far from straightforward. Advocates emphasize that such investments generate multiplier effects by improving farm profitability, enabling non-farm employment, and stimulating broader economic activity. Empirical evidence from regions like Southeast Asia and Sub-Saharan Africa demonstrates that reliable irrigation systems can increase crop yields by 25–40%, while rural road development significantly reduces the price disparity between farmgate and retail markets (World Bank, 2021). Investments in digital infrastructure have also proven transformative, enabling precision farming, improving market information flows, and enhancing access to mobile banking and crop insurance.

Conversely, critics caution that infrastructure expansion, when poorly designed or unequally distributed, can deepen socio-economic divides. Regions with weak institutional governance may

experience unbalanced investment, where resource-rich areas benefit disproportionately, leaving remote or marginalized communities behind. Additionally, aggressive land conversion for infrastructure corridors can cause ecological disruption, including increased soil erosion, biodiversity loss, and water mismanagement (Chakravorty et al., 2023).

Thus, infrastructure planning must be context-sensitive, sustainability-focused, and inclusive. As climate change intensifies water scarcity, market volatility, and heat stress, rural infrastructure will increasingly determine which communities thrive and which fall further behind. Evidence shows that balanced infrastructural development, built through participatory planning and environmental stewardship, is not merely a support system for agriculture but a foundational pillar of resilient rural transformation.

Understanding Rural Infrastructure: A Modern Framework

Understanding rural infrastructure in contemporary development planning requires a broadened perspective that moves beyond conventional notions of roads, canals, or electricity supply. Today, rural infrastructure reflects a complex ecosystem of interconnected facilities, physical, institutional, and technological, that collectively enhance economic efficiency, human well-being, and long-term agricultural sustainability. Transportation networks remain fundamental, as roads, bridges, and rural railway systems reduce travel time, improve access to input markets, and enable efficient delivery of agricultural products. Improved road connectivity has been linked with higher farmgate prices, reduced post-harvest losses, and greater

integration of remote producers into regional supply chains.

Equally critical are modern water management systems. Irrigation canals, check dams, and micro-irrigation technologies increase cropping intensity, reduce climate-related vulnerabilities, and expand opportunities for diversified farming. Complementing these systems is improved energy access. Electrification, along with distributed renewable energy solutions such as solar-powered tube wells and dryers, reduces production bottlenecks and empowers rural micro-enterprises. Post-harvest infrastructure, including warehouses, cold-storage facilities, agricultural processing centers, and farmer-led cooperatives play an essential role in stabilizing prices, reducing waste, and enhancing value addition at the local level.

The digital transformation of rural economies has expanded infrastructure definitions further. Mobile broadband, internet-enabled extension platforms, precision agriculture tools, and digital financial services reduce information asymmetries, foster inclusion, and connect farmers directly to buyers. Initiatives such as India's electronic National Agricultural Market demonstrate how market infrastructure can broaden choice and strengthen bargaining power. Social infrastructure, including healthcare centers, educational facilities, and vocational institutes, further complements economic growth by improving human capital, reducing rural migration pressures, and fostering innovation.

Taking together, these elements form an integrated framework where infrastructure supports not just agricultural output but also entrepreneurship, resilience, and inclusive economic development. Modern rural infrastructure therefore represents a

foundational pillar for transforming rural livelihoods into thriving, interconnected, market-driven economies.

Positive Impacts on Agriculture: Recent Evidence

Recent empirical evidence demonstrates that strategic investments in rural infrastructure are directly linked to improvements in agricultural productivity, market efficiency, and resilience. One of the most immediate benefits arises from improved market access. Better rural roads lower transportation time, expand market reach, and reduce the physical deterioration of produce. The Food and Agriculture Organization (FAO, 2022) highlights that poor road networks are a major contributor to nearly 37% of food lost before market arrival in Sub-Saharan Africa. Recent econometric assessments provide further proof: research conducted in Nigeria revealed that even a 10% improvement in rural road quality corresponded with approximately a 3% increase in agricultural output by improving farmers' access to reliable buyers and reducing spoilage losses (Ali et al., 2022). Thus, infrastructure not only enhances efficiency but directly raises household incomes.

Irrigation development is another transformative factor, particularly in water-stressed regions. In India, expansion of micro-irrigation systems now covers more than 13 million hectares (PMKSY, 2023), resulting in substantial water savings ranging between 20–40% and yield improvement of up to 40% depending on crop type. Unlike conventional flood irrigation, drip-based systems improve resource-use efficiency and buffer production risks associated with climate variability. Such approaches are increasingly critical as erratic rainfall, and prolonged droughts intensify under climate change.

Digital innovation has similarly emerged as a cornerstone of rural modernization. Mobile-based banking and agricultural advisory services have enabled smallholders to make informed decisions. In Kenya, M-Pesa and integrated agricultural apps have allowed nearly 86%

of rural farmers to use mobile banking services, improving access to loans and input financing (GSMA, 2023). India's e-Choupal platform, reaching over four million farmers, further illustrates how real-time crop price information and advisory services reduce information asymmetry and empower producers.

Electrification remains an equally powerful driver of agricultural transformation. Reliable electricity facilitates cold storage, food processing, and adoption of electric-powered machinery. For example, a 2024 IFPRI study in Bangladesh found that access to dependable electricity increased mechanization rates by 28% and reduced post-harvest perishability by 15%. Such gains translate into improved household food security and growth in agro-processing enterprises. Collectively, these findings reaffirm the central role of infrastructure in strengthening agricultural systems and accelerating rural economic development.

Critical Perspectives and Contemporary Challenges

While rural infrastructure development is widely celebrated for its transformative potential, contemporary evidence reveals a series of critical concerns that complicate its implementation and long-term benefits. One major challenge lies in the uneven distribution of infrastructure assets. Despite large-scale investments, marginalized populations often remain excluded from infrastructure gains. The World Bank (2022) reports that over 60% of paved roads constructed in Latin America between 2015 and 2021 were located within a short radius of commercial agribusiness hubs, primarily benefitting well-capitalized producers. Meanwhile, smaller rural settlements especially those in remote and indigenous territories continue to experience mobility constraints and high post-harvest losses, reinforcing pre-existing inequalities.

Environmental impacts present another urgent dimension. Irrigation expansion, although crucial for productivity, has had unintended ecological consequences. Northwestern India exemplifies this

dilemma; the region has experienced severe groundwater depletion, accounting for over 95% of India's total groundwater decline footprint (Tiwari et al., 2023). Similar concerns surround transportation infrastructure in ecologically sensitive zones. In the Amazon Basin, spatial monitoring indicates that nearly three-quarters of contemporary deforestation is concentrated within a five-kilometer corridor of major road networks (Barber et al., 2022), underscoring how connectivity can accelerate land conversion and biodiversity loss.

Social disruptions further complicate infrastructure rollouts. Studies from India show recurring conflicts over land acquisition, with more than 800 land disputes recorded in 2023 by Land Conflict Watch, many of them triggered by highway, port, or industrial corridor projects affecting farming communities. Frequently, compensation mechanisms are delayed or inadequate, leading to livelihood insecurity and forced displacement.

Financial and operational limitations add yet another layer of complexity. The African Development Bank (2023) estimates that Africa faces a financing deficit exceeding \$68 billion annually for infrastructure. Even where construction occurs, weak maintenance regimes undermine functionality; approximately 30% of rural irrigation systems in Sub-Saharan Africa remain non-operational due to insufficient repair budgets, technical capacity gaps, or governance issues. These systemic challenges highlight the need for more inclusive, ecologically responsible, and financially sustainable infrastructure strategies that genuinely serve rural populations in the long term.

Policy Pathways for Sustainable and Inclusive Infrastructure

Achieving meaningful transformation in rural economies through infrastructure requires policy frameworks that are not only forward-looking but grounded in inclusivity, environmental responsibility, and technological innovation. One of the most important pathways is the promotion of participatory planning processes that

actively involve local communities in decision-making. Tools such as Participatory Geographic Information Systems (PGIS) allow planners to incorporate localized knowledge, ensuring that investments address real needs rather than generalized assumptions. Women farmers, who frequently encounter mobility restrictions, land access barriers, and time burdens related to caregiving, stand to benefit significantly when planning explicitly considers gender-specific constraints.

In recent years, sustainability-enhancing infrastructure practices have moved from concept to implementation. Nature-based solutions, ranging from vegetative water channels to permeable rural road materials, are being used to increase infiltration and reduce land degradation. Solar-powered irrigation technologies exemplify scalable climate-resilient innovation; India's deployment of more than 350,000 solar pumps by 2023 offers evidence of affordability, emission reduction, and decreased operating costs for farmers traditionally dependent on unreliable grid electricity or diesel.

Governance systems are also evolving through technology-enabled transparency. Satellite-based monitoring of canal seepage, drone-enabled land surveys for compensation claims, and IoT-based sensors in irrigation schemes or warehouses are making it possible to track performance in real time. Such systems reduce information asymmetry, mitigate corruption risks, and enable quick troubleshooting.

Financing remains a structural bottleneck, prompting the emergence of hybrid

models. Beyond conventional Public-Private Partnerships, "blended finance" approaches are becoming more common, leveraging philanthropic funding alongside government investment to de-risk private capital. Community-led infrastructure financing has shown encouraging results in Latin America and East Africa, where farmer cooperatives collectively co-invest in storage systems and feeder roads, strengthening ownership and accountability. Together, these pathways illustrate that infrastructure is most transformative when it is co-designed, climate-ready, transparent, and financially adaptive—ultimately ensuring equitable access and long-term sustainability for rural populations.

Conclusion

The evidence presented throughout this analysis reinforces the central role of rural infrastructure in transforming agriculture, improving livelihoods, and strengthening economic resilience in developing regions. Infrastructure, whether in the form of irrigation networks, transport systems, electrification, or digital connectivity, serves as the enabling foundation upon which agricultural productivity and rural prosperity depend. When effectively planned and equitably distributed, infrastructure investments reduce transaction costs, enhance access to markets, lower post-harvest losses, and accelerate the adoption of improved farming technologies. They contribute not only to strengthened household incomes but also to expanded employment opportunities in processing, logistics, and allied sectors.

However, the study also emphasizes that infrastructure development is not inherently inclusive. Gaps in governance, inequitable allocation, environmental degradation, and community displacement can undermine development gains and reinforce existing vulnerabilities. Thus, infrastructure cannot be treated merely as physical construction; it must be embedded within policy systems that prioritize social equity, environmental stewardship, and long-term functionality.

Looking ahead, transformational change requires participatory planning, climate-appropriate solutions, transparent monitoring systems, and innovative financing mechanisms. As climate change intensifies, rural regions will rely even more on infrastructure to withstand shocks and maintain agricultural viability. Therefore, building sustainable, inclusive, and digitally enabled infrastructure is no longer optional; it is a strategic imperative for resilient rural futures and national food security.

References: African Development Bank; Ali et al; Barber et al; Chakravorty et al; FAO; GSMA; IFPRI; NITI Aayog; World Bank.

Please note that the views expressed in this article are of the author and do not necessarily reflect the views or policies of any organization.

The writer is affiliated with the Institute of Agricultural & Resource Economics, University of Agriculture, Faisalabad, Pakistan and can be reached at 751saqlainshah@gmail.com

Sustainable Falsa Cultivation in Semi-Arid Sindh

Explore sustainable Falsa Cultivation in semi-arid Sindh, focusing on soil conservation, water-efficient farming, and climate-resilient falsa cultivation. This article provides actionable insights on regenerative falsa cultivation systems that rebuild soil capital and reduce production risks.

Mashooq Ali Khuwaja

12/9/2025

Sustainable agriculture has transitioned from a desirable framework to an unavoidable necessity for countries experiencing ecological fragility and agrarian distress. It is no longer sufficient to view sustainability as a peripheral objective; rather, it must be embedded into production systems to ensure food availability, ecosystem resilience, and rural livelihoods. This urgency is strongly visible in Pakistan's semi-arid zone, particularly in the Tando Allahyar District, where farming households operate under increasingly volatile climatic regimes. The region is witnessing prolonged heat episodes, shifts in monsoon timing, declining water tables due to over-extraction, and the progressive loss of soil structure and fertility (IUCN Pakistan, 2022). These trends undermine yields, raise production costs, and heighten vulnerability among growers dependent on conventional practices reliant on fertilizers, tube-well irrigation, and monocropping.

Within this context, horticulture featuring drought-resilient species offers a pathway to resilience. Falsa emerges as a particularly promising option due to its low water requirement, tolerance to prolonged dry spells, and comparatively short gestation period. Its market demand, spanning fresh consumption, juice extraction, and medicinal processing, provides farm-level income diversification. Because falsa thrives on marginal soil, its adoption reduces land abandonment and discourages conversion into non-agricultural uses.

Embedding falsa cultivation within sustainable land management frameworks further multiplies its benefits. Practices such as organic mulching, controlled

irrigation, farmyard manure application, and minimum tillage directly contribute to soil regeneration. When orchards are intercropped with legumes or green manure crops, organic matter increases, soil microbial activity improves, and nutrient cycling stabilizes. Consequently, the system gradually rebuilds natural capital rather than depleting it.

Thus, falsa cultivation is not merely an alternative crop option; it represents an agro-ecological strategy rooted in sustainability principles. By aligning crop selection with water realities, economic incentives, and long-term soil stewardship, it exemplifies how horticulture can drive climate adaptation and economic renewal in semi-arid Pakistan.

Integrated Soil Conservation Techniques for Falsa Orchards

Soil conservation in Falsa orchards is not an isolated practice; it is an integrated system that simultaneously enhances soil quality, improves water efficiency, and sustains long-term orchard productivity. The cornerstone of this system is the enhancement of organic matter through incorporation of well-decomposed manure, vermi-compost, and green manure crops. Increased organic carbon not only improves soil aggregation but also facilitates deeper moisture infiltration and supports microbial diversity. Evidence from recent orchard trials in Sindh indicates that regular compost application can increase soil moisture retention by nearly one-fifth, demonstrating that organic enrichment provides tangible agronomic benefits under semi-arid conditions.

Mulching complements this organic enrichment by forming an insulating layer over the soil surface. Organic mulches such as straw, dried leaves, or pruned branches minimize evaporation losses, moderate soil temperature fluctuations, and gradually decompose to contribute organic matter. This effect is particularly valuable in the establishment phase of orchards, when root systems remain shallow.

Cover cropping with nitrogen-fixing legumes further enhances soil integrity. Short-duration species supply biologically fixed nitrogen, protect exposed soil from erosion, reduce weed pressure, and yield biomass that can later be incorporated as mulch. As orchards mature, conservation tillage practices particularly minimum tillage prevent structural disturbance, reduce carbon losses, and maintain natural soil porosity.

Physical structures such as micro-catchments and low earthen bunds serve as small-scale water harvesting units, especially under variable rainfall regimes. They slow runoff and enhance infiltration around each tree basin. Integrating agroforestry elements such as boundary windbreaks stabilizes topsoil, reduces desiccating winds, and generates auxiliary products like leaf manure and fuelwood.

Finally, targeted interventions such as gypsum application in sodic areas and micronutrient spray programs during flowering provide corrective measures that improve soil permeability and enhance fruit quality. Collectively, these practices create resilient orchard systems that uphold soil functionality and support profitable production over time.

Precision Water Management for Sustainability

The imperative of precision water management has intensified in Pakistan's semi-arid agricultural zones, particularly within districts such as Tando Allahyar where groundwater resources are rapidly declining and surface water availability remains uncertain. In this context, optimization of each irrigation input becomes central to sustaining crop productivity while preserving long-term hydrological balance. Modern drip irrigation technology provides one of the most efficient pathways to achieve this objective. By supplying moisture directly to the active root zone, drip systems reduce conveyance losses, lower evaporative wastage, and enable uniform nutrient dosing. Empirical evidence indicates that the shift from traditional flood irrigation systems to drip irrigation can substantially improve water productivity and produce higher marketable yields due to better plant nourishment and reduced physiological stress.

Alongside irrigation efficiency, the application of deficit irrigation strategies serves as a complementary approach. Rather than adhering to uniform watering cycles across all plant stages, deficit irrigation allows controlled water stress during non-critical phases. For perennial crops or horticultural varieties, such as fruit-bearing species grown in Tando Allahyar, controlled stress post-harvest or during vegetative dormancy does not compromise yield potential and can meaningfully reduce total water withdrawals. Given the unpredictability of monsoon flows, farmers can further enhance resilience by harvesting rainwater through farm ponds, lined storage structures, and recharge pits that allow storm-water to percolate into the underground aquifer.

Furthermore, poor-quality irrigation and insufficient drainage frequently induce salinity accumulation and waterlogging, two of the most binding constraints for sustainable farm productivity. Precision water management must therefore incorporate adequate drainage systems,

both open and subsurface, to safely evacuate excess salts and maintain aerobic soil conditions. Collectively, these interventions transition agriculture toward more sustainable hydrological practices that align with ecological constraints, reduce production risk, and stabilize farming incomes across water-stressed areas.

Agroecological Pest Management and Farm System Resilience

Agroecological Pest Management (AEPM) represents a paradigm shift from conventional, chemical-based pest control toward a holistic framework that safeguards ecological integrity, soil life, and farm sustainability. This approach emphasizes preventive, knowledge-intensive strategies that minimize disturbances to agroecosystems. Cultural controls form the foundation of AEPM, beginning with rigorous orchard sanitation, removal of diseased or infested plant parts, and selective pruning that improves sunlight penetration and air movement. These practices interrupt pest life cycles and create microclimatic conditions unfavorable to common orchard pests. The use of pest-tolerant or resistant varieties further reduces vulnerability and strengthens system-level resilience.

Biological controls reinforce ecological balance by enhancing populations of beneficial organisms. Natural predators such as ladybird beetles, lacewings, and parasitic wasps can effectively regulate aphids, mites, and other pests when their habitats are preserved. Augmentative options such as microbial biopesticides, including entomopathogenic fungi, can offer targeted control without residual toxicity. Chemical interventions remain part of the arsenal but are deployed strictly as a last resort and based on economic thresholds rather than routine calendar-based sprays. In such cases, softer, selective formulations such as neem derivatives, botanical extracts, and soap-based insecticides allow growers to manage outbreaks without undermining pollinator abundance or predator-prey dynamics.

Resilient orchard design further strengthens AEPM outcomes. A falsa-based system achieves multi-layered stability by integrating leguminous intercrops during the establishment phase, producing additional revenue while simultaneously replenishing soil nitrogen. Soil cover, through crop residues, mulch, or living ground covers, supports moisture retention and suppresses weed populations. Nutrient cycling is enhanced when small livestock units are incorporated, allowing manure to serve as organic fertilizer. Collectively, AEPM and system diversification reduce production risk, lower chemical dependency, and reinforce economic and ecological durability in horticultural landscapes.

Economic and Social Benefits of Soil Conservation

Soil conservation generates measurable economic and social gains that extend beyond immediate productivity improvements. By maintaining organic soil matter, improving structure, and stabilizing nutrient availability, farmers experience higher resource-use efficiency, directly reducing expenditure on external inputs. Studies in semi-arid agricultural systems indicate that farms practicing regular conservation measures such as mulching, balanced fertilization, and organic amendments achieve 15–25 percent higher yield stability, particularly during stress years. This translates into improved profitability because farmers not only achieve better yields but also spend less on repeated fertilizer applications, irrigation cycles, and pest control measures. Soil systems rich in biological activity inherently suppress pests and retain moisture longer, lowering operational costs over time.

Conservation also acts as a risk mitigation mechanism. As climate variability intensifies, soils with healthy structure retain water during heat stress and release it gradually, keeping crops physiologically sound. These soils buffer production against market shocks by ensuring stable supply. At the community level, healthier soils support rural livelihoods by stabilizing on-farm

employment and reducing vulnerability to crop failure.

The long-term asset value dimension is critical. When land maintains its productive quality, it preserves intergenerational equity. Children inheriting land with stable soil fertility face lower restoration costs and have stronger economic security. In rural economies dependent on agricultural assets, soil conservation effectively becomes a wealth-preservation strategy that safeguards environmental and financial capital simultaneously.

Policy Recommendations for Sustainable Falsa Cultivation

Achieving sustainable Falsa cultivation in Tando Allahyar requires a coordinated policy and institutional framework that aligns farm-level practices with district-wide and provincial sustainability goals. Soil conservation must be positioned not as an optional practice but as the foundational investment necessary to secure long-term agricultural viability. Farmers will need targeted guidance to adopt integrated soil-health measures beginning with increased application of organic amendments, structured irrigation scheduling, and the use of mulching and cover cropping in young orchards. These practices should be incentivized through institutional support to ensure early adoption.

Research and extension institutions must develop crop-specific, evidence-based soil-management modules tailored to Falsa under semi-arid climatic conditions. Their role extends beyond technical dissemination and includes establishing demonstration plots, monitoring long-term soil health trends, and validating

returns on investment for farmers. Continuous documentation of field performance will reinforce confidence in recommended technologies.

At the policy level, enabling measures such as subsidized drip irrigation, concessional credit for orchard establishment and water-harvesting structures, and free or subsidized soil testing services will accelerate uptake. Policymakers should also support market development through quality-grading standards, producer cooperatives, and certification systems for sustainably produced Falsa.

A strategic shift from extractive soil usage to regenerative soil stewardship is essential for agricultural resilience in semi-arid Sindh. Falsa cultivation grounded in robust conservation protocols provides a scalable model for climate-aligned rural transformation.

Conclusion

The analysis presented in this article demonstrates that sustainable agriculture is not merely an aspirational direction for semi-arid regions such as Tando Allahyar, but a practical pathway toward resilient, profitable, and ecologically secure farming systems. Soil conservation emerges as the central pillar of this transformation, ensuring that land remains productive under intensifying climatic pressures. Techniques such as organic matter enrichment, mulching, cover cropping, and conservation tillage reinforce long-term soil structure and nutrient stability while reducing dependence on external inputs.

Within this sustainability framework, Falsa cultivation offers a strategic

opportunity. Its low water footprint, resilience to heat and drought, short gestation period, and diversified market demand render it uniquely compatible with the ecological limitations of semi-arid Sindh. When supported by precision water management, agroecological pest control, and intercropping-based diversification, Falsa orchards become regenerative systems that rebuild soil capital, reduce production risk, and provide sustained income flows to farming households.

Furthermore, the benefits of soil conservation extend beyond agronomic gains, strengthening financial stability and protecting intergenerational land value. To institutionalize this transition, coordinated policy support, targeted research, and tailored extension services are indispensable. Ultimately, sustainable Falsa cultivation demonstrates how crop choices aligned with ecological realities can reshape local agriculture into a climate-adaptive, economically viable, and environmentally restorative model for future growth.

References: FAO; Hussain et al; IUCN; PCRWR; Solangi et al.

Please note that the views expressed in this article are of the author and do not necessarily reflect the views or policies of any organization.

The writer is affiliated with MAK Agri & Cattle Farm Sultanabad (LLP), Sindh, Pakistan and can be reached at mashooqnbp@gmail.com

Pakistan Agriculture: Challenges & Growth Potential

Explore the critical role of Pakistan agriculture sector in economic and social development, including its historical context, the Green Revolution, and current challenges like climate change, yield stagnation, and mechanization gaps affecting food security in Pakistan.

Syed Ali Ummar

12/18/2025

Since independence, agriculture has remained the backbone of Pakistan's economy, underpinning food security, rural livelihoods, and broader socio-economic development. At the time of independence in 1947, the sector dominated employment and output, providing sustenance and income to a largely agrarian population. Over the decades, however, Pakistan's agricultural trajectory has been shaped by a complex interaction of demographic pressure, technological change, and environmental stress. Today, the sector stands at a critical crossroads, where sustaining productivity must be reconciled with resource constraints and structural transformation in the rural economy.

In the early post-independence period, agricultural growth was driven primarily by the expansion of cultivated land and irrigation infrastructure. The development of the Indus Basin irrigation system enabled Pakistan to bring approximately 22–24 million hectares under cultivation, forming the foundation of national food production. Initially, productivity gains were modest due to low cropping intensity and limited use of modern input. This changed decisively during the Green Revolution of the 1960s and 1970s, when high-yielding varieties of wheat and rice, increased fertilizer application, mechanization, and widespread tubewell irrigation significantly raised yields, particularly in Punjab and Sindh (Kirby et al., 2017). These innovations transformed Pakistan into a food-grain self-sufficient country for several decades.

In recent years, however, the expansionary model has reached its limits. The total cultivated area has stagnated at around 23.5 million hectares, while urbanization and infrastructure development continue to encroach on

prime agricultural land. Evidence from Sindh's Indus Plains indicates agricultural land abandonment rates of 13–14 percent in some districts, largely due to water scarcity, salinity, and declining profitability (Rajpar et al., 2019). Simultaneously, agriculture's share in national employment has fallen sharply from nearly 65 percent at independence to about 37.4 percent in 2022–23 (Pakistan Economic Survey). While this reflects broader economic diversification, it also signals distress-driven rural out-migration and mounting challenges to the sustainability of Pakistan's agrarian base.

Crop Production, Mechanization, and Systemic Constraints

Crop production remains the core of Pakistan's agricultural economy, with major crops, wheat, rice, cotton, sugarcane, and maize, accounting for more than one-third of agricultural GDP and forming the backbone of national food security and agro-based industries. These crops also dominate land use and public policy attention, particularly through support prices, input subsidies, and irrigation allocation. However, despite the productivity gains achieved during the Green Revolution, the performance of the crop sector in recent decades has been increasingly constrained by structural, technological, and environmental factors.

Agricultural growth has been volatile and, in many years, has failed to keep pace with rapid population growth. Wheat, the country's staple food, illustrates this challenge clearly. Average wheat yield growth has slowed to around 1 percent per year, which is insufficient to meet rising domestic demand driven by population increase and changing consumption patterns (Haider et al., 2019). Similar yield stagnation is evident in cotton and

sugarcane, where productivity gaps persist relative to regional and global benchmarks. These trends have heightened dependence on imports and increased exposure to global price volatility.

Mechanization, a key driver of productivity growth, remains highly uneven across farm sizes and regions. While tractors and mechanical sprayers are commonly used for land preparation and crop protection, critical operations such as precision sowing and harvesting particularly for wheat and rice still rely heavily on manual labor. This is especially pronounced among smallholders, who constitute over 80 percent of farms and typically operate less than five hectares. High machinery costs, limited access to formal credit, and weak custom-hiring services significantly constrain adoption (Mahmood et al., 2025).

These systemic constraints are further intensified by climate change. Extreme weather events are becoming more frequent and destructive, with the 2022 floods alone causing an estimated USD 3.7 billion in agricultural losses and damaging over 4.4 million acres of cropland (World Bank, 2023). Together, stagnant yields, mechanization gaps, and climate shocks underscore the urgent need for structural reform and climate-resilient investment in Pakistan's crop production system.

Growing Import Dependence and Strained Export Performance

Pakistan's agricultural trade performance increasingly reflects underlying structural weaknesses in domestic production, value addition, and market integration. The agricultural trade balance has become progressively strained, with import

growth consistently outpacing export earnings. One of the most pressing concerns is the country's heavy reliance on imported edible oils. Pakistan now imports more than 85 percent of its edible oil requirements, primarily palm oil and soybean oil, creating a substantial and recurring drain on scarce foreign exchange reserves. This dependence persists despite agro-ecological potential for oilseed crops such as canola, sunflower, and soybean, pointing to policy neglect and weak incentives for domestic diversification.

Similarly, recurring wheat imports have become a structural feature rather than an emergency response. In recent years, wheat imports have exceeded 3 million metric tons, reflecting stagnating yields, post-harvest inefficiencies, and population-driven demand pressures (USDA FAS, 2024). These imports not only burden the fiscal and external accounts but also undermine price signals for domestic producers, discouraging long-term investment in productivity-enhancing technologies.

On the export side, Pakistan's agricultural exports remain narrowly concentrated and largely confined to low-value or semi-processed commodities. Rice is a notable exception in terms of volume, with Pakistan ranking among the world's leading exporters. However, value capture remains limited due to minimal branding, weak quality differentiation, and low levels of processing. Cotton exports have similarly shifted from raw fiber toward yarn, but progressing up the value chain into finished textiles remains uneven.

Non-traditional exports such as fruits, vegetables, and livestock products offer significant growth potential but face persistent constraints. These include difficulty in meeting international sanitary and phytosanitary standards, weak certification systems, and high post-harvest losses estimated at 25–40 percent. Although the China–Pakistan Economic Corridor (CPEC) provides opportunities for improved market access and logistics, realizing these gains will require substantial investment in cold chain

infrastructure, agro-processing, and quality assurance systems. Without such reforms, Pakistan's agricultural trade imbalance is likely to persist, reinforcing macroeconomic vulnerability.

Socioeconomic Pressures and the Climate Imperative

Agriculture in Pakistan remains deeply intertwined with rural livelihoods, poverty reduction, and national food security, making its vulnerability to climate change a critical development concern. Despite decades of policy interventions, food insecurity remains widespread. In 2023, an estimated 36.9 percent of the population faced moderate to severe food insecurity (FAO et al., 2023), while child stunting rates have persistently hovered around 38 percent, reflecting chronic deficiencies in both food access and nutritional quality. These outcomes are most pronounced in rural areas, where dependence on climate-sensitive agriculture amplifies household vulnerability to shocks.

Climate change increasingly acts as a threat multiplier, compounding existing structural weaknesses. Pakistan's per capita water availability has declined sharply to below 1,000 cubic meters per year, officially classifying the country as water scarce. This decline is driven by rapid population growth, inefficient irrigation practices, and changing hydrological patterns linked to rising temperatures and erratic rainfall. Smallholder farmers, who dominate the agricultural landscape, are particularly exposed to these stresses, facing higher production risks, unstable incomes, and limited capacity to adapt.

The macroeconomic implications are equally severe. Empirical projections suggest that, in the absence of effective adaptation measures, climate-induced damages could reduce agricultural GDP by as much as 9 percent by 2050 (Khan et al., 2020). Such losses would have cascading effects on employment, rural purchasing power, food prices, and overall economic stability. Climate shocks also increase fiscal pressures

through disaster response, food imports, and social protection expenditures.

Looking ahead, demographic pressures intensify the challenge. With the population projected to reach approximately 263 million by 2030, Pakistan will need to increase food production by an estimated 35–55 percent to meet domestic demand (Kirby et al., 2017). Achieving this target under conditions of land, water, and climate constraints is not feasible through conventional, input-intensive approaches alone. Instead, a fundamental transition is required toward knowledge-based, climate-resilient agriculture, emphasizing efficient water use, stress-tolerant crop varieties, improved agronomic practices, and stronger extension and research systems. Without such a shift, the twin goals of food security and rural poverty reduction will remain increasingly elusive.

Policy Imperatives and a Roadmap for Sustainable Transformation

Addressing Pakistan's agricultural and rural development challenges requires a comprehensive, integrated policy framework that moves beyond fragmented, short-term interventions. Central to this transformation is climate-resilient water management. Expanding the adoption of drip and sprinkler irrigation systems, promoting water-efficient and less water-intensive crops, and rehabilitating canal networks and on-farm watercourses are critical steps to counter acute water scarcity. Efficient water use not only sustains crop productivity but also mitigates the long-term risk of soil salinization and groundwater depletion.

Investment in precision agriculture and research and development forms the second pillar of a sustainable strategy. Developing and disseminating climate-smart seed varieties that are drought- and flood-tolerant, coupled with the integration of digital tools for optimized input application, can enhance productivity while reducing environmental stress. Modern mechanization, aligned with research-

driven extension services, is essential for improving efficiency across smallholder farms, which dominate the agricultural landscape.

Inclusive value chain development is equally important. Promoting contract farming arrangements, establishing agro-processing clusters, and strengthening cold storage and logistics infrastructure can reduce post-harvest losses, enhance product quality, and improve competitiveness in global markets. Such measures not only increase farmer incomes but also facilitate export-led diversification in high-value commodities such as fruits, vegetables, and livestock products.

Targeted support for smallholders is necessary to ensure equitable development. Access to affordable credit, crop insurance, and direct incentives for sustainable farming practices can improve resilience, reduce vulnerability to climate shocks, and encourage the adoption of innovative technologies.

Finally, robust monitoring and governance mechanisms are indispensable. Implementing real-time agricultural data systems, reinforcing inter-ministerial coordination, and establishing transparent monitoring frameworks will ensure policy coherence and effective implementation. Collectively, these measures provide a strategic roadmap for transforming Pakistan's agriculture into a climate-resilient, productive, and inclusive sector capable of meeting national food security and economic development goals.

Conclusion

Pakistan's agricultural sector has played a central role in shaping the country's economic and social development since independence, sustaining rural livelihoods, ensuring food security, and supporting national growth. Historical interventions, including the Green Revolution and expansion of irrigation infrastructure, enabled significant gains in productivity and self-sufficiency. However, in recent decades, the sector has faced mounting challenges: stagnant cultivated areas, declining labor participation, yield stagnation, mechanization gaps, and exposure to extreme climate events have collectively constrained its growth potential.

Structural weaknesses are compounded by growing import dependence and limited export diversification. Heavy reliance on imported edible oils and recurring wheat imports reflects production shortfalls, while exports remain concentrated in low-value commodities with minimal value addition. Non-traditional export sectors, though promising, suffer from inadequate infrastructure, high post-harvest losses, and limited compliance with international standards.

Socioeconomic pressures, particularly rural poverty, food insecurity, and population growth, intersect with climate vulnerability, making adaptation imperative. Water scarcity, erratic rainfall, and increasing frequency of extreme events threaten both production and livelihoods. Without targeted

interventions, projections indicate potential reductions of up to 9 percent in agricultural GDP by 2050, with cascading effects on employment, nutrition, and national economic stability.

A sustainable transformation requires integrated policies emphasizing climate-resilient water management, precision agriculture, inclusive value chains, targeted smallholder support, and robust governance. By adopting knowledge-driven, climate-smart approaches, Pakistan can enhance productivity, equity, and resilience, ensuring that agriculture continues to underpin national food security, rural prosperity, and long-term economic development. This transition is critical to securing the future of Pakistan's agrarian economy in the face of demographic, environmental, and market pressures.

References: FAO; IFAD; UNICEF; WFP; WHO; Haider et al; Khan et al; Kirby et al; Mahmood et al; Government of Pakistan; Rajpar et al; USDA FAS; World Bank.

Please note that the views expressed in this article are of the author and do not necessarily reflect the views or policies of any organization.

The writer is affiliated with the Institute of Agricultural & Resource Economics, University of Agriculture, Faisalabad, Pakistan and can be reached at syedalihammar22@gmail.com

Youth Participation in Pakistan's Environmental Future

Explore how youth participation is crucial for shaping Pakistan's environmental future. Young people are not just victims of climate change; they are active stakeholders driving meaningful solutions for sustainability and socio-economic development.

M. Amjad Iqbal, Azhar Abbas, Abdus Samie & Asma Farooq

12/26/2025

Youth participation is globally recognized as a cornerstone of effective environmental stewardship, as young people bring energy, innovation, and long-term stakes in the future of the planet. In Pakistan, a country among the most climate-vulnerable in the world, mobilizing this vast youth cohort is not merely beneficial but essential for achieving sustainable development. With more than sixty percent of the population under the age of thirty, Pakistan possesses a demographic advantage that, if strategically engaged, can become a powerful force for environmental resilience rather

Pakistan faces a convergence of environmental challenges, including climate-induced floods, heatwaves, water scarcity, air pollution, deforestation, and declining agricultural productivity. These challenges directly affect livelihoods, food security, and public health, particularly in rural and peri-urban areas. Youth are uniquely positioned to respond to these pressures through community-level action, technological innovation, advocacy, and behavioral change. From climate-smart agriculture and waste management initiatives to renewable energy solutions and environmental awareness campaigns, young people are increasingly shaping local responses to global environmental threats.

Encouraging examples already exist. Youth-led organizations, student climate groups, green startups, and volunteer movements across Pakistan are actively involved in tree plantation drives, plastic reduction campaigns, disaster response, and climate education. Universities and civil society organizations have begun integrating environmental leadership programs and sustainability projects into academic and extracurricular activities,

creating early exposure to green skills and environmental ethics.

However, these efforts remain fragmented and under-supported. To unlock the full potential of youth engagement, stronger policy integration is required. Environmental strategies must systematically incorporate youth voices in planning, implementation, and monitoring processes. Investments in green education, skills development, and youth entrepreneurship can transform environmental action into viable economic pathways. By aligning youth participation with national climate and development goals, Pakistan can convert its demographic strength into a resilient, inclusive, and sustainable environmental future.

Environmental Challenges and Youth Relevance

Pakistan's environmental challenges are both deepening and multidimensional, placing extraordinary pressure on its economy, ecosystems, and social fabric. Despite contributing only a negligible share to global greenhouse gas emissions, the country consistently ranks among the most climate-vulnerable nations, standing 8th in the Global Climate Risk Index (2021). Climate change has intensified the frequency and severity of floods, droughts, heatwaves, and erratic rainfall patterns, directly threatening agriculture, water security, and rural livelihoods. These environmental shocks disproportionately affect young people, who represent the largest share of the population and will bear the long-term consequences of today's ecological degradation.

Land degradation is one of the most pressing concerns, with more than 40 percent of Pakistan's agricultural land affected by soil erosion, salinity, and

declining fertility (UNCCD, 2022). This undermines food security and reduces employment opportunities for rural youth, many of whom depend on agriculture for income. At the same time, water scarcity has reached alarming levels. Per capita water availability has fallen to approximately 860 cubic meters, well below the internationally recognized water scarcity threshold (PCRWR, 2023). For young farmers and rural communities, shrinking water resources translate into lower productivity, heightened competition, and increased vulnerability to poverty.

The devastating floods of 2022 starkly exposed Pakistan's climate fragility. Affecting over 33 million people, the disaster destroyed homes, schools, and livelihoods, with young people facing disrupted education, forced migration, and long-term economic uncertainty (World Bank, 2023). These experiences position youth not only as victims of environmental stress but also as central stakeholders in shaping adaptive responses.

Given their numbers, adaptability, and local knowledge, Pakistani youth are uniquely placed to act as agents of change. Through community-based adaptation, climate-smart agriculture, disaster preparedness, and environmental advocacy, youth engagement is critical for translating national climate goals into effective local action.

Youth-Led Environmental Action and Socio-Economic Transformation

Across Pakistan, young people are emerging as frontline actors in environmental protection, translating awareness into concrete action at community, national, and digital levels. One of the most visible examples is the government's Ten Billion Tree Tsunami

Program, which has actively engaged an estimated 200,000 young volunteers in tree plantation, nursery management, and ecosystem restoration activities (MoCC, 2023). Through their participation, youth have not only contributed to carbon sequestration and biodiversity recovery but have also gained hands-on exposure to environmental management practices. Beyond large government initiatives, grassroots movements such as Clean Green Pakistan and university-based sustainability clubs have mobilized students and local youth to lead clean-up drives, promote plastic reduction, and introduce waste segregation at source (Pak-EPA, 2022). These localized actions play a critical role in changing everyday environmental behavior and strengthening civic responsibility.

The digital sphere has further amplified youth influence. Pakistani youth are increasingly using social media platforms to raise awareness about air pollution, deforestation, climate justice, and urban environmental degradation. Viral campaigns and online advocacy have reached millions, pressuring policymakers and institutions to respond more transparently to environmental concerns (Zaheer & Malik, 2023). This digital activism has expanded the reach of environmental discourse beyond traditional forums, making sustainability a mainstream public issue.

Importantly, youth-led environmental action is also generating measurable socio-economic benefits. Initiatives such as the Green Youth Movement aim to create up to 200,000 green jobs in renewable energy, eco-tourism, waste management, and conservation services, directly linking environmental protection with employment creation (MoCC, 2023). Young entrepreneurs are developing innovations in climate-smart agriculture, organic inputs, and low-cost water filtration technologies, enhancing local resilience while creating livelihoods. However, the broader impact of these efforts remains constrained by limited access to green finance, gaps in technical and vocational training, and insufficient institutional platforms for youth

participation in environmental decision-making (SDPI, 2022). Addressing these barriers is essential to fully harness youth potential for sustainable development.

Global Perspective and Country Comparison

International experience clearly demonstrates that structured and institutionalized youth integration can significantly strengthen environmental outcomes while simultaneously addressing employment and skills development. In Germany, the well-established “Green Jobs” apprenticeship system offers a compelling model. Through close coordination between vocational institutes, industry, and government, young people receive formal training aligned with labor market demand in renewable energy, energy efficiency, waste management, and recycling sectors. This approach ensures a steady pipeline of skilled workers, reduces youth unemployment, and supports Germany’s broader energy transition goals (OECD, 2021). The success of this model lies in its integration: environmental objectives are embedded directly within education and workforce planning rather than treated as standalone initiatives.

India provides another instructive example through its Green Skill Development Program (GSDP). Launched to address both environmental degradation and youth unemployment, the program has trained more than 80,000 young people in areas such as biodiversity conservation, waste management, clean energy technologies, and watershed restoration (MoEFCC, India, 2022). These trained youth are deployed in national programs related to climate adaptation, sanitation, and natural resource management, thereby linking skill development with tangible environmental outcomes. The program’s nationwide scale, standardized curriculum, and public-private partnerships have been key to its effectiveness and sustainability.

In contrast, Pakistan, despite having one of the largest youth populations in the world, lacks similarly comprehensive and institutionalized mechanisms for youth engagement in environmental sectors. Youth participation is largely project-

based, donor-driven, or limited to short-term volunteer initiatives. While these efforts generate awareness and localized impact, they remain fragmented, underfunded, and weakly connected to long-term employment pathways. The absence of a national green skills framework or apprenticeship system means that much of Pakistan’s youth potential remains untapped. Bridging this gap requires moving beyond ad hoc initiatives toward integrated policies that align education, labor markets, and environmental priorities, enabling youth to contribute meaningfully and sustainably to the country’s environmental future.

Strategic Pathways to Empower Youth for Environmental Sustainability

Youth represent Pakistan’s most dynamic and adaptable resource in the pursuit of environmental sustainability, yet their potential remains underutilized without deliberate and coordinated action. To translate youthful energy into measurable environmental and economic gains, a set of integrated and forward-looking strategies is essential. First, policy integration must move beyond symbolic inclusion. Youth representation should be formally embedded within national and provincial climate governance structures, including the implementation mechanisms of the National Climate Change Policy and related sectoral strategies. This would ensure that youth perspectives inform planning, monitoring, and evaluation processes, while also fostering a sense of ownership and long-term commitment among younger generations.

Second, substantial investment in capacity building is critical to bridge the gap between environmental awareness and practical impact. Expanding funding for green skills education, technical and vocational training, and climate-focused curricula can equip youth with market-relevant competencies in renewable energy, sustainable agriculture, water management, and waste recycling. Complementing this, youth-led startup incubators and innovation hubs should be supported to encourage entrepreneurship in green sectors, enabling young innovators to convert ideas into scalable solutions that

address local environmental challenges while generating employment.

Third, institutional support must be strengthened through the consolidation and scaling of existing initiatives such as the Green Youth Movement and the Ten Billion Tree Tsunami Program. Dedicated and predictable financing, robust monitoring and evaluation frameworks, and formal credentialing systems can transform these programs from short-term interventions into sustainable career pathways. Recognizing and certifying youth participation not only enhances employability but also incentivizes sustained engagement in environmental action.

Empowering youth today is a strategic investment in Pakistan's ecological resilience and economic future. By channeling their innovation, skills, and commitment into structured and well-supported environmental initiatives, Pakistan can convert pressing environmental challenges into opportunities for inclusive, sustainable development and long-term national stability.

Conclusion

Youth participation stands out as a decisive factor in shaping Pakistan's environmental future. This article has demonstrated that young people are not merely passive victims of climate change and environmental degradation; rather, they are active stakeholders with the capacity to drive meaningful and lasting solutions. Pakistan's demographic structure, with a majority youth population, offers a unique opportunity to align environmental sustainability with socio-economic development. When effectively engaged, youth can bridge the gap between national climate commitments and grassroots-level implementation through innovation, community action, and advocacy.

The evidence discussed shows that youth-led initiatives already contribute to conservation, climate awareness, green employment, and resilience building. However, the fragmented nature of these efforts limits their scale and long-term impact. Without systematic policy integration, sustained investment in green skills, and strong institutional frameworks, many of these potential risks remain untapped. International experiences further reinforce that structured youth engagement linked to education, labor markets, and environmental planning can

simultaneously address unemployment and environmental degradation.

Moving forward, Pakistan must treat youth engagement not as a supplementary activity but as a central pillar of its environmental and development strategy. Embedding youth voices in decision-making, investing in capacity building, and creating clear green career pathways can transform environmental challenges into opportunities for inclusive growth. Ultimately, empowering youth today is an investment in a more resilient, equitable, and sustainable Pakistan for generations to come.

References: Global Climate Risk Index; Ministry of Climate Change; OECD; Pakistan Bureau of Statistics; PCRWR; Pak-EPA; SDPI; UNCCD; UNDP; World Bank; Zaheer & Malik.

Please note that the views expressed in this article are of the author and do not necessarily reflect the views or policies of any organization.

The writers are affiliated with the Institute of Agricultural & Resource Economics, University of Agriculture, Faisalabad, Pakistan and can be reached at amjed.iqbal@uaf.edu.pk

Transforming Agriculture with Drone Technology

Explore how drone technology is revolutionizing agriculture by enhancing crop monitoring and enabling data-driven decision-making. Discover the financial benefits, including increased farm income by 12–15%.

Komal Arshad

12/4/2025

Agriculture is experiencing a transformational shift as digital technologies redefine how farms are monitored, managed, and optimized. Among these innovations, unmanned aerial vehicles (UAVs), or drones, have become one of the most influential tools in precision agriculture. Equipped with multispectral, hyperspectral, and thermal sensors, drones now enable farmers to collect high-resolution data on crop health, pest incidence, water stress, and soil conditions in real time. This capability shifts agricultural decision making from intuition-based approaches to evidence-driven precision, significantly improving resource allocation and productivity.

For instance, drones enable early detection of nutrient deficiencies and disease outbreaks, allowing farmers to apply fertilizers, pesticides, or irrigation only where needed. Research shows that adopting drone-assisted targeted spraying reduces input use by up to 30% while increasing yields by optimizing nutrient delivery (Bacco et al., 2019). This is especially valuable given rising fertilizer prices and environmental concerns associated with excessive agrochemical use. Furthermore, drones provide rapid and cost-effective coverage of large fields, making them particularly useful for small and medium-sized farms lacking access to traditional mechanized monitoring systems.

The economic outlook of drone technology reflects strong global demand. With the market valued at roughly USD 1.2 billion in 2019 and projected to reach USD 4.8 billion by 2024, a CAGR of 32% investment and innovation are scaling rapidly. This growth is supported by the expansion of automated flight planning, AI-powered image

interpretation, and cloud-based analytics platforms that translate raw drone imagery into actionable advisories.

Beyond productivity enhancement, drones also support climate-smart agriculture. They help estimate crop biomass and carbon sequestration potential and assist in post-disaster assessments following floods, droughts, or pest invasions. As agriculture faces escalating pressure from climate change, shrinking land resources, and rising food demand, drones represent an increasingly indispensable component of modern, sustainable farming systems.

Prospects and Integration Pathways for Drone-Enabled Agriculture

The future of drone-enabled agriculture lies not only in collecting high-resolution imagery but in fully integrating this data into decision-support systems that guide farm operations from pre-sowing to post-harvest. Increasingly, drones are being synchronized with artificial intelligence platforms that automatically analyze plant health indicators, canopy cover, moisture levels, and vegetation indices such as NDVI. This integration enables farmers to receive real-time recommendations, such as variable-rate fertilizer application or site-specific irrigation scheduling, reducing production costs and enhancing environmental stewardship. The shift from manual interpretation toward automated advisory models is expected to dramatically enhance both usability and adoption among smallholder farmers.

Industry evidence suggests that drones will also play a transformative role in insurance assessment and yield forecasting. Agricultural insurers are evaluating drone-based digital assessments to replace slow and costly field visits, thereby accelerating claims

processing, increasing transparency, and encouraging the uptake of crop insurance products. Similarly, pre-harvest yield estimation using AI-processed drone imagery supports more accurate production planning and contract farming arrangements, reducing uncertainty for buyers and farmers alike.

Another emerging frontier is drone-based input delivery. Experimental trials in Asia and Latin America are testing drone spraying systems capable of applying micronutrients and pesticides to specific zones with high precision. Early results indicate a reduction of water use, reduced drift losses, and minimized farmer exposure to hazardous chemicals, aligned with global sustainable agriculture agendas.

Capacity building will be essential to unlock these benefits. Training programs in drone operation, digital mapping, and data interpretation are increasingly being incorporated into extension services and agricultural universities. With supportive regulations, financing options for drone rentals or service-based models, and innovations in local manufacturing, drone technology is poised to evolve from a high-tech tool into a mainstream agricultural service. As climate and market risks intensify, drones will serve as a critical asset for resilient, efficient, and knowledge-based farming systems globally.

Trends in Drone Adoption and Implications for Crop Monetization

The integration of drone technology within agriculture is advancing rapidly, yet adoption remains influenced by demographic and structural factors. Recent evidence highlights that farm size, education level, and income significantly shape technology uptake. A 2023 USDA

assessment showed that approximately 65% of large farms exceeding 500 hectares have already integrated drones into production, compared with only 22% among smallholders. This disparity stems from differences in purchasing capacity, exposure to modern technology, and institutional support. Larger enterprises often have access to formal advisory services and better financing, whereas smaller farmers struggle with upfront costs and limited awareness. Furthermore, adoption patterns indicate that middle-aged farmers with higher levels of formal education particularly male respondents are more willing to experiment with emerging technologies.

Despite these divides, the declining cost of drones and the expansion of service-based models are increasing accessibility. Studies reveal that leasing arrangements and shared service platforms are enabling small and medium farmers to benefit from digital agriculture without major capital investment. This broader access is expected to support transition toward precision farming practices across diverse geographies.

The impact of drones on monetization is particularly significant. Their greatest contribution lies in minimizing crop loss through early detection of stressors such as nutrient deficiencies, water shortages, pest infestations, and disease outbreaks. Through multispectral imaging and timely scouting, drones allow farmers to respond before major yield declines occur. The precision application of fertilizers and pesticides further reduces input wastage, cutting costs while improving plant health. Research conducted in 2022 indicates that farmers deploying drones have achieved income increases ranging from 12% to 15%, driven by both yield gains and better-quality produce reaching markets. These improvements directly translate into higher price realization, especially for quality-sensitive crops such as horticultural produce and export-oriented commodities. Ultimately, drone technology is not merely enhancing production efficiency; it is strengthening market competitiveness and enabling

farmers to capture greater value from every hectare cultivated.

Challenges and Policy Recommendations for Sustainable Drone Adoption

Despite the demonstrated benefits of drone integration in agriculture, several systemic challenges continue to restrict widespread adoption, particularly among small-scale and resource-constrained farmers. The most immediate barrier is the high initial investment associated with acquiring drones equipped with advanced sensors, GPS systems, imaging technology, and software integration. While prices are gradually declining, the upfront cost remains prohibitive for many farmers, especially in developing economies where farm sizes are small and access to formal credit remains limited. Beyond equipment cost, annual maintenance, software subscription fees, and periodic upgrades add to long-term operational expenses.

Regulatory complexities also hinder effective uptake. In several countries, drone usage is tightly controlled due to airspace safety concerns and privacy regulations. Farmers often lack clarity on flight authorization processes, height restrictions, and operating boundaries. These procedural uncertainties discourage investment and limit utilization of drones even when purchased. Furthermore, the shortage of trained operators poses another significant barrier. Operating UAVs, interpreting multispectral imagery, and integrating drone-generated data into farm decision-making requires specialized skills that most farmers currently lack. A 2022 FAO assessment highlighted that fewer than 30% of farmers receiving digital technology support had received formal training in UAV-based crop diagnostics.

To unlock the full potential of drones, targeted and inclusive policy measures are essential. Governments could introduce financial support mechanisms, including subsidies and low-interest loans specifically designated for precision agriculture technologies. Establishing

publicly funded drone service centers at district and cooperative levels would allow farmers to access drone services without full ownership. Equally critical is investment in structured training programs, integrating UAV proficiency within agricultural extension services, vocational curricula, and farmer field schools.

Finally, developing transparent, agriculture-specific drone regulations is crucial. Policies should define permissible operating zones, streamline licensing procedures, and ensure safety standards while not burdening farmers with excessive compliance barriers. Collectively, these interventions would democratize drone access, reduce risk perceptions, and accelerate digital transformation across agricultural systems, ultimately improving productivity, sustainability, and farmer profitability.

Conclusion

Drone technology has emerged as a transformative force in modern agriculture, reshaping how crops are monitored, managed, and commercialized. Evidence presented in this article demonstrates that drones enable farmers to shift from conventional, intuition-based practices to precise, data-driven decision-making, resulting in improved efficiency, higher yields, and enhanced product quality. By enabling early detection of crop stress, optimizing fertilizer and pesticide use, reducing post-harvest losses, and improving agronomic planning, drones provide measurable financial benefits, often increasing farm income by 12–15%. This capacity is particularly critical given rising production costs, climate risk, and growing market competitiveness.

Moreover, drones hold immense promises for advancing climate-smart agricultural practices, strengthening crop insurance mechanisms, and expanding digital advisory platforms. Their role in yield forecasting, post-disaster assessments, and targeted chemical spraying positions them as a key driver of sustainable, resilient farming systems. However,

realizing these benefits equitably requires proactive policy support. High purchase costs, regulatory restrictions, and limited technical skills continue to hinder adoption among smallholders. Therefore, investments in subsidies, training programs, digital service centers, and accessible regulations are essential.

Ultimately, drone technology represents not just a technological innovation but a strategic tool for strengthening food

security, enhancing profitability, and positioning agriculture for a digitally integrated future. With appropriate institutional support, drones can become a mainstream driver of rural transformation and inclusive agricultural growth.

References: Bacco et al; FAO; Hassler & Baysal-Gurel; Khan et al; Lowenberg-DeBoer et al; Markets and Markets; Sharma et al; USDA; World Bank; Zhang & Kovacs.

Please note that the views expressed in this article are of the author and do not necessarily reflect the views or policies of any organization.

The writer is affiliated with the Institute of Agricultural & Resource Economics, University of Agriculture, Faisalabad, Pakistan and can be reached at komalarshad883@gmail.com

Modern Pricing Strategies for Competitive Markets

Explore the importance of adaptive pricing strategies in today's dynamic markets. Learn how value-based pricing and competitive benchmarking can help firms navigate production costs, consumer behavior, and market volatility effectively.

Mithat Direk

12/12/2025

Setting a product's price is a multidimensional decision that lies at the heart of business strategy, profitability, and overall market stability. While classical pricing frameworks focused heavily on cost-plus models, contemporary markets especially those influenced by rapid technological innovation and fluctuating agricultural conditions demand a far more nuanced approach (Kotler & Keller, 2016). Today's pricing decisions must incorporate both quantitative metrics and qualitative market signals to ensure that firms remain competitive, profitable, and aligned with consumer expectations. This article revisits core pricing principles and integrates current research to highlight how modern businesses navigate this evolving landscape.

In practice, companies evaluate a combination of interrelated factors when setting prices. These include the intrinsic value of the product, production and operational costs, competitive pressures, marketing and promotional strategies, distribution logistics, and the psychology of consumer perception (Nagle & Müller, 2018). Among these, perceived value has become increasingly central. It represents how consumers evaluate a product's benefits relative to available substitutes, and it often dictates the maximum price customers are willing to pay. As markets grow more saturated and consumers become more informed, value perception is shaped by performance, brand reputation, after-sales service, sustainability credentials, and even social influence.

For technical or specialized products, whether precision agriculture tools, irrigation systems, or digital advisory services value is frequently expressed in terms of measurable efficiency gains, cost reductions, or productivity improvements. In such markets, pricing must reflect not

only the cost of production but also the economic impact delivered to the user. A miscalculation in this domain can result in two major risks: underpricing, which diminishes profit margins and undervalues innovation, or overpricing, which deters adoption and enables competitors to capture dissatisfied consumers. Consequently, firms must adopt robust market research, competitor benchmarking, and continuous value assessment to establish prices that support sustainable growth and strategic market positioning.

The Centrality and Limits of Cost-Based Pricing

Cost-based pricing remains one of the most widely used approaches across industries because of its simplicity and its direct link to profitability. Under this method, a business calculates the total production cost including raw materials, labor, overheads, and distribution and then adds a predetermined markup to ensure profit. In theory, this creates a baseline or "price floor" below which firms should not ideally sell. However, the practical realities of modern markets, particularly agricultural markets, demonstrate that this theoretical floor is frequently unstable and often ignored under competitive pressure.

In agriculture, cost-based pricing encounters fundamental constraints due to the inherent volatility of commodity markets, biological production risks, and global trade fluctuations. Empirical evidence from the U.S. Department of Agriculture (USDA, 2023) shows that market prices for key commodities such as wheat, corn, and milk routinely fall below estimated production costs during periods of oversupply or depressed international demand. Farmers, unable to store perishable goods indefinitely or negotiate individually in fragmented markets, are

often compelled to sell at prices that do not cover variable costs. This structural imbalance challenges the assumption that costs can reliably dictate prices.

Retail dynamics further highlight the limitations of cost-plus models. For perishable crops such as fruits and vegetables, retailers typically apply gross margins exceeding 50 percent to compensate for high spoilage rates, refrigeration needs, and complex logistics (Food Marketing Institute, 2022). Despite these justified cost additions, consumer willingness to pay may diverge sharply based on seasonality, perceived freshness, purchasing power, or competing alternatives. As a result, retailers frequently reduce prices or accept narrow margins to clear inventory before spoilage. The mismatch between calculated costs and actual market resistance underscores a central truth: cost-based pricing can inform pricing decisions but cannot unilaterally determine them. In real markets, demand elasticity, competitive pressures, and consumer psychology often override cost structures, making value-based and market-based approaches essential complements.

Competition, Cross-Elasticity, and Market Dynamics

In competitive markets, especially those dealing with homogeneous or near-homogeneous products, pricing is heavily shaped by cross-elasticity of demand. This concept reflects how the price of one good responds to changes in the price of its substitutes. When the price of apples rises, for example, consumers quickly shift to pears or other fruits, causing their demand and price to increase correspondingly (Mankiw, 2021). This substitution effect is particularly visible in agriculture, where products often exhibit high substitutability and where real-time market auctions,

rather than production costs, set prevailing prices. Low entry barriers in many agricultural sectors intensify this dynamic. When prices rise for a particular crop, more farmers adopt it in subsequent seasons, expanding supply and eventually pushing prices downward, a recurring boom-and-bust cycle that characterizes commodity markets worldwide.

Beyond competition, pricing is also shaped by promotion, distribution systems, and consumer behavior. Promotional pricing plays a pivotal role during product launches, off-season sales, or when firms seek to boost visibility for complementary goods. Effective advertising can elevate perceived value, differentiate an otherwise homogeneous product, and shift consumer preferences even in crowded markets (Nobel, 2021). Distribution efficiency is equally influential. Modern consumers increasingly prioritize convenience, freshness, and rapid availability. A NielsenIQ (2022) survey found that 58% of consumers are willing to pay more for convenience when purchasing everyday groceries. This reveals how the "last-mile advantage" – quick delivery, better packaging, or optimized retail placement – creates additional value beyond the product itself. As a result, even standard agricultural items may command higher prices in premium retail environments or urban areas with strong purchasing power.

These forces illustrate how competition, consumer psychology, and distribution efficiency interact to shape real market prices, often overshadowing cost-based calculations and reinforcing the need for multidimensional pricing strategies.

The Unique Volatility of Agricultural Pricing

Agricultural pricing is shaped by a combination of biological, environmental, and market forces that make it more volatile than pricing in most other sectors. Unlike manufactured goods, agricultural products are produced in fixed seasonal cycles but consumed throughout the year, creating inherent supply–demand imbalances. During harvest peaks, markets often experience oversupply, leading to rapid price collapses as perishable goods

cannot be stored for long without adequate cold-chain systems. Conversely, during lean periods, even modest supply disruptions can trigger sharp price increases. The Food and Agriculture Organization (FAO, 2023) reports that global food price indices have fluctuated by more than 20 percent year-on-year due to climate extremes, rising fertilizer and fuel costs, logistical bottlenecks, and geopolitical tensions. This volatility impacts producers, intermediaries, and consumers, making pricing far less predictable than in typical consumer markets.

Short-term supply in agriculture is also highly inelastic; farmers cannot instantly increase production in response to high prices, nor can they easily reduce output when prices collapse. Weather shocks, pest outbreaks, and water scarcity compound this rigidity, intensifying price instability. Public policy further influences volatility. Governments often intervene to maintain political stability by controlling food inflation, using subsidies, price ceilings, import liberalization, or public procurement schemes. While such interventions may ease consumer prices, they can depress farmgate returns and distort long-term incentives (OECD, 2022).

Another critical driver is the efficiency of marketing and post-harvest systems. In advanced economies, integrated cold chains, processing facilities, forward contracts, and commodity exchanges help dampen seasonal swings and distribute surplus efficiently. In contrast, markets in developing countries, where storage, grading, and transport infrastructure remain weak, face much sharper intra-annual fluctuations (World Bank, 2023). As a result, agricultural pricing becomes a reflection not only of production dynamics but also of system-wide market maturity, policy choices, and climate resilience.

Conclusion

In conclusion, determining the price of a product in contemporary markets requires a multidimensional understanding that moves beyond traditional cost-based approaches. While production costs

continue to establish an essential reference point, they are no longer sufficient to guide pricing decisions in environments shaped by dynamic competition, rapid technological advancement, and increasingly informed consumers. The agricultural sector demonstrates the limitations of relying on cost-plus models, as biological production cycles, climate risks, and volatile global markets can cause persistent deviations between theoretical cost floors and actual market prices. These conditions highlight the need for firms to adopt more adaptive strategies that integrate value-based pricing, competitive benchmarking, and continuous monitoring of consumer behavior.

Modern pricing frameworks must account for the interplay between perceived value, substitutability, distribution efficiency, and policy interventions. As evidence shows, consumer willingness to pay is shaped not only by functional attributes but also by convenience, branding, and the broader purchasing experience. Simultaneously, public policy and infrastructure constraints can amplify or moderate price fluctuations, especially in agricultural markets. Ultimately, businesses capable of synthesizing economic theory, market intelligence, and strategic positioning will be better equipped to set prices that enhance profitability, ensure market relevance, and support long-term sustainability in an increasingly complex global landscape.

References: European Commission; FAO; Kotler & Keller; Mankiw; Nagle & Müller; NielsenIQ; Nobel; OECD; USDA; World Bank.

Please note that the views expressed in this article are of the author and do not necessarily reflect the views or policies of any organization.

The writer is affiliated with the Department of Agricultural Economics, Selcuk University, Konya-Türkiye and can be reached at mdirek@selcuk.edu.tr

Digital Finance: Transforming Access to Money

Digital finance has revolutionized access to money and economic participation, especially for those excluded from traditional financial systems. By leveraging mobile technology, it lowers costs and enables households and businesses.

Merha Zulfiqar

12/24/2025

Imagine sending money to a family member in a remote village instantly, paying for groceries with a simple tap on your phone, or receiving your salary directly into a digital wallet without ever visiting a bank branch. For billions of people across the world, this is no longer a futuristic vision, but a daily reality shaped by the rapid expansion of mobile and digital finance. Digital payment platforms, branchless banking, and mobile wallets have transformed how individuals save, spend, and transfer money, particularly in countries where traditional banking infrastructure has long been limited. For low-income households, small farmers, and informal workers, these technologies have opened doors to financial services that were once out of reach, reducing transaction costs, saving time, and increasing economic participation.

However, this remarkable progress comes with a serious and often overlooked risk. The same tools that make financial services accessible and convenient have also created new opportunities for fraud, scams, and digital theft. First-time users, many of whom have limited digital literacy, are especially vulnerable. Phishing messages, fake prize notifications, fraudulent loan offers, and social engineering scams exploit trust and unfamiliarity with digital systems. A single mistaken click or shared PIN can wipe out hard-earned savings in seconds, undermining confidence in digital finance altogether.

This creates a delicate balancing act, a tightrope walk between inclusion and protection. Expanding access to digital finance without adequate safeguards can unintentionally expose vulnerable populations to financial harm. True financial inclusion, therefore, cannot stop providing accounts or mobile apps; it

must also ensure that users are informed, protected, and empowered. Building digital literacy, strengthening consumer protection frameworks, and embedding security by design are as essential as expanding access itself. In the 21st century, the success of financial inclusion will be measured not only by how many people are connected to digital finance, but by how safely and confidently they can use it.

The Digital Lifeline and Its Hidden Dangers

Digital finance has emerged as a powerful lifeline for millions who were previously excluded from formal financial systems. By leveraging mobile phones and digital platforms, countries with limited banking infrastructure have been able to leapfrog traditional models of financial inclusion. Uganda offers a compelling example of this transformation. With more than 200,000 mobile money agents serving approximately 25.8 million users, mobile financial services now far exceed the reach of conventional banks, reshaping how people save, transfer, and manage money (Ali et al., 2020). For rural households, informal workers, and small traders, digital finance has reduced transaction costs, improved convenience, and increased economic resilience.

The benefits of this shift are substantial. For governments, digital payments reduce leakages and corruption by delivering welfare transfers, pensions, and public salaries directly into verified accounts. For the broader economy, digital transactions improve transparency, expand the tax base, and gradually reduce reliance on the informal, cash-based economy. For the unbanked, mobile money often represents a first secure opportunity to save, access microcredit, receive remittances, and cope with

unexpected financial shocks such as illness or crop failure.

Yet, the very features that make digital finance accessible—simplicity, speed, and widespread agent networks—have also created new vulnerabilities. As adoption has accelerated, fraudsters have increasingly targeted first-time and low-literacy users. Evidence from Uganda highlights several dominant threats undermining trust in digital systems (Ali et al., 2020). SIM swap fraud allows criminals to hijack a user's phone number and gain full control over their mobile wallet. Insider abuse by seemingly "helpful" agents or their staff exploits personal trust and stolen PINs. Phishing and vishing attacks use fake messages or urgent phone calls impersonating banks or mobile operators to trick users into revealing sensitive information. Weak or easily guessable PINs further compound these risks.

These hidden dangers illustrate a critical lesson: digital finance is not inherently safe or unsafe; it is only as secure as the systems, regulations, and user awareness that surround it. Without strong consumer protection and digital literacy, the digital lifeline can quickly turn into a source of financial harm.

Understanding User Vulnerability and Building Digital Financial Resilience

New users of digital financial services are particularly vulnerable not because of personal negligence, but due to a convergence of structural, technological, and social factors. At the core of this vulnerability lies low digital literacy. For individuals engaging with mobile finance for the first time, especially in rural or low-income settings, it is often difficult to distinguish between legitimate communication from a bank or service provider and a well-crafted fraudulent

message. Criminals exploit this knowledge gap by using fear, urgency, and authority to manipulate users into disclosing sensitive information.

The mobile phone itself further increases risk. Smartphones serve as centralized repositories of personal data, identification details, contact networks, and financial access points. When a phone is stolen, compromised, or subjected to a SIM swap attack, it can provide fraudsters with a direct gateway to an individual's digital wallet and savings (Ali et al., 2020). Unlike traditional banking fraud, which often requires breaching multiple institutional safeguards, mobile-based fraud can occur rapidly and with limited resistance once access is gained.

Trust dynamics also play a critical role. In many communities, local mobile money agents are familiar and trusted figures. While this trust underpins financial inclusion, it also creates opportunities for abuse. When agents or their associates exploit customer trust to steal funds, the damage extends beyond individual losses, eroding confidence in the entire digital financial ecosystem.

Countering these risks requires shared responsibility. Financial service providers increasingly rely on artificial intelligence and real-time transaction monitoring to detect suspicious behavior, though such systems demand significant investment and technical capacity. At the user level, basic protective behaviors remain essential. PINs must be treated with the same caution as physical cash and never shared under any circumstance. Urgent or threatening messages requesting sensitive details should be treated with suspicion, as legitimate institutions do not solicit PINs or passwords. Where available, multi-factor authentication should be activated to add an extra layer of security. Finally, rapid reporting of suspected fraud is crucial, as timely action often determines whether losses can be recovered.

Securing the Digital Future of Financial Inclusion

For digital finance to remain a reliable lifeline rather than a source of vulnerability, security must be treated as a shared and continuous responsibility. Financial service providers, regulators, and

communities each play a distinct yet interdependent role in safeguarding users, particularly those entering the formal financial system for the first time. Without this collective effort, the very tools designed to promote inclusion risk deepening insecurity and mistrust.

Banks, fintech companies, and mobile money operators must embed security at the design stage rather than treating it as an afterthought. This includes developing applications that are intuitive, minimizing user error, and incorporate strong default protections such as transaction alerts, spending limits, and multi-factor authentication. Equally important is sustained investment in customer awareness. Clear, culturally appropriate communication campaigns that explain common fraud tactics, safe usage practices, and reporting mechanisms can significantly reduce user exposure to scams.

Governments and regulators have a critical enabling role. Effective legal frameworks are needed to clearly define liability, protect consumer rights, and impose meaningful penalties on fraudsters. At the same time, regulation must remain adaptive, ensuring that compliance requirements do not unintentionally exclude low-income or rural users or suppress innovation in financial technology. Strong coordination between telecom regulators, financial authorities, and law enforcement is essential to address cross-platform and cross-border fraud.

Communities themselves are a powerful but often underutilized line of defense. Local networks, farmer groups, women's associations, and community organizations can act as trusted channels for sharing practical knowledge about emerging scams and safe digital practices. This peer-to-peer learning creates what can be described as a "human firewall," reinforcing formal safeguards with social vigilance.

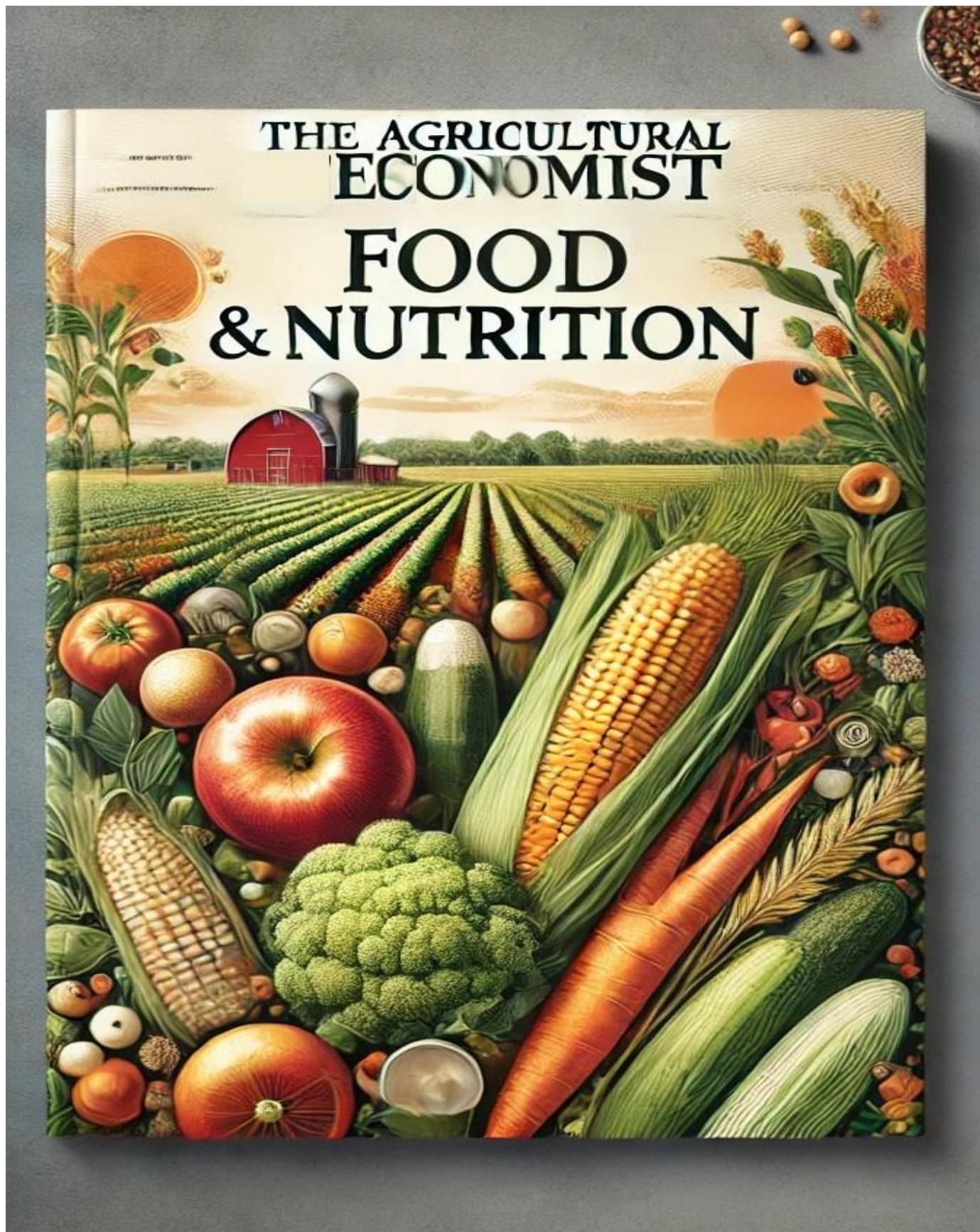
The objective is not to instill fear, but to build confidence. A secure digital financial ecosystem empowers users, strengthens trust, and ensures that the promise of financial inclusion translates into lasting economic and social benefits for all.

Conclusion

Digital finance has fundamentally reshaped access to money, opportunity, and economic

participation for millions who were long excluded from formal financial systems. By leveraging mobile technology, it has reduced distance, cost, and bureaucracy, enabling households, small businesses, and informal workers to save, transfer, and manage resources with unprecedented ease. For many, especially in rural and low-income settings, mobile money and digital wallets are not merely conveniences but essential lifelines that support resilience against shocks and enhance everyday economic security.

Yet, as this article demonstrates, inclusion without protection carries real risks. Fraud, scams, and digital theft threaten to erode trust, particularly among first-time users who lack digital literacy and bargaining power. When savings are lost through deception or system weaknesses, the damage is not only financial but psychological, discouraging continued use of formal financial channels and undermining the broader goals of inclusion.


The central lesson is clear: true financial inclusion must be both expansive and safe. It requires security-by-design from providers, adaptive and consumer-centered regulation from governments, and continuous user education at the community level. Digital literacy and awareness are as critical as connectivity and access. When technology, policy, and people work together, digital finance can fulfill its promise as a tool of empowerment rather than exposure.

The future of finance is undeniably digital. Ensuring that this future is secure, trustworthy, and inclusive for all users, especially the most vulnerable will determine whether digital finance becomes a lasting engine of shared prosperity or a fragile system marked by fear and exclusion.

References: Ali et al; Lakew & Gidey.

Please note that the views expressed in this article are of the author and do not necessarily reflect the views or policies of any organization.

The writer is affiliated with the Institute of Agricultural & Resource Economics, University of Agriculture, Faisalabad, Pakistan and can be reached at merhazulfiqar06@gmail.com

Probiotic Chocolate Spread: A Functional Food Innovation

Discover the potential of probiotic chocolate spread as a functional food that meets modern consumer demands for indulgence and health. Learn how this innovative product supports digestive wellness and overcomes probiotic delivery challenges.

Ayesha Mazhar, Malaika Kiran & Kulsoom Ibrahim

12/2/2025

Contemporary consumers are increasingly prioritizing health, nutrition, and wellness, a shift that is transforming global food markets and driving new waves of innovation. One of the most significant trends shaping this landscape is the rising demand for functional food products that not only provide basic nutrition but also deliver additional physiological benefits. This demand continues to accelerate as consumers become more aware of issues such as digestive health, immunity, and chronic disease prevention (Mordor Intelligence, 2024).

Within this context, chocolate spreads traditionally considered indulgent, energy-dense foods high in sugars and saturated fats (Codex Alimentarius, 2003), have emerged as an ideal platform for nutritional enhancement. Their widespread popularity, appealing sensory properties, and versatility in both household and commercial food preparation make them a strong candidate for fortification. At the same time, the global probiotic market is experiencing rapid growth, driven by expanding scientific evidence on the crucial role of the gut microbiome in supporting immune function, metabolic health, mental well-being, and disease prevention (Hemarajata & Versalovic, 2013). Probiotics, defined by FAO/WHO (2002) as “live microorganisms which, when administered in adequate amounts, confer a health benefit on the host,” have traditionally been incorporated into dairy products such as yogurt and fermented beverages. However, dairy-based delivery systems present limitations, including lactose intolerance, refrigeration requirements, and cultural dietary preferences. As a result, non-dairy carriers have gained traction, with chocolate emerging as a promising alternative.

Chocolate and chocolate-based spreads provide a protective matrix that can enhance probiotic survival during processing, storage, and gastric transit. Their lipid-rich environment, combined with natural antioxidants such as polyphenols, helps shield probiotic cells from heat, acidity, and oxidative damage (Possemiers et al., 2010; Konar et al., 2016). This not only increases the viability of probiotic strains but also expands opportunities for incorporating them into convenient, shelf-stable foods. Together, these trends highlight a growing synergy between consumer preferences, food technology, and functional nutrition, opening the door for innovative probiotic-enriched chocolate spreads that align indulgence with health benefits.

Probiotics: Health Benefits and Delivery Challenges

Probiotics, most commonly belonging to the genera *Lactobacillus* and *Bifidobacterium*, have gained global attention due to their wide-ranging health benefits and their ability to influence multiple physiological systems. These beneficial microorganisms play a central role in maintaining a balanced gut microbiota, which is essential for effective digestion, nutrient absorption, and overall metabolic function. Scientific evidence has demonstrated that probiotics help strengthen the intestinal barrier, enhance immune system responses, and reduce the risk and duration of certain gastrointestinal disorders, particularly antibiotic-associated and infectious diarrhea (Hill et al., 2014). Additionally, probiotics assist in improving lactose digestion in lactose-intolerant individuals by enhancing lactase enzyme activity. More recent research has expanded our

understanding of probiotics beyond the gut, showing emerging links between the gut microbiome and mental health through the gut-brain axis. Studies by Dinan and Cryan (2017) highlight how specific probiotic strains may contribute to improved mood regulation, reduced anxiety, and better cognitive function, further fueling consumer interest in probiotic-enriched foods.

However, integrating probiotics into functional food products presents several scientific and technological challenges. The core difficulty lies in preserving probiotic viability throughout processing, storage, and consumption. Probiotic organisms are highly sensitive to environmental stress such as heat, oxygen exposure, moisture fluctuations, and acidic conditions, factors commonly encountered during food manufacturing and gastrointestinal digestion. To remain effective, probiotics must reach the gut alive and in sufficient numbers, typically requiring a minimum concentration of $\geq 10^6$ CFU/g at the point of consumption (Heenan et al., 2004).

Chocolate-based matrices have emerged as a promising solution to this problem. Their unique composition rich in lipids and natural antioxidants provides a protective environment that shields probiotics from harsh conditions. Research shows that dark chocolate enhances the survival of probiotics during storage and significantly improves their resistance to simulated gastric and intestinal conditions when compared to traditional dairy carriers (Komatsu et al., 2018). This protective capacity not only improves delivery efficiency but also expands the potential for incorporating probiotics into

innovative, shelf-stable, and consumer-friendly functional food products.

Synergistic Ingredient Innovation for a Functional Probiotic Chocolate Spread

Developing a probiotic-enriched chocolate spread requires a thoughtful combination of ingredients that not only enhance nutritional value but also work synergistically to support probiotic stability and functionality. The innovative formulation proposed here integrates scientifically validated components that contribute to both health benefits and desirable sensory qualities. At its core, the spread incorporates freeze-dried yogurt powder or carefully selected microencapsulated probiotic strains. Microencapsulation, using alginate, whey protein, or similar protective matrices, has repeatedly shown strong potential for improving probiotic survival in challenging environments rich in fats and sugars. This technological approach ensures that a sufficient viable count is maintained throughout processing, storage, and eventual digestion (De Prisco & Muriello, 2016).

Hazelnuts serve as a multifunctional ingredient in this formulation. Besides adding a rich, nutty flavor that enhances consumer appeal, hazelnuts contribute monounsaturated fats, soluble and insoluble fibers, vitamin E, and a range of antioxidant phenolic compounds. Their natural fiber content may further serve as a prebiotic substrate, fostering an intestinal environment that supports the activity and persistence of the incorporated probiotics (Jakubczyk et al., 2020). Paired with cocoa, another nutritionally dense ingredient, the formulation gains added functionality. Cocoa is well-recognized for its flavanol content, which delivers antioxidant and anti-inflammatory effects. Emerging research suggests cocoa polyphenols may also function as prebiotics, selectively promoting beneficial gut bacteria and thereby complementing probiotic action (Magrone et al., 2017).

Equally important to the innovation is the reformulation of fats and sugars. Many traditional chocolate spreads rely on

hydrogenated fats and high quantities of sucrose, contributing to poor lipid profiles and high glycemic loads. By replacing these with healthier fat alternatives such as red palm olein blends noted for better nutrient retention (Prasanth Kumar et al., 2016) and incorporating prebiotic fibers like inulin, the spread not only becomes more nutritionally balanced but creates a matrix that fosters probiotic viability. This holistic formulation strategy results in a product that is simultaneously indulgent, functional, and scientifically optimized for both health benefits and consumer satisfaction.

Nutritional, Sensory, and Safety Evaluation

Evaluating the nutritional, sensory, and safety attributes of a probiotic chocolate spread is fundamental to ensuring its market readiness and functional credibility. A detailed nutritional profile must confirm that the formulation delivers meaningful improvements over conventional chocolate spreads particularly through increased dietary fiber from hazelnuts and inulin, reduced saturated fat owing to reformulated lipid blends, and enhanced levels of bioactive compounds derived from cocoa and nuts. Equally important is the verification of probiotic viability: microbiological assays should demonstrate that the product consistently maintains probiotic counts above the therapeutic minimum, typically $\geq 10^6$ CFU/g, throughout its intended shelf life. This requires rigorous stability testing under various temperature and humidity conditions to establish optimal storage recommendations and guarantee functional integrity.

Sensory evaluation is critical for consumer acceptance, as functional benefits alone cannot compensate for poor taste or texture. Sensory panels and consumer tests on similar fortified products indicate that cocoa's natural bitterness and hazelnuts' rich, nutty profile can effectively mask any off notes associated with probiotic cultures, producing a final product with appealing aroma, smooth texture, and a flavor profile closely aligned with popular commercial spreads (Santos et al., 2021). Maintaining this sensory balance while

ensuring probiotic stability is key to wide-scale adoption.

In conclusion, the creation of a probiotic-enriched chocolate spread demonstrates how indulgent foods can be innovatively reimagined to align with contemporary nutrition and wellness trends. The formulation not only offers a non-dairy alternative for delivering probiotics but also enhances nutritional value without compromising sensory quality. Future directions should prioritize extended shelf-life assessments, *in vivo* clinical validation of health claims, and exploration of next-generation probiotic strains with superior resilience. Additionally, integrating sustainability tools such as life cycle assessment will help ensure that this innovation supports both human health and environmental stewardship in modern food systems.

Conclusion

This review highlights the significant potential of developing a probiotic-enriched chocolate spread as an innovative functional food that aligns with modern consumer demands for both indulgence and health benefits. As global interest in digestive wellness, immune support, and microbiome-focused nutrition continues to rise, probiotics have become an essential component of functional food innovation. Incorporating these beneficial microorganisms into a chocolate-based matrix represents a promising solution to long-standing challenges in probiotic delivery, particularly regarding viability during storage and gastrointestinal transit. The natural lipid content and polyphenolic profile of cocoa provide a protective environment that supports probiotic stability more effectively than many traditional dairy carriers.

The proposed formulation, featuring microencapsulated probiotics, nutrient-dense hazelnuts, antioxidant-rich cocoa, and a restructured fat-sugar matrix, demonstrates how scientific innovation, ingredient synergy, and consumer-centered design can come together to create a health-enhancing product without compromising flavor or texture. Sensory evaluations suggest strong market

potential, while nutritional and microbiological assessments confirm the feasibility of delivering functional benefits consistently.

Looking forward, advancing this concept will depend on long-term stability studies, clinical validation of health effects, and the development of sustainable, scalable production methods. Ultimately, probiotic chocolate spreads offer an exciting

pathway for merging wellness with enjoyment, contributing meaningfully to the evolving landscape of functional foods.

References: Codex; De Prisco & Mauriello; Dinan & Cryan; FAO; WHO; Grand View Research; Heenan et al; Hill et al; Jakubczyk et al; Komatsu et al; Konar et al; Magrone et al; Mordor Intelligence; Possemiers et al; Kumar et al; Santos et al.

Please note that the views expressed in this article are of the author and do not necessarily reflect the views or policies of any organization.

The writer is affiliated with Department of Food Science and Technology, Jinnah University for Women, Karachi, Pakistan and can be reached at ayeshamazhar586@gmail.com

Livestock: Key to Pakistan's Agricultural Economy

Discover how livestock plays a crucial role in Pakistan's agricultural economy, supporting rural livelihoods and ensuring food security amidst climate challenges and market fluctuations.

Muhammad Raza Nadeem & Hafiz Zahid Mehmood

12/23/2025

The livestock sector stands as Pakistan's most critical agricultural sub-sector, serving as a central pillar of rural livelihoods, national food security, and macroeconomic stability. In contrast to crop agriculture, which remains highly vulnerable to climatic variability, water stress, and price volatility, livestock offers a comparatively stable and continuous stream of income and nutrition for rural households. This structural resilience explains its dominant position within the agricultural economy. According to the Pakistan Economic Survey 2023–24, livestock contributes an estimated 60.8 percent to agricultural value-added and 14.4 percent to national GDP, far exceeding the combined contribution of both major and minor crops (Government of Pakistan, 2024).

During the same fiscal year, the sector recorded a growth rate of 3.9 percent, emerging as the fastest-growing component of agriculture while key crops such as wheat and cotton experienced negative growth due to input shortages and adverse weather conditions. With a national herd exceeding 251 million head, livestock is deeply interwoven with Pakistan's rural socio-economic fabric (Pakistan Bureau of Statistics, 2023). It provides direct and indirect income to nearly 8 million rural households and accounts for approximately 30–40 percent of total household income among smallholder farmers, particularly landless and marginal producers (IFAD, 2022). Beyond income generation, livestock plays a crucial role in household nutrition by supplying affordable animal protein and supporting food security during crop failure periods.

Punjab Province forms the backbone of the sector, hosting more than 104 million animals and contributing around 62 percent

of national milk production and 43 percent of beef output (Punjab Livestock & Dairy Development Department, 2023). National production figures for 2023–24 further illustrate the sector's scale, with milk output reaching 72.34 million tonnes and meat production rising to 5.97 million tonnes (Government of Pakistan, 2024). Despite this substantial domestic capacity, livestock exports remain underdeveloped, contributing only about 1.6 percent to total national exports (TDAP, 2023). This disconnect between production potential and export performance highlights untapped opportunities for value addition, cold-chain development, disease control, and improved market access, positioning livestock as a key driver of future rural growth and export diversification.

Policy Initiatives and Digital Transformation in Pakistan's Livestock Sector

Recognizing the strategic centrality of livestock to rural livelihoods, food security, and macroeconomic stability, both federal and provincial governments have initiated a series of policies and institutional reforms aimed at modernizing the sector. Among the most prominent interventions is the Punjab Livestock Card scheme, which provides targeted, interest-free credit to small and medium-scale farmers for essential inputs such as feed, vaccines, medicines, and basic farm improvements (Government of Punjab, 2024). By addressing liquidity constraints faced by smallholders particularly during periods of rising input prices, this scheme directly supports productivity enhancement while reducing farmers' dependence on informal credit markets that often trap them in cycles of debt.

Complementing this financial intervention is the Punjab Livestock Development Program (2025), a comprehensive Rs. 5

billion initiative designed to strengthen the sector's productive base. The program focuses on expanding veterinary outreach services, scaling up vaccination coverage, and promoting artificial insemination to improve herd genetics and productivity (Government of Punjab, 2024). Improved genetic stock is especially critical in Pakistan, where low milk yields and poor growth rates remain structural constraints. By combining animal health management with genetic improvement, the program seeks to shift livestock production from subsistence-oriented practices toward a more commercial and market-responsive model.

Digital transformation is increasingly central to these policy efforts. The introduction of platforms such as the Farmer Guidance App marks a significant step toward data-driven livestock management. Through mobile-based services, farmers receive timely alerts on vaccination schedules, disease outbreaks, feeding practices, and weather-related risks. This real-time information flow is particularly valuable in remote rural areas where access to extension services is limited. Such digital tools are not merely advisory; they are preventive mechanisms that can substantially reduce productivity losses. According to estimates by the Pakistan Agricultural Research Board, livestock diseases alone impose annual economic losses exceeding PKR 300 billion, largely due to delayed diagnosis and weak preventive care (PARB, 2022). Digital surveillance and early warning systems therefore represent a cost-effective strategy for safeguarding farmer incomes and national food supplies.

In a year characterized by climate-induced crop shortfalls and increasing production uncertainty, livestock has once again emerged as the stabilizing pillar of

Pakistan's agricultural economy. Its importance extends beyond output and income generation, livestock functions as a social safety net, a store of wealth, and a critical source of household nutrition. To fully realize this potential, policy focus must remain consistent and long-term. Priorities include institutionalizing structured breeding programs, strengthening meat and dairy value chains for export competitiveness, improving cold-chain and processing infrastructure, and integrating smallholders into formal markets through cooperatives and digital platforms. Strategic investment in this backbone sector offers Pakistan a viable pathway toward inclusive rural development, enhanced export earnings, and durable food sovereignty in the face of growing demographic and climatic pressures.

Conclusion

Livestock has unequivocally established itself as the most resilient and strategically important pillar of Pakistan's agricultural economy. As this article demonstrates, the sector not only anchors rural livelihoods and household nutrition but also provides

macroeconomic stability at a time when crop agriculture is increasingly exposed to climate variability, water scarcity, and market shocks. Its substantial contribution to agricultural value-added and national GDP, coupled with consistent growth even during periods of crop contraction, underscores livestock's role as a dependable buffer against economic and food insecurity.

However, the sector's true potential remains only partially realized. Persistently low productivity, weak disease control, limited value addition, and underdeveloped export channels continue to constrain their contribution to income growth and foreign exchange earnings. Recent policy initiatives particularly targeted credit schemes expanded veterinary services, genetic improvement programs, and digital extension platforms represent important steps toward addressing these structural weaknesses. Their success, however, will depend on continuity, effective implementation, and integration across federal and provincial levels.

Looking ahead, a sustained and coordinated strategy is essential. Investing in animal health, breeding, processing infrastructure, and market integration can transform livestock from a largely subsistence-oriented activity into a dynamic engine of rural growth and export diversification. By placing livestock at the center of agricultural and rural development policy, Pakistan can strengthen food sovereignty, reduce rural poverty, and build a more climate-resilient and inclusive economy for the future.

References: Government of Pakistan; Government of Punjab; IFAD; Pakistan Bureau of Statistics; PARB; Trade Development Authority of Pakistan.

Please note that the views expressed in this article are of the author and do not necessarily reflect the views or policies of any organization.

The writers are affiliated with Department of Agricultural and Resource Economics, MNS University of Agriculture, Multan, Pakistan and can be reached

at zahid.mehmood@mnsuam.edu.pk

EDITORIAL ADVISORY TEAM

Managing Editor

Dr. Muhammad Khalid Bashir, Institute of Agricultural and Resource Economics, Faculty of Social Sciences, University of Agriculture, Faisalabad, Pakistan.

Economic Aspects

Prof. Dr. Steven Schilizzi, UWA School of Agriculture and Environment, University of Western Australia, Perth, Western Australia

Prof. Dr. Muhammad Ashfaq, Faculty of Management Studies, The University of Faisalabad, Pakistan.

Prof. Dr. Abdul Saboor, Faculty of Social Sciences, PMAS Arid Agriculture University, Rawalpindi, Pakistan

Prof. Dr. Asghar Ali, Institute of Agricultural and Resource Economics, Faculty of Social Sciences, University of Agriculture, Faisalabad, Pakistan.

Prof. Dr. Harun UÇAK, Department of Economics, Faculty of Economics, Administrative, and Social Sciences, Alanya Alaaddin Keykubat University, Alanya, Antalya, Türkiye

Dr. Yakup ARI, Department of Economics, Faculty of Economics, Administrative, and Social Sciences, Alanya Alaaddin Keykubat University, Alanya, Antalya, Türkiye

Dr. Mithat Direk, Department of Agricultural Economics, Faculty of Agriculture, University of Selçuk, Konya-Türkiye.

Dr. Ragif Huseynov, Department of Economics, Azerbaijan Technological University, Azerbaijan

Dr. Anar HATAMOV, Department Economics of Agricultural Sector Azerbaijan State Agricultural University (ADAU)

Dr. Moazzam Sabir, Department of Agricultural Economics, Faculty of Agriculture, University of Sargodha, Pakistan

Dr. Muhammad Umar Farrukh, Department of Economics, Faculty of Administrative and Management Sciences, GCW University, Sialkot, Pakistan.

Dr. Tusawar Iftikhar Ahmad, Department of Economics, The Islamia University of Bahawalpur, Pakistan

Markets and Social and Community Aspects

Prof. Dr. Babar Shahbaz, Faculty of Social Sciences, University of Agriculture, Faisalabad, Pakistan

Dr. Abdul Ghafoor, Institute of Business Management Sciences, University of Agriculture, Faisalabad, Pakistan

Dr. Burhan Ahmad, Institute of Business Management Sciences, University of Agriculture, Faisalabad, Pakistan

Mian Abdul Rasheed, Convener-Provincial Standing Committee, Punjab on Social Protection and Public Safety, FPCCI (2021)

Rural Innovation Aspects

Prof. Dr. Bilal Acar, Department of Farm Buildings & Irrigation, Faculty of Agriculture, University of Selçuk, Konya-Türkiye.

Amb. (R) Nadeem Riyaz

Dr. Muhammad Hamid Bashir, Department of Entomology, Faculty of Agriculture, University of Agriculture, Faisalabad, Pakistan.

Dr. Muhammad Kashif, Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan

Management, HRM and Finance Aspects

Dr. Adnan Ahmad, Department of Accounting and Finance, Abdul Wali Khan University, Mardan, Pakistan

Dr. Muhammad Usman, Faisalabad Business School, National Textile University, Faisalabad, Pakistan

Dr. Qamar Ali, Department of Economics, Virtual University of Pakistan

Public Health Economics

Prof. Dr. Muhammad Imran Arshad, Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan

Dr. Yasir Mehmood, Department of Social and Behavioral Sciences, National University of Medical Sciences, Pakistan

Food and Nutrition

Prof. Dr. Mian Anjum Murtaza, Director Institute of Food Science and Nutrition, University of Sargodha, Pakistan

Dr. Mian Kamran Sharif, Associate Professor, National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan