
 Smart Contract Code Review and Security Analysis Report for

KOHENOOR ERC20 Token Smart Contract

BLOCK SOLUTIONS

Smart Contract Code Review and

Security Analysis Report

for

 KOHENOOR ERC20 Token Smart

Contract

Request Date: 2023-12-06

Completion Date: 2023-12-07

Language: Solidity

 Smart Contract Code Review and Security Analysis Report for

KOHENOOR ERC20 Token Smart Contract

Contents
Commission ... 3

KOHENOOR ERC20 TOKEN Smart Contract Properties 4

Contract Functions ... 5

Executables ... 5

Checklist ... 6

Contract’s Functions .. 8

KOHENOOR ERC20 Token Contract ... 8

Testing Summary ...15

Quick Stats: ..16

Executive Summary ...17

Code Quality ..17

Documentation ...17

Use of Dependencies ..17

Audit Findings ..18

Critical ...18

High ...18

Medium ..18

Low ..19

Conclusion ...20

Our Methodology ..20

 Smart Contract Code Review and Security Analysis Report for

KOHENOOR ERC20 Token Smart Contract

Commission

Audited Project KOHENOOR ERC20 TOKEN Smart Contract

Smart Contract 0x0835cDd017eA7bC4cC187C6e0f8ea2DBE0feA0Dd

Contract Deployer 0xE8Fa4b57BE78bd3e783c67852e38293BfA9bf396

Contract Owner 0xE8Fa4b57BE78bd3e783c67852e38293BfA9bf396

Blockchain Platform Polygon Mainnet

Block Solutions was commissioned by KOHENOOR ERC20 TOKEN Smart Contract owners to

perform an audit of their main smart contract. The purpose of the audit was to achieve the

following:

● Ensure that the smart contract functions as intended.

● Identify potential security issues with the smart contract.

The information in this report should be used to understand the risk exposure of the smart contract,

and as a guide to improve the security posture of the smart contract by remediating the issues that

were identified.

 Smart Contract Code Review and Security Analysis Report for

KOHENOOR ERC20 Token Smart Contract

KOHENOOR ERC20

TOKEN Smart Contract

Properties

Name KOHENOOR

Symbol KEN

Decimals 18

Total Supply 1,000,000 KEN

Transfer 1,373

Holders 1,127 Addresses

Tax Address 0x00

Smart Contract 0x0835cDd017eA7bC4cC187C6e0f8ea2DBE0feA0Dd

Contract Deployer 0xE8Fa4b57BE78bd3e783c67852e38293BfA9bf396

Contract Owner 0xE8Fa4b57BE78bd3e783c67852e38293BfA9bf396

Blockchain Platform Polygon Mainnet

 Smart Contract Code Review and Security Analysis Report for

KOHENOOR ERC20 Token Smart Contract

Contract Functions

Executables

i. function decreaseAllowance(address spender, uint256 subtractedValue) public virtual

returns (bool)

ii. function approve(address spender, uint256 amount) public virtual override returns (bool)

iii. function blackList(address addr) external onlyOwner whenNotPaused

iv. function burn(uint256 amount) public override onlyOwner whenNotPaused

v. function burnFrom(address from,uint256 amount) public override onlyOwner

whenNotPaused

vi. function increaseAllowance(address spender, uint256 addedValue) public virtual returns

(bool)

vii. function mint(address to, uint256 amount) external onlyOwner whenNotPaused

viii. function pause() external onlyOwner

ix. function removeFromBlacklist(address addr) external onlyOwner whenNotPaused

x. function renounceOwnership() public override onlyOwner whenNotPaused

xi. function setDeflationConfig(uint256 _deflationBPS) external onlyOwner

whenNotPaused

xii. function setDocumentUri(string memory newDocumentUri) external onlyOwner

whenNotPaused

xiii. function setMaxTokenAmountPerAddress(uint256 newMaxTokenAmount) external

onlyOwner whenNotPaused

xiv. function setTaxConfig(address _taxAddress,uint256 _taxBPS) external onlyOwner

whenNotPaused

xv. function transfer(address to,uint256 amount) public virtual override whenNotPaused

validateTransfer(msg.sender, to) returns (bool)

xvi. function transferFrom(address from,address to,uint256 amount) public virtual override

whenNotPaused validateTransfer(from, to) returns (bool)

xvii. function transferOwnership(address newOwner) public override onlyOwner

whenNotPaused

xviii. function unpause() external onlyOwner

xix. function updateWhitelist(address[] calldata updatedAddresses) external onlyOwner

whenNotPaused

 Smart Contract Code Review and Security Analysis Report for

KOHENOOR ERC20 Token Smart Contract

Checklist

Compiler errors. Passed

Possible delays in data delivery. Passed

Timestamp dependence. Passed

Integer Overflow and Underflow. Passed

Race Conditions and Reentrancy. Passed

DoS with Revert. Passed

DoS with block gas limit. Passed

Methods execution permissions. Passed

Economy model of the contract. Passed

Private user data leaks. Passed

Malicious Events Log. Passed

Scoping and Declarations. Passed

Uninitialized storage pointers. Passed

Arithmetic accuracy. Passed

Design Logic. Passed

Impact of the exchange rate. Passed

Oracle Calls. Passed

Cross-function race conditions. Passed

Fallback function security. Passed

Safe Open Zeppelin contracts and implementation usage. Passed

 Smart Contract Code Review and Security Analysis Report for

KOHENOOR ERC20 Token Smart Contract

Whitepaper-Website-Contract correlation. Not Checked

Front Running. Not Checked

 Smart Contract Code Review and Security Analysis Report for

KOHENOOR ERC20 Token Smart Contract

Contract’s Functions

KOHENOOR ERC20 Token Contract

Transfers ownership of the contract to a new account (`newOwner`). Can only be called by the

authorized address.

Leaves the contract without owner. It will not be possible to call `onlyOwner` functions

anymore. Can only be called by the current owner.

Atomically decreases the allowance granted to `spender` by the caller. This is an alternative to

{approve} that can be used as a mitigation for problems described in {IERC20-approve}.

Emits an {Approval} event indicating the updated allowance.

Requirements:

• `spender` cannot be the zero address.

• `spender` must have allowance for the caller of at least `subtractedValue`.

It allows to burn a predefined number of tokens. “amount” is the number of tokens to burn.

• Only callable by the owner

• Only callable if the token is not paused

 Smart Contract Code Review and Security Analysis Report for

KOHENOOR ERC20 Token Smart Contract

• Only callable if the token supports burning

Atomically increases the allowance granted to `spender` by the caller. This is an alternative to

{approve} that can be used as a mitigation for problems described in {IERC20-approve}.

Emits an {Approval} event indicating the updated allowance.

Requirements:

`spender` cannot be the zero address.

Owner of this contract can mint token on any address by executing this function.

Owner of this contract can pause the contract state.

 Smart Contract Code Review and Security Analysis Report for

KOHENOOR ERC20 Token Smart Contract

Owner of this contract can remove any address from black list addresses list.

Owner of this contract can set the deflation tax.

Owner of this contract can set the document URI.

 Smart Contract Code Review and Security Analysis Report for

KOHENOOR ERC20 Token Smart Contract

Owner of this contract can set the maximum token amount.

Owner of this contract can set the tax address and tax value.

Owner of this contract set the contract state to un pause.

 Smart Contract Code Review and Security Analysis Report for

KOHENOOR ERC20 Token Smart Contract

Owner of this contract adds new whitelist addresses

Destroys a `value` amount of tokens from `account`, deducting from the caller's allowance. See

{ERC20-_burn} and {ERC20-allowance}.

Requirements:

the caller must have allowance for ``accounts``'s tokens of at least `value`.

Owner of this contract can blacklist any address.

 Smart Contract Code Review and Security Analysis Report for

KOHENOOR ERC20 Token Smart Contract

Approve the passed address to spend the specified number of tokens on behalf of msg. sender.

“spender” is the address which will spend the funds. “amount” the number of tokens to be spent.

This will transfer token for a specified address “to” is the address to transfer. “amount” is the

amount to be transferred.

 Smart Contract Code Review and Security Analysis Report for

KOHENOOR ERC20 Token Smart Contract

Transfer tokens from the “from” account to the “to” account. The calling account must already

have sufficient tokens approved for spending from the “from” account and “from” account must

have sufficient balance to transfer. “to” must have sufficient allowance to transfer.

 Smart Contract Code Review and Security Analysis Report for

KOHENOOR ERC20 Token Smart Contract

Testing Summary

‘

 Smart Contract Code Review and Security Analysis Report for

KOHENOOR ERC20 Token Smart Contract

Quick Stats:

Main Category Subcategory Result

Contract

Programming

Solidity version not specified Passed

Solidity version too old Passed

Integer overflow/underflow Passed

Function input parameters lack of check Passed

Function input parameters check bypass Passed

Function access control lacks management Passed

Critical operation lacks event log Passed

Human/contract checks bypass Passed

Random number generation/use vulnerability Passed

Fallback function misuse Passed

Race condition Passed

Logical vulnerability Passed

Other programming issues Passed

Code

Specification

Visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed

Use keywords/functions to be deprecated Passed

Other code specification issues Passed

Gas Optimization Assert () misuse Passed

High consumption ‘for/while’ loop Passed

High consumption ‘storage’ storage Passed

“Out of Gas” Attack Passed

Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed

“Double Spend” Attack Passed

 Smart Contract Code Review and Security Analysis Report for

KOHENOOR ERC20 Token Smart Contract

Overall Audit Result: Passed

Executive Summary

According to the standard audit assessment, Customer`s solidity smart contract is Well-Secured.

Again, it is recommended to perform an Extensive audit assessment to bring a more assured

conclusion.

We used various tools like Mythril, Slither and Remix IDE. At the same time this finding is based

on critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable vulnerabilities

are presented in the Quick Stat section.

We found critical, 0 high, 7 medium and 0 low level issues.

Code Quality

The KOHENOOR ERC20 Token Smart Contract protocol consists of one smart contract. Libraries

used in KOHENOOR ERC20 Token Smart Contract are part of its logical algorithm. They are

smart contracts which contain reusable code. Once deployed on the blockchain (only once), it is

assigned a specific address and its properties / methods can be reused many times by other

contracts in protocol. The BLOCKSOLUTIONS team has not provided scenario and unit test

scripts, which would help to determine the integrity of the code in an automated way. Overall, the

code is not commented. Commenting can provide rich documentation for functions, return

variables and more.

Documentation

As mentioned above, it’s recommended to write comments in the smart contract code, so anyone

can quickly understand the programming flow as well as complex code logic. We were given a

KOHENOOR ERC20 Token Smart Contract smart contract code in the form of File.

Use of Dependencies

As per our observation, the libraries are used in this smart contract infrastructure that are based on

well-known industry standard open-source projects. And even core code blocks are written well

and systematically. This smart contract does not interact with other external smart contracts.

you are here

 Smart Contract Code Review and Security Analysis Report for

KOHENOOR ERC20 Token Smart Contract

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to

exploit and can lead to token loss etc.

High

High-level vulnerabilities are difficult to exploit;

however, they also have significant impact on smart contract

execution, e.g. public access to crucial

functions

Medium
Medium-level vulnerabilities are important to fix; however, they

can’t lead to tokens lose

Low

Low-level vulnerabilities are mostly related to

outdated, unused etc. code snippets, that can’t have

significant impact on execution

Lowest / Code Lowest-level vulnerabilities, code style violations

Style / Best and info statements can’t affect smart contract

Practice execution and can be ignored.

Audit Findings

Critical

No Critical severity vulnerabilities were found.

High

No High severity vulnerabilities were found

Medium

1. Mint function

The contract may contain additional issuance functions, which could maybe generate a

large number of tokens, resulting in significant fluctuations in token prices. It is

recommended to confirm with the project team whether it complies with the token issuance

instructions.

2. Functions that can suspend trading

If a suspend able code is included, the token maybe neither be bought nor sold (honeypot

risk).

3. Blacklist function

The blacklist function is included. Some addresses may not be able to trade normally

(honeypot risk).

 Smart Contract Code Review and Security Analysis Report for

KOHENOOR ERC20 Token Smart Contract

4. Whitelist function

The whitelist function is included. Some addresses may not be able to trade normally

(honeypot risk).

5. PRESENCE OF BURN FUNCTION

The tokens can be burned in this contract. Burn functions are used to increase the total

value of the tokens by decreasing the total supply.

6. PAUSABLE CONTRACTS

This is a Pausable contract. If a contract is Pausable, it allows privileged users or owners

to halt the execution of certain critical functions of the contract in case malicious

transactions are found.

7. OVERPOWERED OWNERS

The contracts are using 14 functions that can only be called by the owners. Giving too

many privileges to the owners via critical functions might put the user's funds at risk if the

owners are compromised or if a rug-pulling attack happens.

Low

No Low severity vulnerabilities were found.

 Smart Contract Code Review and Security Analysis Report for

KOHENOOR ERC20 Token Smart Contract

Conclusion

The Smart Contract code passed the audit successfully with some considerations to take. There

were 7 medium warnings raised. We were given a contract code. And we have used all possible

tests based on given objects as files. So, it is good to go for production. Since possible test cases

can be unlimited for such extensive smart contract protocol, hence we provide no such guarantee

of future outcomes. We have used all the latest static tools and manual observations to cover

maximum possible test cases to scan everything. Smart contracts within the scope were manually

reviewed and analyzed with static analysis tools. Smart Contract’s high-level description of

functionality was presented in Quick Stat section of the report. Audit report contains all found

security vulnerabilities and other issues in the reviewed code.

Security state of the reviewed contract is “Well Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort. The goals

of our security audits are to improve the quality of systems we review and aim for sufficient

remediation to help protect users. The following is the methodology we use in our security audit

process.

Manual Code Review:

In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number generators. We

also watch for areas where more defensive programming could reduce the risk of future mistakes

and speed up future audits. Although our primary focus is on the in-scope code, we examine

dependency code and behavior when it is relevant to a particular line of investigation.

Vulnerability Analysis:

Our audit techniques included manual code analysis, user interface interaction, and whitebox

penetration testing. We look at the project's web site to get a high-level understanding of what

functionality the software under review provides. We then meet with the developers to gain an

appreciation of their vision of the software. We install and use the relevant software, exploring the

user interactions and roles. While we do this, we brainstorm threat models and attack surfaces. We

read design documentation, review other audit results, search for similar projects, examine source

code dependencies, skim open issue tickets, and generally investigate details other than the

implementation.

Documenting Results:

We follow a conservative, transparent process for analyzing potential security vulnerabilities and

seeing them through successful remediation. Whenever a potential issue is discovered, we

immediately create an Issue entry for it in this document, even though we have not yet verified the

feasibility and impact of the issue. This process is conservative because we document our

suspicions early even if they are later shown to not represent exploitable vulnerabilities. We

generally, follow a process of first documenting the suspicion with unresolved questions, then

 Smart Contract Code Review and Security Analysis Report for

KOHENOOR ERC20 Token Smart Contract

confirming the issue through code analysis, live experimentation, or automated tests. Code analysis

is the most tentative, and we strive to provide test code, log captures, or screenshots demonstrating

our confirmation. After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take, and finally we suggest the

requirements for remediation engineering for future releases. The mitigation and remediation

recommendations should be scrutinized by the developers and deployment engineers, and

successful mitigation and remediation is an ongoing collaborative process after we deliver our

report, and before the details are made public.

