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Abstract— Mimicry plays an important role in social in-
teraction. In human communication, it is used to establish
rapport and bonding both with other humans, as well as
robots and virtual characters. However, little is known about
the underlying factors that elicit mimicry in humans when
interacting with a robot. In this work, we study the influence of
embodiment on participants’ ability to mimic a social character.
Participants were asked to intentionally mimic the laughing
behavior of the Furhat mixed embodied robotic head and a 2D
virtual version of the same character. To explore the effect of
embodiment, we present two novel approaches to automatically
assess people’s ability to mimic based solely on videos of their
facial expressions. In contrast to participants’ self-assessment,
the analysis of video recordings suggests a better ability to
mimic when people interact with the 2D embodiment.

I. INTRODUCTION

Mimicry – “the tendency to imitate facially, vocally or
posturally people with whom we are interacting” [1] – serves
important functions in social interactions, like establishing
rapport, understanding people’s emotional state and sup-
porting mutual behavioral coordination. Several kinds of
mimicry have been identified and examined in human-human
social interactions (e.g. [2], [3]), revealing, for example, how
mimicking behaviors are more frequently adopted in groups
with close interpersonal relationships. Studies on human-
human interactions even suggest that mimicry has a major
influence on building rapport with others, both for the person
imitating and the one being imitated [4].

Recently, researchers started to investigate how these find-
ings relate to artificial agents and social robots. They found,
for instance, that being mimicked by a social agent during an
interaction can increase the likability and the rapport in the
human partner [5][6]. However, even though the most basic
form of mimicry in human-human interaction is the mirroring
of facial expressions [7], this modality is still under-explored
in human-robot interaction (HRI).

There are several factors that may influence human in-
teraction behaviors in HRI and, in particular, the ability
to mimic an agent [8]. Most related work suggests that a
physical embodiment increases task success in HRI (e.g. [9],
[10]). On the contrary, Bennett and Šabanović [11] found
that the detection accuracy of facial expressions is higher in
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a digital avatar compared to a physical embodiment, which
is supported by recent work about pain perception in social
characters [12]. However, these studies are in contexts that
are not related to mimicry. One of the few works looking
at the effect of the embodiment on mimicry was performed
by Hofree et al. [13]. They found the spontaneous mimicry
of participants imitating an android robot to be stronger
compared to a video recording of the robot, but a virtual
replica of the robot was not included in the experiment.

The diversity of findings in related work shows that
many open questions still remain regarding the influence
of embodiment in HRI. In this work, we therefore explore
embodiment as a potential influence on people’s ability to
mimic an agent by using a live interaction with the mixed
embodied robot head Furhat [14] and a fully virtual 2D
embodiment of the same character. The virtual agent is
expected to have a higher social presence and might therefore
elicit mimicry better compared to a video recording of the
character as used by Hofree et al. [13], among others.

In order to address our objective, we designed an ex-
periment in which participants were asked to intentionally
mimic laughing artificial characters. We use laughter as a
multimodal social signal that, as mimicry, displays a shared
affiliative state and facilitates sociability and mutual cooper-
ation [15]. Furthermore, the multimodal nature of laughter
makes for an interesting and challenging stimulus both in the
synthesis and the analysis of the expression.

In their work on mimicking an android robot, Hofree et al.
[13] make use of facial electromyography to assess people’s
mimicry. This kind of technology is able to accurately cap-
ture complex facial muscle activation associated with specific
facial expressions and their fast dynamics, but it is invasive.

Fig. 1. Laughter synthesis on Furhat and one exemplar mimicry episode.



Thus, in order to guarantee a natural interaction, new solu-
tions using on-board sensors, for example video-cameras, are
still missing. In this paper, we explore and evaluate two novel
computer vision-based measures to automatically assess the
quality of the user’s facial mimicry of an artificial agent
during interactions. In addition to an expert rating of the
video recordings and participants’ self-assessment, the two
automated approaches are used to investigate the influence
of embodiment when mimicking a laughing agent.

II. METHODOLOGY

In this paper, we are empirically addressing the following
research question: What influence does the mixed embodied
robot Furhat have on the ability to mimic a social agent
compared to a 2D control condition of the same character?

In order to investigate the influence of the embodiment
on the ability to mimic, we propose two novel measures to
automatically judge the ability of the user’s mimicry. This
is early exploratory work and the literature does not give
a clear indication whether people will be better capable of
mimicking the 2D or the 3D version of the character.

A. Experimental design

We designed a within-subject experiment with the inde-
pendent variable type of embodiment in which participants
were asked to intentionally mimic an artificial character.
Even though most mimicry in humans is performed uncon-
sciously [16], due to the goal of this paper to investigate
the influence of embodiment on the ability to mimic, we
explicitly asked participants to imitate the social agent.

The character was presented as a 3D embodiment projected
on a Furhat robot and a 2D embodiment on a screen as com-
parison. Joyful laughter was chosen since it is understandable
regardless of the social context and is widely validated in
terms of morphology (i.e. face, voice) [17].

The stimulus included vocal features, facial features and
a head movement, which makes it an interesting subject of
study in the automatic assessment of mimicry. As demon-
strated in the case of human facial expressions [18], it is
expected that participants are able to mimic this purely
positive expression very well regardless of their relationship
towards the origin of emotion.

B. Participants

From the 24 students recruited to participate in the ex-
periment, 3 had to be excluded either because the data
analysis suggested a misunderstanding of the task or due to
technical issues during the experiment. The 21 participants
included in this paper (age: M = 26.38, SD = 4.79, min = 22,
max = 37) were all, with the exception of one, enrolled in
Computer Science or related subjects at Uppsala University.
28.6% of the participants identified with a female and 66.7%
with a male gender (participants were allowed to withhold
this information). All participants had at least a high-school
degree, advanced English language ability and, according to
self disclosure, most had little or no experience in acting.

Fig. 2. The 2D (left) and 3D (right) version of the character.

C. Apparatus and stimuli

A male virtual face created in FaceGen Modeller [19] is
used in this study. It is presented to the participants in two
different embodiments with approximately the same size:
A 2D representation on a screen and a 3D back-projected
version on a Furhat robot [14] (Figure 2). Furhat is equipped
with a rigid mask of a male face on which the texture
is projected from within. The virtual face was displayed
on a screen with a resolution of 1600 x 1200 in portrait
orientation. The character presents the main stimulus of
joyful laughter as well as three alternative behaviors which
were added in order to make it more difficult for participants
to discern the focus of the study. In both the 2D and the
3D version, facial expressions were realized through the
animation of the virtual face mesh. However, while head
movements in the 2D face are achieved through virtual
rotations, the Furhat robot has two motors with which
it conducted real yaw and pitch head movements. Both
embodiments have audio speakers attached beneath the face.

Synthesis of the stimulus
The laughter stimulus is composed of audio and the related
facial expression. The CereProc synthesizer voice William
[20], the standard voice of the Furhat robot, has six different
laughter samples available. Since these laughter types have
neither been classified nor previously been evaluated accord-
ing to what type of laughter they represent, all six stimuli
were presented to 30 participants (36.67% female, age M=
25.53, SD=5.66) in an online pre-study. One audio sample
which the majority of participants (63.3%) defined as joyful
laughter (length 0.5 sec) was selected for the main study.

In contrast to the audio stimulus, virtual facial expression
of laughter is grounded in studies from psychology [21].
Our synthesis of the joyful laughter is based on the work
by Ruch et al. [17], who describe joyful laughter according
to the Facial Action Coding System (FACS) [22]. FACS
decomposes facial expressions into small anatomically-based
components called Action Units (AUs), and each AU inten-
sity can be encoded in a 5-level scale ranging from “A”
(trace) to “E” (maximum). Laughter mainly involves AU6
“cheek raiser”, AU12 “lip corner puller”, AU25 “lips part”
and AU26 “jaw drop”. Particularly, joyful laughter implies
the activation of (Action Unit - intensity) AU6-C, AU12-C,
AU25-C and AU26-C, in addition to a head back movement.



Fig. 3. A sketch of the experimental setup.

The descriptions of laughter in Ruch et al. [17] are however
static. To synthesize the stimulus used in the study, we
modulated this static description with the dynamics imposed
by the audio stimulus. The resulting expression was validated
by two experts on virtual characters and facial expressions.

D. Experimental setup

The experimental sessions took place in a laboratory room
at Uppsala University. Figure 3 illustrates the setup. The
walls of the room were covered by black curtains to provide
a homogeneous background and guarantee good visibility
of the faces generated by the Furhat robot. The participant
(PR) was standing in the participants’ area at a distance
of about 100 cm from the Furhat robot (FR) or the screen
with the virtual face (VF). This value falls in the personal
space of the participant according to the Hall’s theory [23].
FR/VF was placed on a table at approximately 170 cm
from the ground. A 800 x 600 resolution webcam (WB)
operating at 30 fps was set atop a tripod to frontally frame
the faces of participants during the sessions. Good lighting
was guaranteed through a professional lighting system (PLS).

The Furhat robot and the sensors run on 3 different
machines (M1 - M3). The applications for recording data
streams in a synchronized way was developed using the
EyesWeb XMI software platform [24]. Finally, an iPad (iP)
was available on an additional table on the left side of the
participant for obtaining information for the questionnaires.
A researcher (RS) was present in the room to supervise the
experiment and manage safety.

E. Procedure

Prior to the on-site experiment, participants filled out an
online questionnaire containing demographic and personality
questions, which included an assessment of their level of
gelotophobia (“the fear of being laughed at”) [25]. One
participant with a mean gelotophobia rating beyond the
standard cut-off value of 2.5 was excluded from participation.

After arriving at the session, participants were informed
about the experimental procedure and signed a consent
form. They then entered the participant’s area where they
were placed facing the character (FR/VF) and the webcam
which would record their facial expressions. Participants

were instructed to mimic the character’s behavior in terms
of facial expressions, head movements and voice. Once the
participant was ready to start, the 2D or 3D embodiment
of the character displayed the first trial behavior. A beep
tone indicated the start and end of the displayed behavior.
Participants were given 8 seconds to mimic the stimulus. A
third beep tone indicated the end of that phase, after which
they answered a questionnaire (Q1) about their self-assessed
mimicry performance (cf. Section III).

Once finished with (Q1), the same behavior was displayed
for a second and third time, each followed by a mimicry
and questionnaire response phase. After finishing (Q1) for
the third trial, the iPad guided participants to two additional
questionnaires inquiring in-depth about the participant’s per-
ception of the stimulus. After responding to the last of
those questionnaires, the same sequence of tasks was started
for the next behavior displayed by the character. For each
embodiment, four different behaviors were displayed: three
alternative behaviors and the joyful laughter behavior, which
was shown in either the second or the fourth position of the
behavior sequence. The initial embodiment and the position
of the laughter behavior in the sequence (second or fourth)
was determined using Latin square to minimize ordering
influences on the results. Participants were then given a
five minute break, while the experimenter set up the other
embodiment. After the break, the second mimicry session
started. It included the same four behaviors, mimicry sessions
and questionnaires as the previous embodiment in the same
order. In the end of the experiment, a final questionnaire
was presented to participants in which they were asked to
elaborate on their experience in two free-text open questions.

III. HUMAN ASSESSMENT OF FACIAL MIMICRY

A. Participants’ self-assessment

In questionnaire (Q1), participants were asked to rate
how well they mimicked the character, how much effort the
mimicry took them and how comfortable they felt mimicking
the character. Each measure was formulated as a statement
(e.g., “I mimicked the character very well.”) and participants
rated their agreement with this on a 5-point Likert scale.

Participant’s self-assessment data was normalized using
Min-Max scaling prior to the analysis in order to abstract
from individual bias in people’s ratings. The scaling was
performed on all 6 trials per question and participant.

B. Experts’ assessment

Two researchers, trained in the generation and analysis of
facial expressions, were asked to independently rate the video
recordings of the mimicry episodes. The rating was based
on the statement: “How well did the participant mimic the
facial expression of laughter displayed by the character?” and
performed on a 5-point Likert scale. The inter-rater reliability
between the ratings provided by the two researchers was
assessed through a two-way mixed, consistency average-
measure ICC (Intraclass Correlation Coefficient) [26]. The
ICC value of 0.77 was in the excellent range, with with a
95% confidence interval 0.684 < ICC < 0.832 (F(121,121)



Fig. 4. Time series of AU6, AU12, AU25, AU26 and head pose pitch
angle. AU intensities were assigned a discrete numerical value from 1 to 5
(no activation was coded as 0).

= 7.62, p < .001. This value shows that the two independent
coders introduced only a small amount of measurement error.
For further analysis, the average between the two experts’
ratings is used.

IV. AUTOMATED APPROACHES TO FACIAL MIMICRY

In this section, two approaches to automatically assess
people’s ability to mimic are proposed. The novelty of
both of these approaches is that they use only the video
streams of a frontal video-camera framing the face of a
human partner. The first approach (intrapersonal) is based
only on the analysis of head pose and facial expression
features the human mimicker performed, while the second
one (interpersonal) exploits features from the interpersonal
dynamics of mimicry, that is it takes into account the head
pose and the facial expressions performed by the human
mimicker and the agent mimicked.

Participants were given 8 seconds to mimic the character.
However, mimicry episodes were generally shorter so the
video recordings were manually cut according to the fol-
lowing criteria: (1) initial and final mimicry frames were
detected; (2) a second before and after those frames was
used as the start and end of the cut video, respectively.

Computer vision and machine learning techniques were
used to automatically extract information about participants’
head poses and facial expressions from the videos. A frame
per frame detection of the head pitch angle and the intensity
of AU6, AU12, AU25 and AU26 was performed for all
recorded mimicry episodes. These AUs and pitch have been
chosen as they are the most characteristic of the facial
expression of laughter. AU intensities were detected through
a system previously developed by the authors in [27], while
head pitch was computed by using the IntraFace software
package [28]. The final time series obtained were then

TABLE I
INTRAPERSONAL FEATURES EXTRACTED PER MIMICRY EPISODE.

Type Feature name

AU features

mean activation
standard deviation of activation
maximum activation value
median of activation

Head pose
features

mean pitch value
standard deviation of pitch
maximum pitch value
minimum pitch value
median value of pitch

smoothed to remove noisy samples. For AUs, a centered
moving average smoothing technique was employed (win-
dow size: 10 frames), and pitch was low-pass filtered by
using a 3rd order Savitzky-Golay filter (window size: 19
frames). Extra post-processing was performed for pitch: the
average of the pitch values for the first 15 frames was
considered as an initial bias level and this constant value
was subtracted from all the samples. Figure 4 shows the 5
time series extracted from a mimicry episode.

A. Intrapersonal approach

To obtain a behavioral representation of joyful laughter, 21
features were computed from the time series. Table I displays
the list of features, which are the following:

• AU features (computed for AU6, AU12, AU25 and
AU26): Mean, standard deviation, maximum value and
median of activation, computed over the whole AU time
series representing the mimicry episode, were re-scaled
in the range [0,1].

• Head pose features: Mean, standard deviation, maxi-
mum, minimum and median values were computed over
the whole pitch time series. Prior to computation, the
pitch time series was re-scaled to [-1,1] by dividing its
values by 30, as the IntraFace head pose tracker has a
[-30◦,30◦] pitch detection range [28].

By using the aforementioned features, a total of 126
feature vectors of 21 dimensions were created from our
experimental data, one per mimicry episode. We included 4
trials collected from a discarded participant in this processing
step, as he correctly understood the task but due to technical
issues two of his trials with the 2D embodiment could not be
recorded. Due to the imbalance between 2D and 3D trials,
we decided to remove the user from the analysis of the
embodiment effect. However, the user’s recordings can still
improve the pre-processing for the automated analysis.

The inspection of such a large number of high-dimensional
information is noisy and its interpretation difficult. To over-
come this problem, we applied manifold learning tech-
niques [29] to reduce the dimensionality of our feature
vectors from 21 to 2. In that way, each mimicry episode
m is represented as an XY point Pm in a projected space.

The Multi-Dimensional Scaling (MDS) algorithm pro-
vided by the Scikit-Learn toolkit [30] was used. MDS



Fig. 5. MDS projection of intrapersonal mimicry vectors. Left: Each point in the embedded space represents a laughter mimicry episode m. User ID is
included inside the dots. The projected point PA corresponding to agent’s behavior is colored in orange and marked with letter “A”. Right: Specific users’
mimicry episodes, where blue lines represent distances dm.

is especially appropriate for this purpose as it seeks a
low-dimensional representation of the data in which the
distances correspond well to the distances in the original
high-dimensional space. Consequently, points representing
mimicry episodes with similar behavior patterns will tend to
be closer in the projected space, while trials with different
behaviors should be much more distant. The agent’s original
behavior was also projected into this space, resulting in a
point PA. Finally, Euclidean distances dm between each
mimicry point Pm and PA were computed as intrapersonal
measures of mimicry. Figure 5 depicts the projection of the
data into the two-dimensional space.

B. Interpersonal approach

Investigating mimicry also implies the study of the shared
dynamics of the mimicker and of the mimicked partner.
Due to the nonlinearity of the human behavior, traditional
correlation-based analyses are not suitable to capture all the
relevant aspects of the interpersonal dynamics. For this rea-
son, we adopted a nonlinear method, the Cross-Recurrence
Quantification Analysis (CRQA) [31]. It quantifies depen-
dencies between two time series describing two dynamical
systems in a generic feature space. CRQA is based on the
concept of cross-recurrence introduced through the Cross-
Recurrence Plot (CRP), a square/rectangular black and white
area spanned by the two time series. Black points correspond
to the times the two systems co-visit the same area in
the feature space, whereas white points correspond to the
times at which each system runs in a different area. The
mathematical expression of a CRP is the cross-recurrence
matrix (CR):

CR
~f1, ~f2
i,j (ε) = Θ(ε− ‖ ~f1i − ~f2j‖), i = 1...N, j = 1...M (1)

where ~f1 and ~f2 ∈ IRd are the d-dimensional time series
of the two systems having N and M samples, respectively;
ε is the threshold to claim closeness between two points,
Θ(.) is the Heaviside function and ‖.‖ is a norm. CRQA
holds on also by using categorical data. A CRP can be
qualitatively analyzed at graphical level looking at the black
points patterns in the plot. These patterns are hints of the joint
dynamics of the two systems. CRQA enables a quantitative
analysis of these patterns.

Participants (the mimickers) and the Furhat robot/virtual
face (the mimicked) were described through a multivariate
time series of the AUs and head pitch. Two CRPs and the
corresponding cross-recurrence matrices were built for each
trial both for the AUs (CRPAUs, CRAUs) and for the head
pitch (CRPhp, CRhp). To build these plots, the time series of
the agents were rescaled in amplitude to be comparable with
those extracted from the participants. Then, a zero-padding
of the shortest time series between that of the participants and
that of the Furhat robot/virtual face was done to guarantee the
time series had the same length. A city block distance was
used for both the plots, εAUs=6 was adopted for the AUs (this
results in a maximum error tolerance of 30% on the whole
set of AUs), εhp=0.2 was adopted for the pitch (this results
in a maximum error tolerance for the pitch of 6 degrees).
In order to create a single plot, CRPAUs hp, CRPAUs and
CRPhp were merged together by computing the Hadamards
product CRAUs hp=CRAUs ◦CRhp. According to the cut of
video recordings, CRPAUs hp was cropped by removing the
first second and the last second + the zero-padded segment.
Figure 6 shows an exemplary CRPAUs hp.

The following CRQA measures (see [31, 32] for more
details) were computed on this plot to explore the extent to
which a participant was able to mimic the agent:



Fig. 6. An exemplary CRPAUs hp obtained during a trial with Furhat.

cross-Recurrence Rate (cRR)
cRR is defined as:

cRR(ε) =
1

N2

N∑
i,j=1

CRi,j(ε) (2)

and measures the density of recurrence points in CRP. It
corresponds to the ratio between the number of the matrix
elements “shared” by the mimicker and the mimicked and
the number of available elements (i.e. all the elements
of the matrix). It represents the overall extent to which
the mimicker and the mimicked shared the same values
of AUs and pitch. To claim mimicry, it is necessary but
not sufficient to have a certain cRR: for example, the
single isolated black points that can appear in the plot are
taken into account in the cRR‘s computation but they are
hints of randomness. Therefore, information about how
the recurrence point are structured in the plot are also needed.

Average diagonal line length (L) and length of the
longest line (Lmax)
Lτ is the average length of the diagonal lines parallel to
the main diagonal line in CRP. It measures how stable
the mimicry behavior was: a high value of L indicates
that the mimicker was able to repeat long sequences of
AUs and pitch, whereas a low value of L indicates that
the mimicker was able to repeat only short sequences of
AUs and pitch. However, L-based measures do not take
account of dynamical deviations between the behavior of
the mimicker and the mimicked. A mimicker could have
activated the AUs and reproduced the pitch exactly, but he
or she could have performed the behavior with a different
speed with respect to the mimicked. These deviations in
the dynamics result in the curving of CRP diagonal lines.
To solve this issue, we also computed the following measure.

Length of the longest curved line (Smax)
It computed the longest curved lines com-
plying with these particular path connections:
(CRi−1,j−1, CRi−2,j−1, CRi−1,j−2). This implies also

Fig. 7. Scatterplot of the correlation between the manifold distance and
CRQA Lmax per trial. The linear regression is indicated by a red line.

accounting for behavior performed with a 2x and a 0.5x
speed deviation.

CRQA analysis was mainly carried out using the Python
SyncPy library for interpersonal synchrony analysis [33].

V. RESULTS

From the total 126 data points (21 participants x 3 trials x 2
embodiments), four samples were removed due to technical
failures. Corresponding trials using the other embodiment
were manually removed from the data set in order to enable
paired significance testing. This resulted in 118 data points
which are considered in the analyses.

A Shapiro-Wilk normality test shows that the self-
assessment data, expert rating data and all measures from the
automated analysis are not normally distributed, except for
Lmax (W = .979, p = .061), which only shows a light trend
with respect to being normally distributed. In the following,
we will use the non-parametric Wilcoxon rank sum test and
the Spearman’s rank correlation, both of which are robust to
data that is not normally distributed.

A Wilcoxon rank sum test between the first and the third
trial on all measures from the automated analysis, the self-
assessment and the expert rating showed no influence of the
trial on participant’s ability to mimic the character (p > .25
for all measures), suggesting that no learning effect exists.

A. Suitability of automated approaches to facial mimicry

The results from the intrapersonal approach and the
interpersonal approach are highly negatively correlated with
each other in all dimensions: manifold distance and cRR
(rS = −.628, p < .001), manifold distance and Lm (rS =
−.496, p < .001), manifold distance and Lmax (rS = −.585,
p < .001) and manifold distance and Smax (rS = −.515,
p < .001). This suggests that a higher distance in the
manifold data, which can be interpreted as a weaker ability
to mimic the character, is also leading to a lower rating in the
CRQA measures, which again relates to a weaker mimicry
performance. Figure 7 shows an exemplary correlation.

All four CRQA measures are positively correlated with
the average expert rating (cRR: rS = .117, p = .209,



Lm: rS = .055, p = .563, Lmax: rS = .209, p = .023,
Smax: rS = .152, p = .101). However, only the correlation
between the expert rating and Lmax is significant. Similarly,
the expert rating and the manifold distance are negatively
correlated, rS = −.177, p = .055, with a strong trend
towards significance.

The participants’ self-assessed ability to mimic and most
CRQA measures are significantly positively correlated as
well (cRR: rS = .202, p = .029, Lm: rS = .154, p = .105,
Lmax: rS = .198, p = .032, Smax: rS = .274, p = .003).
The negative correlation between the manifold distance and
participants’ self assessed ability to mimic is only small and
not significant (rS = −.066, p = .478). However, we also
only see a very small correlation between the participants’
self-assessment and expert ratings (rS = .056, p = .546),
suggesting that the participants’ self-assessment might not
be very accurate and therefore is not a reliable assessment
of the automated measures.

B. Influence of the embodiment

Participants assessed their own ability to mimic to be
slightly better in 3D compared to 2D, but the effect of
embodiment is not significant using a paired Wilcoxon test
(Z = 230.5, p = .25). Participants also reported they
used slightly more effort when mimicking the 3D character
compared to the 2D character (Z = 133, p = .111), but again
the influence is not significant. Similarly, we do not see any
influence of the embodiment on the self-assessed comfort
during mimicry (Z = 244.5, p = .812). In addition, the
embodiment shows no significant influence on the experts’
assessment of the mimicry (Z = 561.5, p = .459).

In comparison to the manual rating of the mimicry both
by the participants and the experts, which shows a slightly
better rating for the 3D embodiment compared to 2D, the
automated approaches to assess people’s ability to mimic
show exactly the opposite influence. The distance dm of the
participants’ trial in the intrapersonal approach is higher in
3D (M = 1.08, SD = 0.06) than in 2D (M = 0.99, SD =
0.06) and a paired Wilcoxon signed rank test shows that the
effect of embodiment is significant, Z = 589, p = .026. The
CRQA metrics show the same trend in the average ratings,
for example, the average cRR is slightly lower in 3D (M =
5.6, SD = 0.7) compared to 2D (M = 6.4, SD = 0.7), but
the influence of embodiment is not significant (e.g. cRR:
Z = 1050, p = .214).

VI. DISCUSSION

Based on the high correlation consistency between the
intrapersonal and the interpersonal approach as well as the
significant correlation with the expert rating in the important
measure of CRQA, Lmax, and the strong trend with the
manifold distance, we consider both suggested approaches
to be valid automated metrics to assess people’s ability to
mimic a character’s facial expressions.

The influence of the mixed embodied robot platform
Furhat on participants’ ability to mimic the character is
arguable. The participants’ self-assessment suggest a slightly

better ability to mimic the 3D Furhat platform compared
to the 2D virtual counterpart. Even though this trend is
not significant, the importance of the embodiment becomes
evident in the written qualitative assessment. Here, partici-
pants subjectively clearly favor the 3D over the 2D platform,
because “every movement of the eyes and small micro-
expression were much clearer and noticeable in 3D”, “due to
the tangible face in 3D” or because it “was easy to follow”.
One participant even noted that the “2D character was not
as pleasant to mimic as the 3D character”. From all the
participants who provided comments on the embodiment,
only one subjectively preferred the 2D version.

Interestingly, our automated measures suggest that partic-
ipants objectively mimicked the 2D character better than the
3D version. In the manifold projection, the distance of the
3D trials to Furhat is significantly higher than for the 2D
trials. Our CRQA analysis points in the same direction, even
though the influence of embodiment is not significant. We
believe that with a larger number of participants the evidence
in the CRQA assessment would become even clearer.

The automatically computed higher task success in 2D
is interesting because it does not confirm related work in
which participants had a higher task success when interacting
with a 3D embodiment [9][10]. Hofree et al. [13] even found
spontaneous mimicry to be stronger in the 3D embodiment
compared to a 2D video recording of the same character.
Our findings are rather in line with recent work suggesting
that facial expressions are more easily detectable in a virtual
version of a character [11][12]. Bennett and Šabanović [11]
suggested it might be easier to maintain FACS fidelity in
the digital version of the character which could explain
their findings. Our work, however, shows that the FACS
fidelity alone cannot fully explain a preference for a 2D
embodiment, since the accuracy of the FACS codes was as
high in our 3D embodiment as in the 2D version. Since we
use a mixed embodied robot platform, an alternate potential
explanation for our finding could be that small details are
difficult to detect in 3D due to the slightly blurry projection
onto the physical mask. In addition, the movement of the
robot head might be more difficult to follow and and the
noise potentially distracting due to the use of servos, which
is not a challenge for the virtual character animation as it
has the potential to be smoother and more quiet and life-like.
Mixed embodied platforms are a comparably new technology
and our findings highlight the importance of further exploring
such platforms to better understand their dynamics.

The deviation from Hofree et al. [13] might also be related
to the social presence of the virtual character, which could
be higher in a live interaction with a character compared
to a video recording. Future work is necessary to further
investigate the influence of the embodiment, especially by
including a real 3D robot platform and a video recording of
the robot. We then aim to explicitly assess the character’s
social presence in the future to explore the link between the
ability to mimic and the social presence of the embodiment.

Our findings highlight the importance of including both
subjective as well as objective measures when assessing



task performance in social interactions with robots. Even
if the task performance might be objectively higher in one
embodiment, the perception of participants’ own task success
is relevant because it has potential influence on their future
interactions. Our study shows that an objectively higher
task success is not necessarily related to the perceived task
success and should therefore be assessed separately.

Apart from the choice of embodiment, the study presented
in this paper could be extended by using a more diverse set of
stimuli. In our paper, we focused on laughter, which presents
an important social signal especially in mimicry situations
and it combines facial expressions, vocal features and head
movements. For future work we will include a broader set
of stimuli to ensure our findings are valid for the mimicry of
an agent in general. In addition, we want to explore further
influence factors on the ability to mimic a social agent and
investigate in what way unintentional mimicry is related to
the success in an intentional mimicry task.

VII. CONCLUSIONS

In this paper, we present an experiment where people were
asked to mimic a joyful laughter when interacting with two
different types of embodiment: A Furhat mixed embodied
robot platform and a 2D version of the same character.
We introduce two novel approaches to automatically assess
people’s ability to mimic the character solely based on frontal
video recordings which have a high correlation with each
other and with two experts manually assessing the videos.

The two automated approaches suggest that people are
better able to mimic the 2D representation of the character,
while they subjectively prefer the 3D over the 2D embodi-
ment. This finding is relevant, because it reveals that objec-
tive and subjective task-success are not necessarily related
to each other. However both are important for designing
successful long-term interactions with social agents.
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