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A B S T R A C T   

Empirical investigations on the uncanny valley have almost solely focused on the analysis of people’s non- 
interactive perception of a robot at first sight. Recent studies suggest, however, that these uncanny first im-
pressions may be significantly altered over an interaction. What is yet to discover is whether certain interaction 
patterns can lead to a faster decline in uncanny feelings. In this paper, we present a study in which participants 
with limited expertise in Computer Science played a collaborative geography game with a Furhat robot. During 
the game, Furhat displayed one of two personalities, which corresponded to two different interaction strategies. 
The robot was either optimistic and encouraging, or impatient and provocative. We performed the study in a 
science museum and recruited participants among the visitors. Our findings suggest that a robot that is rated high 
on agreeableness, emotional stability, and conscientiousness can indeed weaken uncanny feelings. This study has 
important implications for human-robot interaction design as it further highlights that a first impression, merely 
based on a robot’s appearance, is not indicative of the affinity people might develop towards it throughout an 
interaction. We thus argue that future work should emphasize investigations on exact interaction patterns that 
can help to overcome uncanny feelings.   

1. Introduction 

In 1970, Masahiro Mori hypothesized that a robot’s human-likeness 
is positively correlated with the affinity people feel towards it 
(Mori et al. (2012)). He noted, however, that this positive relation be-
tween human-likeness and affinity only holds until the robot’s appear-
ance becomes almost indistinguishable from that of a human being. In 
this situation, people’s positive feelings towards the robot drop drasti-
cally and affinity turns into eeriness. Mori called this flip in people’s 
perception of a human-like robot the uncanny valley. In his work, he 
further presumed that the uncanny valley effect could intensify if ob-
servers were exposed to a moving robot instead of a still version of it. 
While empirical investigations on the uncanny valley mostly confirmed 
Mori’s theory (Kätsyri et al. (2015); Mende et al. (2019)), related studies 
almost exclusively focused on the appearance of a robot, and the effect 
of movement on people’s perception of uncanny robots has rarely been 
studied (Bartneck, Kanda, et al. (2009); Saygin et al. (2012)). What adds 
complexity to the picture is that the abilities of modern robots go beyond 
the simple movements Mori discussed in his original work: today’s ro-
bots can utilize conversational strategies and enrich them with voice 

tone (Mitchell et al. (2011); Sundar et al. (2017); Dou et al. (2019)), 
gestures (Salem et al. (2013); Venture and Kulić (2019)) and facial ex-
pressions (Breazeal (2003)). Moreover, these robots are often envisioned 
to perform tasks that are social in nature (e.g., receptionist (Johanson 
et al. (2020); Hwang et al. (2020)) or bartender (Petrick and Foster 
(2020); Rossi et al. (2020))). Hence, we consider it crucial to extend the 
study of the uncanny valley to social interactions with robots that encompass 
the interactive capabilities they might have in real-life applications. 

So far, few studies included face-to-face interactions between 
humans and robots when studying uncanny feelings (e.g., Bartneck, 
Kanda, et al. (2009); Broadbent et al. (2013); Koschate et al. (2016); 
Rosenthal-von der Pütten et al. (2014); Williams et al. (2014); Złotowski 
et al. (2015)). In our previous work, we did so and extended the body of 
knowledge on the effect of robot’s interactive capabilities on the un-
canny valley by gradually exposing participants to the robot’s behav-
ioral modalities and measuring whether this affected the perception of 
uncanniness over time Paetzel & Castellano (2019); Paetzel, Perugia, & 
Castellano (2020); Perugia, Paetzel-Prüsmann, Alanenpää, & Castellano 
(2021). Our results suggest that perceptual dimensions, particularly 
those related to the uncanny valley (i.e., perceived threat, likability and 
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discomfort), are positively influenced by allowing people to interact 
with a robot for a time exceeding that of a first impression (i.e., 5 min, as 
defined by Ambady et al. (2000)). 

As people do not interpret the robot’s actions separately but tend to 
see patterns in them, allowing people to interact with a robot for an 
extended period might have helped them to form a more complete image 
of the robot’s behavioral patterns, thus counterbalancing initial uncanny 
feelings. In human-human interactions, behavioral patterns are impor-
tant to infer personality (Gifford (1994)). Personality is used to describe 
the underlying characteristics of a person that are stable over time and 
allows us to predict how an individual will behave even if we have not 
interacted with that specific person before (Matthews et al. (2003)). Due 
to people’s inherent tendency to anthropomorphize robots (Reeves and 
Nass (1996)), it is likely that they make similar inferences when 
observing the behavior of a robot. While we already know that in-
teractions might help overcome initial uncanny feelings, we still have to 
understand whether different robot personalities leading to more variable 
behavioral patterns can affect the perception of uncanniness and how exactly 
they can help overcome uncanny feelings. 

In a recent review on personality in human-robot interaction (HRI), 
Robert et al. (2020) identified only 17 papers that manipulated or 
measured the perceived personality of a social robot. While these studies 
covered many perceptual concepts like intelligence, friendliness, trust or 
enjoyment, and discussed their relation to the perceived personality 
traits, only two included explicit measures that captured uncanny feel-
ings. Broadbent et al. (2013) did not manipulate the personality of the 
robot directly, but measured the personality traits people assigned to a 
Peoplebot displaying different versions of a virtual face and analyzed 
how these traits correlated to their uncanny feelings towards the robot. 
They found that the robot was perceived as more eerie the less sociable, 
amiable and trustworthy its personality was rated. Sundar et al. (2017) 
specifically manipulated the robot’s personality by making its behavior 
more playful or serious. Based on their results, they noted that the task 
the robot was envisioned to perform had more influence on people’s 
uncanny feelings than its behavioral patterns. This is in contrast with 
findings by Złotowski et al. (2015), who were the first to consider the 
effect of robot behavior on uncanny feelings over three consecutive 
interaction sessions. In their experiment, they found that the robot’s 
negative attitude intensified uncanny feelings even when the robot’s 
appearance characteristics were not uncanny. Our work extends the 
existing literature by developing and empirically testing two distinct person-
alities that use believable interaction strategies to engage a person in a joint 
task. 

Related work focusing on the influence of the robot’s embodiment in 
general, and the level of human-likeness in particular, has shown that 
more human-like robots are overall associated with more positive per-
sonality traits (Broadbent et al. (2013); Chee et al. (2012)). As 
human-likeness also plays a core role in the original uncanny valley 
hypothesis (Mori et al. (2012)), it is important to study whether the inter-
play between the robot’s personality-driven behavioral patterns and its level 
of human-likeness influence people’s perceptions of uncanniness. 

In this paper, we present a study in which participants with limited 
expertise in Computer Science coming from diverse geographic back-
grounds played a collaborative geography game with a social robot. To 
manipulate the level of human-likeness, we used the blended robot head 
Furhat and applied two facial textures to it, one human-like texture and 
one containing additional mechanical features. Furthermore, to elicit 
different personality-driven behavioral patterns, we designed two per-
sonalities, one optimistic and encouraging, and the other impatient and 
provocative. Participants in our experiment were randomly assigned to 
one of four conditions, each corresponding to a possible combination of 
robot personality and level of human-likeness. To extend our previous 
findings and understand whether a robot’s personality-driven behavioral 
patterns influenced people’s uncanny feelings over the course of an interac-
tion, we measured people’s perception of the robot at three different 
times throughout the interaction: (1) a few seconds after they were first 

exposed to the robot and before having any interaction with it, (2) after 
2 min of social chat, and (3) after 10 min of game interaction and two 
additional minutes of post-game social chat. 

The personality-driven behavior developed for our robot was 
multimodal and consisted of crowd-authored conversations and facial 
expressions animated by an expert. The two robot personalities were 
specifically designed to be coherent and to not have inconsistencies in 
their behavioral patterns (Reeves and Nass (1996)). We achieved con-
sistency by introducing and empirically testing a novel semi-autonomous 
dialogue management system that tracks the current affective state of the 
robot and relies on semi-situated affective ratings of the crowd-authored 
dialogue lines to select the next line best fitting the conversational content 
and the current affective state. The resulting conversational strategies 
applied by the robot led to a complex and believable personality-driven 
behavior fitting the context. They hence allowed us to gain novel in-
sights into people’s perception of robot behavior which go beyond the 
simplistic behaviors utilized in the related work on uncanny feelings 
towards humanoid robots. 

2. Related work 

2.1. Robot appearance & the uncanny valley 

Since the publication of the uncanny valley theory in 1970, re-
searchers did not only try to find evidence for its existence but also 
aimed to identify its potential causes. In a recent review, Kätsyri et al. 
(2015) identified two explanatory theories that gained substantial 
empirical support in the literature: the categorization ambiguity theory 
and the perceptual mismatch theory. The first theory posits that uncanny 
feelings arise when an observer is unsure about the exact nature of a 
stimulus due to its conflicting perceptual cues. Such categorical ambi-
guity can, for example, arise if an observer cannot identify whether a 
picture shows a computer-generated or a natural human face. The sec-
ond theory, the perceptual mismatch theory, postulates that any 
perceptual mismatch can lead to uncanny feelings, even if the categor-
ical affiliation of the stimulus is not into question. For example, it was 
found that eyes containing conflicting cues (Meah and Moore (2014)), 
disproportional facial parts (MacDorman et al. (2009)), or a lack of 
movement in parts of the face increase the feeling of uncanniness when 
observing an artificial agent (Tinwell et al. (2013)). The perceptual 
mismatch theory could also explain why the related work did not only 
find androids, a class of very human-like robots (Ho and MacDorman 
(2010, 2017); Lischetzke et al. (2017); MacDorman and Entezari (2015); 
Nakane et al. (2014); Reuten et al. (2018); Rosenthal-von der Pütten and 
Krämer (2014); Strait et al. (2017)), but also some clearly mechanical 
robots to elicit uncanny feelings (Łupkowski and Gierszewska (2019); 
Rosenthal-von der Pütten and Krämer (2014); Stroessner (2020)). 

While most experiments on the uncanny valley focused on perceptual 
cues related to the robot’s embodiment, introducing multimodal cues 
could increase the potential for a perceptual mismatch to arise. Hence, 
Bartneck, Kanda, et al. (2009) suggested that uncanny feelings may be 
too complex to be mapped into Mori’s simple two-dimensional graphical 
representation of the uncanny valley theory. They argue that the robot’s 
level of anthropomorphism in itself is influenced by many different 
factors that go beyond the mere embodiment of a robot. For example, a 
sophisticated and human-like behavior of a robot could lead to a higher 
level of perceived anthropomorphism independent of its embodiment 
features. Such human-like behavior could possibly cause a perceptual 
mismatch to arise if paired with a mechanical robot body. However, 
there are more ways in which the behavior of a robot could contribute to 
the elicitation of uncanny feelings: It is possible that it is not a mismatch 
between behavior and appearance but an incongruence within the ro-
bot’s behavioral patterns that lead to a perceptual mismatch and 
consequently to uncanny feelings. This is in line with Reeves and Nass 
(1996), who hypothesized that discomfort with an artificial agent could 
be raised by inconsistencies in personality-driven behavior, often 
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originating from several developers being involved in implementing the 
behavior. However, it is also possible that uncanny feelings go beyond 
an incongruence and certain types of universally undesirable behaviors 
in robots exist that generally make people feel threatened by them. 
Złotowski et al. (2015) designed a positive and friendly behavior and 
tested it against a negative and antagonistic one. Their findings indeed 
suggest that the uncanny valley intensifies for robots with an overall 
negative attitude. 

2.2. Robot personality 

Human personality is generally complex and early work from social 
psychology has identified as many as 18,000 relevant terms in the En-
glish language to describe a person’s nuances in personality (Matthews 
et al. (2003)). Over the years, however, taxonomies evolved to facilitate 
“more effective theories of the development, structure, and functioning 
of personality” (Norman (1963)). The most common descriptor for 
personality used in social psychology today, the Big Five model, consists 
of five distinct dimensions: openness to experience, conscientiousness, 
extroversion, agreeableness, and neuroticism (Reeves and Nass (1996)). 

People tend to anthropomorphize computers and robots and use 
terminology from human-human interaction even if a device is not 
inherently human-like (Ball and Breese (2000); Reeves and Nass 
(1996)). For example, Sirkin et al. (2015) has shown that people assign 
intention to inanimate objects like a mechanical footstool. The tendency 
to anthropomorphize also shows when people assign personality traits to 
robots, even to those as basic as autonomous vacuum cleaners (Hendriks 
et al. (2011)). Robot designers utilize this tendency and explicitly 
manipulate the perceived personality to create more enjoyable in-
teractions. Robots displaying personality have, for example, been found 
to engage users in tasks across several different domains, like post-stroke 
rehabilitation therapy (Tapus et al. (2008)), or restaurant recommen-
dations (Aly and Tapus (2013)). 

In social robotics, personality is often used to distinguish the 
behavior of similar agents, but also to explain the range of emotional 
states a character can display (Oliveira and Sarmento (2002)). In a 
recent review on robot personalities utilized in HRI, Robert et al. (2020) 
found the majority of papers to define personality descriptors based on 
established taxonomies from social psychology. Among the 17 papers 
included in their review, nine measured and/or manipulated personality 
using the Big Five personality descriptors, and four Wiggins Personality 
Test. Among these 13 papers, a strong focus on the personality trait 
extroversion became apparent and only few took additional dimensions 
like a combination of extroversion, agreeableness and conscientiousness 
into consideration (Meerbeek et al. (2008)). 

In addition to personality descriptors common in social psychology, 
researchers in HRI have used a variety of further terms to distinguish 
agents’ personality-driven behavior. For example, Sundar et al. (2017) 
described the robot’s personality as playful or serious, while Yamashita 
et al. (2016) used the terms likable, mighty and vital. Grollman (2016) 
manipulated the personality of the comparably simplistic and mechan-
ical robot Marz along the dimensions friendliness, cautiousness, laziness 
and gluttony. While some of these overlap with the traditional factors 
used in social psychology, the majority differs substantially and a 
mapping between these and commonly utilized personality dimensions 
is not easy to infer. 

2.3. The relationship between personality and robot perception 

The relationship between personality and robot perception can be 
studied in two directions: One can either investigate what perceptual 
cues in a robot lead people to attribute certain personality traits to a 
robot, or one can assess how perceived personality traits influence other 
perceptual dimensions of the robot. Interestingly, research studies 
examining the former have mostly focused on embodiment features of 
the robot and little work has taken robot behavior into account. It was 

found that a robot’s appearance influences how people perceive its 
personality even if the robot did not show any behavior at all. Groom 
et al. (2009) found that a humanoid robot was ascribed a more malicious 
personality, while an autonomous car was perceived as more friendly. 
These findings are in stark contrast to most of the empirical evidence 
suggesting that human-like robots are perceived as having a more 
favourable personality. For example, Chee et al. (2012) found that the 
robot’s human-likeness, its color and surface material influenced the 
personality attributes people ascribed to it. More specifically, their data 
suggest that robots with more human-like features were perceived as 
more friendly than mechanical robots. They hypothesized that a higher 
familiarity with humans could have led to assigning more favourable 
personality traits to the more human-like robots. These findings are in 
line with Broadbent et al. (2013), who manipulated the virtual face 
displayed on a Peoplebot and found that the more human-like version 
was perceived as more sociable and amiable. Yamashita et al. (2016) 
extended this work by including perceptual cues from touch sensations 
of the robot’s skin. They found that a robot which felt natural improved 
the likability of its personality. However, robots with more mechanical 
features made of rigid, and hard covering materials were ascribed a 
more mighty personality. 

Only a few studies have focused on how the personality traits of a 
robot influence people’s perception of it, specifically on perceptual di-
mensions related to the uncanny valley. Fong et al. (2003) hypothesized 
that a “compelling personality” will increase a robot’s likability. 
Conversely, if this hypothesis holds, less compelling personality traits 
could have the potential to cause an uncanny sensation in humans. First 
empirical evidence for this hypothesis was found by Hwang et al. (2013) 
and Broadbent et al. (2013). Hwang et al. (2013) found that all of a 
robot’s perceived personality traits (neuroticism was coded as emotional 
stability) were negatively correlated with the feeling of concern, and 
some were positively correlated with a favourable and enjoyable feeling 
towards it. Results by Broadbent et al. (2013) show a similar trend 
despite not using the same personality descriptors in their work. They 
found that the perceived eeriness of a robot was correlated with a less 
sociable, amiable and trustworthy personality. While both studies make 
an important observation about a correlation between uncanny feelings 
and less favourable personality traits, they both did merely observe 
people’s personality attribution to the robot without actively manipu-
lating the personality. 

2.4. The effect of matching personality traits in HRI 

In social psychology, it has been shown that the level of attraction 
felt towards people with different personality characteristics is not 
necessarily universal, but depends on a match or mismatch in person-
ality traits between two people (McPherson et al. (2001)). In HRI, most 
empirical investigations have found a similar trend, showing a prefer-
ence for a robot that matched the personality of participants (Park et al. 
(2012); Tapus et al. (2008)). Andrist et al. (2015) showed that people 
even comply more with a robot matching their own personality. The 
work by Joosse et al. (2013), however, suggests that the preference for 
similar or complimentary personality might be context dependent and 
specifically rely on the task the robot is performing. Similar observations 
were made by Goetz et al. (2003), who found that it was not the playful 
personality in itself that was liked better by participants in their study, 
but that the task context had a strong influence on what personality 
traits were favored by the human interaction partner. This is contrary to 
work by Sundar et al. (2017), who found that more eerie feelings instead 
of affection were elicited by robots with a match between the assigned 
task and personality traits. People rated a companion robot more un-
canny when it behaved playful than when it was serious, while assistant 
robots were perceived as more eerie when being serious. They suggested 
that the task description may have played a more important role in the 
elicitation of uncanny feelings, and that the robot’s personality 
description had little influence on the overall perception. However, 
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interaction with the robot in their experiment was limited and they only 
varied the robot’s personality by manipulating its voice pitch. Their 
findings may thus not translate to robots displaying stronger 
personality-driven behavioral patterns over a longer period of time. 

2.5. The development of personality perception over time 

Even though it was shown in social psychology that a judgement of 
someone’s personality can be made after a few seconds, the time of 
exposure was still found to influence the accuracy of the impression 
(Calvo-Barajas et al. (2020); Carney et al. (2007)). In spite of this, only a 
few studies in HRI have explicitly investigated the influence of time on 
the perception of a robot’s personality. Groom et al. (2009) found a 
potential effect of previous exposure to a robot on how favourable its 
personality was rated. More specifically, participants in their experi-
ment generally preferred the personality of a robot they had assembled 
before instead of one that they believed to be assembled by someone 
else. The study design by Złotowski et al. (2015) included three 
consecutive interaction session that lasted for an hour in total. In each 
session, the human participant had a job interview with a robot inter-
viewer that had a positive or negative attitude towards them. Their re-
sults show that uncanny feelings towards the robots declined over the 
three sessions regardless of the robot’s attitude. Moshkina and Arkin 
(2005) did a longitudinal study involving four 20–60 min interaction 
sessions with an AIBO robot. They found no general influence of dis-
playing personality driven-behavior on how pleasant people rated their 
interaction with the robot. Nevertheless, they discovered that people 
who believed the robot to have a personality found the interaction to be 
more pleasant independent of whether the robot was programmed to 
actually show personality or not. 

3. Research questions 

This work aims to deepen our understanding on how a robot’s 
appearance and personality-driven behavioral patterns influence peo-
ple’s perception of it over time, particularly in dimensions related to the 
uncanny valley. 

Our first research question is concerned with the general perception 
of robots with different combinations of human-likeness and personal-
ity. The aim is to understand whether certain personality traits in a robot 
are favored independent of the personality of the observer. In other 
words, are there personality traits that are universally perceived as more 
uncanny and others that are favored and can hence lower uncanny 
feelings in humans. 

RQ1 To what extent does robot personality influence people’s 
perception of robots with different levels of human-likeness? 

From social psychology, we know that a preference for certain per-
sonality traits often depends on the personality of the observer and a 
match in personality traits often leads to a positive perception overall 
(McPherson et al. (2001)). Related work in HRI has confirmed that ro-
bots displaying a level of extroversion matching their human conver-
sation partner are preferred over those with opposite traits (Park et al. 
(2012); Tapus et al. (2008)). Whether these findings transfer to other 
personality traits has not been investigated so far. In our work, we do not 
alter the robot’s level of extroversion, but attempt to manipulate its 
agreeableness and neuroticism instead. We are thus interested in un-
derstanding whether a match in these traits is also preferred and can 
lower uncanny feelings, or whether the level of likability and threat is 
independent of the similarity in personality. 

RQ2 To what extent does a match in personality between a robot and 
a human interlocutor influence the human’s perception of the robot? 

The personality of the robot potentially alters more than people’s 
perception of it – it can also influence how they perform in and engage 
with a joint task or perceive their engagement with the robot. To deepen 
the understanding of the impact a robot’s personality has in human- 
robot interaction, we specifically analyze people’s performance and 

their self-reported engagement in such an interactive scenario. 
RQ3 How do robot personality characteristics influence people’s 

engagement and task performance? 
In previous work, we have shown that people’s first impressions of 

robots are not stable and can be altered when exposing people to a ro-
bot’s behavior for longer Paetzel & Castellano (2019); Paetzel, Perugia, 
& Castellano (2020); Perugia, Paetzel-Prüsmann, Alanenpää, & Cas-
tellano (2021). In this work, we aim to extend our previous findings by 
understanding what role robot personality plays in changing people’s 
perception over time. More specifically, we aim to investigate whether 
one personality allows the perception of the robot to stabilize faster, 
while another make it fluctuate over the course of the interaction. 

RQ4 To what extent does the personality of the robot influence how 
people’s perception of it develops over time? 

4. Scenario and robot interaction design 

To study the influence of personality on people’s perception of a 
robot, we asked participants to play an interactive collaborative game, 
the Rapid Dialogue Map Game (RDG-Map), with a Furhat V1 robot (Al 
Moubayed et al. (2012)). Furhat is a blended embodiment consisting of a 
firm mask on which a virtual face texture is projected from within. The 
robot’s head is mounted on a white box containing the processor, 
speaker and two motors. These motors allow the robot to shake the head 
and nod. The virtual texture can be animated to direct the robot’s gaze, 
perform facial expressions and achieve lip synchrony when talking. 

We designed two distinct but believable personality-driven interac-
tion strategies for the robot within the game: one lighthearted, optimistic, 
and determined to engage and encourage others in every situation (optimistic 
personality [OPT]), the other snarky, with little patience for life’s imper-
fections and people’s mistakes and receiving pleasure from challenging others 
(impatient personality [IMP]). Thus, just like a human game partner, the 
robot could either be fun and engaged in the game, eager to learn, but 
very forgiving of mistakes, or impatient, overly invested in winning the 
game and thus trying to challenge the human game partner to constantly 
improve the performance. The personalities designed for the robot were 
mainly expressed through affective conversational content, which was 
occasionally enriched by emotional facial expressions, and were shown 
both while the participants were playing the game with it, and in a short 
social chat occurring before and after the game. 

4.1. The RDG-Map scenario 

In the RDG-Map game Paetzel & Manuvinakurike (2019), a human 
player helps a robot to correctly identify as many countries as possible 
on the world map in a given time of 10 min. The human player acts as 
the Director in the game and is provided with a tablet on which a map of 
the world is displayed and one country, the target country, is highlighted 
in green (cf. Fig. 1 bottom left). The goal of the Director is to verbally 
describe the target country to the robot by means of a free conversation 
and help it to identify it as quickly as possible. In the RDG-Map game, 
the robot player thus takes the role of the Matcher and its goal is to 
correctly select the target country on a shared screen, which is visible to 
the Director. The robot has two opportunities per target country to make 
a guess. If the first guess is correct, the team receives two points. If it is 
incorrect, the Director can continue describing the country and the team 
can earn one point if the robot correctly selects the target country at the 
second attempt. In case the second guess is also wrong, the team does not 
receive any points. 

4.2. Robot appearance and control 

Based on previous studies, we selected two face textures for the robot 
representing two different levels of human-likeness Paetzel & Castellano 
(2019). The human-like version was created using a photograph of a real 
human (cf. Fig. 2 left). The morph version was designed by blending the 
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human-like texture with the texture of a mechanical robot (cf. Fig. 2 
right). Both human-like as well as mechanical features were clearly 
visible in this face texture, but less pronounced than in the original 
textures. Hence, to further strengthen the mechanical features of the 
morph robot, we used the eyes of the mechanical version of the robot. 

Since the RDG-Map game is a challenging game from a language 
processing perspective, we used a researcher to remotely control parts of 
the agent’s functionalities (cf. Fig. 1 bottom right). The researcher was 
trained to operate the robot during 50 online game interactions and over 
150 in-person interactions and followed strict guidelines when making 
decisions. For instance, in the pre- and post-game chat, (s)he followed a 
predefined order of conversational topics. Within a conversational 

strand, the controller merely replaced the language understanding unit 
of the system. Each button on the control interface was related to a 
potential response that the human could give, so, for instance, when the 
robot started to talk about the upcoming task by saying: “Well, I guess 
we get to play a game with each other. That sounds nice, don’t you 
think?“, the controller could sort the response of the human partner into 
one of three possible categories: The human was excited to play the 
game, not excited, or unsure about it. 

During the game, most of the robot’s responses were designed to be 
neutral and were targeted at scoring points by guessing the country 
correctly. The controller was tasked with making a guess on the target 
country for the robot only upon receiving enough information. In case 
more details about the target country were needed, the controller could 
select one of several questions. On top of the more neutral game actions, 
after certain pre-determined events of the interaction (e.g., scoring 
points, or making a wrong selection), the controller could select in- 
personality comments. 

The human controller was additionally tasked with directing the 
gaze of the robot. During the game, the robot’s gaze was mostly focused 
on the shared screen positioned in between itself and the human. 
However, whenever a continent, country or region known to the robot 
was mentioned, the controller could direct the robot’s gaze towards it 
and, when the human director took very long breaks for thinking about a 
cue or searching on the tablet, the controller could bring the robot’s gaze 
up, directing it to the human. These gaze cues were supposed to give the 
human partner a feedback on the game actions, and communicate an 
overall understanding of the context. In the pre- and post-game social 
chat, Furhat autonomously tracked people’s head using a Kinect camera 
mounted atop its head and held eye contact with participants as pre-
cisely as possible. On top of this default behavior, the controller could 
move the robot’s gaze downward to the left or to the right for a short 
period of time to simulate thinking. 

Fig. 1. Schematics of the experimental setup. On the bottom left, the tablet displaying the Director’s screen during the game interaction is shown. To the bottom 
right, a screenshot from the robot control interface during the game interaction is visualized. 

Fig. 2. The Furhat robot with the humanlike (left), and morph (right) facial 
texture applied. 
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4.3. Design of the robot personalities 

4.3.1. Conversational content 
Traditionally, personality-driven behavior in robots has been hand- 

crafted by researchers and interaction designers (Robert et al. (2020)). 
This approach is, however, infeasible when designing longer interactive 
scenarios which require a stream of coherent behavior for a given per-
sonality. For this reason, the interest has recently shifted from 
expert-authored dialogue lines to designing systems that can autono-
mously generate such conversational content (Mairesse and Walker 
(2011)). Another approach that gained popularity in recent years to 
overcome the authoring bottleneck is crowd-sourcing conversational 
content (Kriegel (2015)), as well as emotional expression generation 
(Ravenet et al. (2013)). 

In previous work, we showed that crowd-authoring can be used to 
create personality-driven conversational content for a robot playing a 
cooperative game Mota et al. (2018). We designed two personalities 
similar to those presented in this paper: one that was quick to overreact 
and had little patience for life’s imperfections, the other that was 
lighthearted, optimistic, and determined to find the fun in every situa-
tion. When evaluating our proof-of-concept implementation, we found 
that the two personalities were indeed perceived as significantly 
different in agreeableness and neuroticism, but did not differ in the 
enjoyment participant felt while playing with them. However, we also 
discovered that the affective states of the two personalities were not 
developing naturally over time, but had sudden changes in emotion 
intensity. This was likely caused by a shortcoming in our 
crowd-authoring technique. Indeed, as we provided crowd-workers with 
a description of the context of the conversation, but did not inform them 
about the current emotional state of the robot, their interpretation of 
how a certain personality would react to a given situation differed 
substantially. In later work, we developed an extension to our 
crowd-authoring pipeline by giving authors the affective state of the 
robot (excited or frustrated) instead of its personalityPaetzel, Kennedy, 
Castellano, & Lehman (2018). This approach allowed us to collect a 
variety of affective responses useable in multiple situations for both of 
our original personalities. 

In the experiment presented in this paper, we implemented a fully- 
functioning pipeline further extending our previous work. The affec-
tive states we chose described the robot as being (a) excited and 
encouraging, (b) impatient and provocative, or (c) indifferent. The two 
robot personalities were designed so that the development of their af-
fective states over time differed: The robot with the optimistic person-
ality was supposed to get easily excited whenever a human partner 
scored a point or responded positively to its question, but to be more 
indifferent to failures in the game. On the contrary, the robot with the 
impatient personality was supposed to get more impatient and provoc-
ative if less favourable responses were given, but to not be affected by 
positive events in the game that were equally strong (e.g., scoring a 
point). It is important to note that both the optimistic and the impatient 
personality could potentially adopt the full range of affective states and 
that there were certain overly positive or negative responses of the 
interaction partner that triggered both personalities in a comparable 
way. 

Crowd-Authoring content Following the approach introduced in our 
previous research (Mota et al., 2018; Paetzel, Kennedy, Castellano, & 
Lehman, 2018), we asked crowd-workers on Amazon Mechanical Turk 
to author affective content for our robot. The crowd-sourcing pipeline 
consisted of three stages. In stage one (authoring stage), crowd-workers 
were provided with one of 61 situational description corresponding to 
conversational strands in the pre-and post-game interaction or events in 
the game. The descriptions were occasionally accompanied by a previ-
ous dialogue excerpt, and crowd-authors were asked to write one ut-
terance the robot could say for the given context and affective state. For 
each scenario and affective state, five crowd-workers were asked to 
write an utterance. In the second stage (situational evaluation), each 

authored line was shown to five crowd-workers. These were asked to 
judge how (a) typical and ordinary, and (b) offensive the line was on a 
five-point Likert scale. A line could also be flagged as non-sensical. 
Finally, in stage 3 (affective evaluation), another five crowd-workers 
were asked to evaluate whether they perceived the authored lines as 
excited and encouraging, frustrated and provocative, or indifferent, and 
to rate the intensity of the excited and encouraging or frustrated and 
provocative affect on a four-point scale. 

Lines rated as non-sensical more than twice or receiving an average 
rating of less than 2.6 on typicality were excluded from the corpus. 
Utterances that were rated as 2.66 or higher on offensiveness were 
flagged and manually checked by a researcher involved in the experi-
ment. In case the researcher agreed that the line was offensive, it was 
excluded from the corpus. In total, crowd-workers contributed a total of 
1512 lines in 61 scenarios to the final corpus of the robot’s conversa-
tional content. 24.9% of pre-game, 29.7% of in-game and 24.3% of post- 
game lines were rejected and excluded from the corpus, leaving a final 
set of 1121 conversational lines for the robot. 

Situational use of the dialogue content To make use of the personality- 
driven affective content in a coherent manner, each button of the robot’s 
control interface corresponding to a potential response of the human 
was annotated with one affective specification (+, - or o) per robot 
personality. These indicated how the given response of the human 
would influence the affective state of the robot in its current personality. 
The label + indicated that the response made the robot more excited and 
encouraging (maximum of +0.25 on a scale from − 4 to 4), the label - 
that the response made it more impatient and provocative (maximum of 
− 0.25), the label o that the response left the robot indifferent and thus 
kept the robot’s affective state as stable as possible (ideally in the range 
of − 0.1 and + 0.1). 

To pick the most fitting response in a given context, the robot first 
extracted all utterances that were authored for the specific situation. 
Then, it filtered these utterances, keeping only those in the range of the 
target affect for the next line. In case this list returned empty, the search 
criteria were relaxed to ensure the robot would always be able to say a 
line in every situation. To relax the search criteria, the system consid-
ered lines that would correspond to a stronger development in the 
intended direction (e.g., updating the current level of affect for more 
than +0.25 given a +). Among the list of potential lines, the robot would 
first pick the utterance that was used in the same conversation the 
longest ago. This rule was relevant for the game, as the robot could 
encounter situations like scoring or not scoring points multiple times. In 
case multiple lines qualified, the one that was rated most typical for the 
given situation was selected. 

4.3.2. Facial expressions 
Once a line was selected, the robot autonomously decided whether to 

say the line with a neutral face, or perform a facial expression with the 
utterance. Based on previous work Mota et al. (2018), we selected eight 
facial expressions for the RDG-Map game: four that were evaluated as 
frustrated (brow frowning and shaking the head, among others) and four 
that were perceived as excited (smile and raising eyebrows, among 
others). The expressions are visualized in Fig. 3. We evaluated the ex-
pressions on Amazon Mechanical Turk by randomly selecting nine sce-
narios, three each from the pre- and post-game social chat and from the 
game interaction. Crowd-workers were shown a video of a virtual agent 
with a human-like face texture which said the crowd-authored line with 
an accompanying facial expression. Five crowed-workers per expression 
and situation were asked to rate how typical and ordinary the expression 
was perceived in the given scenario on a five-point Likert scale, and how 
excited and encouraging or impatient and provocative the virtual 
human appeared on a four-point Likert scale. In addition to the eight 
videos showing the different facial expressions, a ninth video was 
included as a baseline that showed the robot saying a line without an 
accompanying expression. 

To decide which expression to use in a given situation, the average 
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typicality score of an expression was calculated separately over all three 
scenarios for the pre-game, post-game and in-game situations. In addi-
tion, it was calculated how performing this expression changed the af-
fective state compared to not performing any expression (baseline 
video): 

aexpression = araw− baseline − araw− expression (1) 

This calculation was used to inform the situational development of 
the robot’s affect when performing a facial expression even for lines not 
explicitly rated by crowd-workers. 

In the actual interaction, the decision to perform a facial expression 
was made in two steps. First, the dialogue manager decided whether to 
perform a facial expression with the selected utterance or not. Then, it 
selected the exact facial expression to perform. The decision to perform a 
facial expression was made randomly with a custom adjustment to the 
random factor based on the amount of time that elapsed since the last 
facial expression was shown, the strength in effect of the selected ut-
terance on the current affective state of the robot, and how close to the 
extreme (extremely excited or extremely impatient) the robot’s affective 
state was. Generally, the more lines were uttered without an accompa-
nying facial expression, the smaller the difference in affect for the 
selected utterance was, and the closer the affect to the extreme ends of 
the scale, the more likely a facial expression was to be performed. An 
exception was made for response categories which were not supposed to 
change the affective state of the robot (labelled o). In this case, per-
forming a facial expression was given a low probability by default. 

If the function evaluating whether to perform a facial expression 
came to a positive result, the facial expression was picked among the 
four corresponding to the current affective state of the robot. In other 
words, as long as the robot’s affective state was on the impatient end of 
the scale, only the impatient facial expressions could be performed. The 
exact expression to display was chosen randomly, weighted by how 
typical and ordinary each expression was perceived for scenarios in pre- 
game, post-game or in-game situations. 

After the utterance and the expression were selected, the affective 
state of the robot was updated accordingly: 

Snew = S + autterance + aexpression (2)  

where Snew is the affective state of the robot after the next line is uttered, 
S the current affective state, and a the affective ratings derived from the 
crowd-workers. 

5. Experiment and data analysis 

To answer our four research questions as stated in Section 3, namely 
the influence of personality (RQ1), and a match in personality between a 
human and a robot (RQ2) on people’s perception of robots with different 
levels of human-likeness, the interplay between robot personality and 
engagement (RQ3) and the development of robot personality and 
related perceptions over time (RQ4), we designed a 2 × 2 between- 
subject experiment with robot appearance (human-like and morph) 
and personality (optimistic and impatient) as independent variables. The 
experiment was conducted over the period of 12 days at a science 
museum in Stockholm. Ethical clearance for the study was provided by 
the local ethical review board (Regionala etikprovningsnamnden i 
Uppsala, reference number 2018/503). 

5.1. Participants 

73 participants were recruited among the visitors of the Tekniska 
museet Stockholm. They could sign up for the experiment upon entry to 
the museum. 12 participants needed to be excluded from the study due 
to technical failures of the system, interruptions during the study or 
because they suspected that the robot was remote-controlled. The 
remaining 61 participants were evenly distributed into four experi-
mental conditions corresponding to all possible combinations of the 
robot’s appearance and personality: 16 people interacted with the 
human-like optimistic (HUM-OPT) robot and 15 with the human-like 
impatient (HUM-IMP), morph impatient (MOR-IMP) and morph opti-
mistic (MOR-OPT) robot. 

Due to a problem we encountered in storing the results of the de-
mographic questionnaire for 7 participants, we can only report the de-

Fig. 3. Face of a virtual human showing the four excited (top row) and four impatient facial expressions (bottom row). Top row left to right: Smile, nodding, slight 
smile with raised eyebrows, wink. Bottom row: shaking head, strong frown, slight frown, slightly disgusted mouth shape with raised eyebrows. 

M. Paetzel-Prüsmann et al.                                                                                                                                                                                                                   



Computers in Human Behavior 120 (2021) 106756

8

mographic information of 54 people. Visitors at the museum and hence 
participants in our study had a very heterogeneous background. On 
average, participants were 35.4 years old (SD = 14.13) with the youn-
gest participant being 19 years and the oldest 73. We had slightly more 
male (59.26%) than female participants (40.74%), with none describing 
their gender as “other” or abstaining to answer the question. Slightly 
over half of the participants (53.7%) had a University degree, but only 9 
(16.67%) had a background in Computer Science or related subjects. 
Even though the majority of participants was from Sweden (59.26%), 
international visitors from 17 different countries took part in our study 
as well. 

5.2. Experimental setup 

The experiment space was divided into the participant’s and wiz-
ard’s area as visualized in Fig. 1. The participant’s area was visually 
separated from the wizard’s area by three exhibition walls covered by 
black fabric. The Furhat robot was placed in front of the walls so the 
fabric provided an even background for the experiment. The participant 
was standing in front of the table. Between the robot and the participant, 
a shared touch screen displaying the robot’s country selection and a 
RealSense (RS) camera recording participant’s facial expressions were 
placed. At the side of the table a tablet was attached on a bendable arm. 
The tablet was aimed at guiding the participant through the experi-
mental procedure, was used to show the director screen and to fill out 
the questionnaires. We ensured that the robot was roughly on partici-
pant’s eye level by installing it on an additional small table on top of the 
main experiment table. Behind the robot, a tripod with a Kinect (KIN) for 
face and skeleton tracking was placed. A webcam (WB3) was attached 
above the Kinect to provide a video stream to the robot operator behind 
the wall. Two further webcams (WB1 & WB2) provided frontal and 
lateral recording of the experiment at 30 fps. Participants were asked to 
wear a close-range Sennheiser microphone and Tobii eye-tracking 
glasses during the experiment. The light in the participant’s area was 
switched off, except for a professional light system that was used to 
provide even light for the video recordings. As the robot was placed 
behind the light system, the light did not impair the visibility of its facial 
features. 

To the left of the robot, a table with three computers was installed to 
control the game interface, robot behavior and recordings. Computer C1 
recorded videos from two webcams (WB1 & WB2) and the microphone 
using EyesWeb,1 as well as skeleton data from the Microsoft Kinect. C1 
was also running the scripts for the game and questionnaire as well as 
the robot control system. All interactions with the game, the robot 
speech as well as its gaze and facial expressions were written to a log file 
on C1. C2 ran a custom developed software connected to the Tobii eye- 
tracker that autonomously analyzed the incoming video stream and 
provided information to the robot controller behind the wall on what 
object the participant was paying attention to. The third computer (C3) 
recorded the RealSense video. It was also connected to the shared touch 
screen and displayed the respective game interface on the screen. 

The wizard controlled the robot from the wizard’s area on computer 
C4. This computer was connected to webcam WB3 and the stream of the 
camera was visible to the robot controller in real-time and recorded for 
later analysis. The wizard was never seen by nor interacted directly with 
the participants. Different researchers (R1, R2) monitored the experi-
ment: they recruited the participants for the study, asked them to sign 
the consent form and fill out questionnaires before and after the inter-
action and debriefed them after the experiment had finished. 

5.3. Measures 

The analyses provided in this paper are based on three different 

questionnaires: Q1 was filled out before the experiment started, Q2 at 
three different times throughout the interaction with the robot and Q3 
after the interaction with the robot had finished. 

Questionnaire Q1 was provided to participants outside the experi-
ment room before the experiment started. It included demographic 
questions capturing participants age, gender, nationality and highest 
level of education, a short version of the Big Five personality question-
naire by Rammstedt and John (2007) as well as the Negative Attitude 
Towards Robots (NARS) scale by Nomura et al. (2006). Questionnaire 
Q2 was designed to capture the perception of the robot in different di-
mensions during the interaction with the robot. It consisted of questions 
related to the robot’s perceived anthropomorphism based on the 
Godspeed questionnaire developed by Bartneck, Kulić, et al. (2009) 
(reliability between α = .929 and α = .856), perceived threat (α = .91) 
and likability (α = .827) as introduced by Rosenthal-von der Pütten and 
Krämer (2014), as well as warmth (α = .91), discomfort (α = .82) and 
competence (α = .84) from the RoSAS scale (Carpinella et al. (2017)). 

The final questionnaire (Q3) was filled out at the end of the session 
outside the participant area. In it, participants were first asked to report 
their overall satisfaction with the game (e.g., how satisfied they were 
with the score, or whether they felt they learned new things playing the 
game) and the interaction with the robot (e.g., whether they understood 
what the robot was saying, and whether they believed the robot un-
derstood them) on ten different scales. Participants were then prompted 
to rate their involvement with both the game and the robot separately, 
as well as to report their focused attention throughout the game (O’Brien 
and Toms (2010)). The final set of questions regarded the perceived 
personality of the robot: Participants rated the robot’s personality using 
the short version of the Big Five personality questionnaire by Rammstedt 
and John (2007) and on several scales capturing how coherent they 
perceived the interaction with the robot to be (e.g., whether the per-
sonality developed smoothly over the interaction and whether the mood 
of the robot was fluctuating). They were also prompted to describe the 
robot they had met in three words. In the end, they indicated whether 
they had seen the Furhat robot or interacted with it before. In case 
participants had interacted with a Furhat prior to the study, their data 
were excluded from the analyses. 

5.4. Procedure 

Participants were recruited at the entrance of the museum by R1 and 
were brought to a waiting area in front of the experiment space. R1 
further explained the purpose of the experiment and the experimental 
procedure to participants, handed them the consent form to sign, the 
rules of the game and questionnaire Q1 on a laptop. During this period, 
R2 and the wizard prepared the experiment space and covered the 
Furhat robot with a blanket. 

Once the participant finished Q1, R2 took them to the experiment 
space, set up and calibrated the eye-tracker and the microphone and 
started the camera recording. R2 then uncovered the robot and left the 
experiment space. While participants were led to believe they were 
alone in the experiment room throughout the experiment, the shared 
screen had an alarm button that could be pressed in case they needed 
assistance or had any further question. R2 was seated outside the 
experiment space and received the alarm on a laptop. 

The first instance of Q2 was based on participant’s first impression of 
the robot and they were instructed to look at the robot for a few seconds 
before starting to respond to the questionnaire. After participants filled 
out Q2 for the first time, the robot woke up and autonomously started 
the pre-game interaction, after which it asked participants to fill out Q2 
again. They then played the game with the robot for 10 min and had the 
post-game social chat without a break. Thereafter, participants respon-
ded to Q2 once more inside the experiment space. As soon as the 
questionnaire was completed, R2 was notified outside the experiment 
space by the system. R2 entered the experiment space, stopped the re-
cordings and walked the participant back to the waiting area. R1 took 1 http://www.infomus.org/eyesweb_ita.php. 
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over outside the experiment space again, handing them a laptop to fill 
out Q3 before debriefing the participant on the experiment and handing 
over a free ticket to the museum as compensation. 

5.5. Data analysis 

To answer our research questions, several statistical analyses were 
executed in IBM SPSS 26. In order to perform the manipulation checks 
and answer RQ1 and RQ3, we ran a number of 2 × 2 ANOVA using robot 
appearance (human-like and morph) and personality (impatient and 
optimistic) as between-subject factors. Responses from questionnaire Q2 
filled out after the post-game social chat were used for the manipulation 
check and the analysis regarding RQ1, while responses to questionnaire 
Q3 were used to reply to RQ3. 

To respond to RQ2 and understand the influence of a match in per-
sonality traits between the robot and the human observer, we first 
analyzed which personality traits people perceived as different between 
the impatient and optimistic version of the robot (based on Q3). For each 
of the personality traits where the difference between conditions 
reached significance, a 2 × 2 ANCOVA was performed with the robot’s 
personality (impatient and optimistic) and participant’s level on that 
particular personality trait (low and high) as between-subject variables 
and the robot’s appearance (human-like or morph) as co-variate. In 
order to divide participants into low and high on a certain personality 
trait, we calculated the median scores of the respective trait based on 
participants’ responses to Q1 and attributed the value low to those 
participants whose rating was lower than the median, and the value high 
to those participants whose rating was equal or higher than the median. 
The analysis was performed on participants’ responses to Q2 filled out 
after the post-game social chat. 

Finally, to answer RQ4 and understand the influence of time on the 
perception of personality, we performed a series of 2 × 2 x 3 factorial 
ANOVA using appearance (human-like and morph) and the robot’s 
personality (impatient and optimistic) as between-subject factors and 
time (first impression, social chat, and game interaction) as within- 
subject factor. To perform this analysis, we used the Q2 filled out after 
the first impression, Q2 collected after the 2-min of pre-game social chat, 
and the Q2 completed after the game interaction and the post-game 
social chat. All post-hoc analyses were performed with a Bonferroni 
correction. 

6. Results 

When checking the equality of variance and normality of the 
dependent variables, we realized that the item discomfort of the RoSAS 
scale (Q2), the majority of the items of the satisfaction questionnaire 
(Q3) and two of the questions about the coherence of the robot’s per-
sonality (Q3; i.e., the robot lost temper easily and the robot was supportive) 
did not meet the assumptions. When performing the manipulation 
checks and the analyses for RQ1 and RQ3 on these dependent measures, 
we ran two separate Mann-Whitney U tests with appearance and per-
sonality as between-subject factors. When performing the analyses for 
RQ2 and RQ4, which were focused on interaction effects, the respective 
scales were excluded from the analysis, as interaction effects cannot be 
calculated with parametric statistics. 

6.1. Manipulation check 

We performed two manipulation checks. The first was to understand 
whether the appearance of the robot was perceived as significantly 
different across the two levels of human-likeness. The second was to 
check whether the personalities that we created for the robot were 
perceived as distinct and coherent. In the case of appearance, we were 
particularly interested in variations in the perception of anthropomor-
phism and uncanniness (i.e., perceived threat, likability, and discom-
fort). In the case of personality, we were interested in understanding 

whether the robot’s personality had an effect on the Big Five traits 
attributed to it by the participants and whether the personalities we 
created were perceived as coherent and were captured correctly by the 
participants. In the following sub-sections, we only report the main ef-
fects of appearance and personality on the dependent variables. For a 
comprehensive overview of the results and their observed power, please 
refer to Tables 1 and 3. The descriptive statistics are reported in Tables 2 
and 4. 

6.1.1. Appearance 
The results disclosed a main effect of appearance on perceived 

anthropomorphism (F(1,57) = 5.024, p = .029, ηp2 = .081) and 
a trend main effect of appearance on perceived threat (F(1,57) = 3.155,
p = .081, ηp2 = .052). Interestingly, the morph robot was perceived as 
more anthropomorphic (M = 3.187, SD = .914) than the human-like 
version (M = 2.658, SD = .896), but also as more threatening 
(MOR: M = 2.067, SD = .611; HUM: M = 1.748, SD = .561). We 
did not find any significant main effect of appearance on the 
perceived likability (F(1,57) = .615, p = .436, ηp2 = .011), warmth 
(F(1,57) = 1.649,p = .204, ηp2 = .028), competence (F(1,57) = .037,
p = .847, ηp2 = .001), and discomfort (U = 445.0, z = − .289, 
p = .772) elicited by the robot. 

6.1.2. Personality 
Distinct Personalities. The results of the 2 × 2 ANOVA revealed a 

significant main effect of the robot’s personality on its perceived 
agreeableness (F(1, 57) = 34.731, p < .001, ηp2 = .379), conscien-
tiousness (F(1,57) = 4.746, p = .034, ηp2 = .077), and neuroticism 
(F(1,57) = 4.033, p = .049, ηp2 = .066). The optimistic robot was 
perceived as significantly more agreeable (M = 4.016, SD = .664) and 
conscientious (M = 4.032, SD = .482) than the impatient one 
(agreableness: M = 2.883, SD = .827; conscientiousness: M = 3.733, 
SD = .583), while the impatient robot was perceived as more neurotic 
(M = 2.083, SD = .671) than the optimistic one (M = 1.774, 
SD = .530). 

Coherent Personalities. We did not find a significant difference in 
coherence between the different robot’s personalities (F(1, 57) = .391,
p = .534, ηp2 = .007). In both cases, the coherence of the robot per-
sonality was good (IMP: M = 3.617, SD = .499; OPT: M = 3.702, 
SD = .572). However, we found a significant main effect of personality 
on the perception of the robot as losing temper easily (U = 160.500, 
z = − 4.710, p < .001), on the perception of the robot as supportive 
(U = 180.500, z = − 4.379, p < .001), on its perception as indifferent 
(F(1,57) = 6.034,p = .017, ηp2 = .096), and on the abruptness of the 
robot’s changes in behavior (F(1,57) = 6.054, p = .017, ηp2 = .096). 
Overall, the optimistic robot was perceived as more supportive 
(M = 4.065, Mdn = 4.00, IRQ = 0.00) than the impatient one 
(M = 2.933, Mdn = 3.00, IRQ = 2.00), while the impatient robot 
was perceived as losing temper more easily (M = 2.600, Mdn = 2.50, 
IRQ = 2.00), as more indifferent (M = 2.833, SD = .986), and as more 
abrupt in its reactions (M = 2.333, SD = .711) than the optimistic one 
(loss of temper: M = 1.290, Mdn = 1.00, IRQ = 1.00; indifference: 
M = 2.226, SD = .921; abruptness: M = 1.887, SD = .680). 

6.1.3. Summary of manipulation check results 
The results presented so far suggest that we were indeed able to 

develop two distinct and coherent personalities that significantly 
differed in three of the Big Five personality traits. Our findings on the 
robot appearance, on the contrary, are not entirely in line with our ex-
pectations and previous work. While we intended the human-like face 
texture to be perceived as more anthropomorphic, participants rated the 
morph between the human-like and a mechanical face as more anthro-
pomorphic. Our main reasoning to manipulate the human-likeness of 
the face texture was, however, not the manipulation of anthropomor-
phism itself, but the elicitation of different levels of uncanny feelings 
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towards the embodiment. Despite only finding a trend in significance, 
our data give confidence that the manipulation worked as intended and 
people felt more threatened by the morph compared to the human-like 
texture. While these conflicting results need to be taken into account 
when interpreting the main results of our paper and are more thoroughly 
discussed in Section 8.1, we still consider the manipulation of the 

appearance successful and hence continue to the analysis of our research 
questions. 

6.2. Analyses of the research questions 

6.2.1. Influence of Robot’s personality on its perception [RQ1] 
Given that the manipulation of the robot’s personality proved to be 

successful, we proceeded to analyze whether the two personalities 
elicited different perceptions in the participants. The results revealed a 
significant main effect of personality on participants’ perception of the 
robot as threatening (F(1, 57) = 5.718, p = .020, ηp2 = .091) and a 
significant interaction effect of appearance and personality on the 
participants’ perception of the robot as competent (F(1, 57) = 4.430, 
p = .040, ηp2 = .072). In detail, the impatient robot was perceived as 
more threatening (M = 2.113, SD = .643) than the optimistic robot 
(M = 1.748, SD = .561). Moreover, the human-like impatient robot was 
perceived as more competent (M = 4.822, SD = 1.196) than the human- 
like optimistic one (M = 4.052, SD = 1.189), and the morph optimistic 
robot was perceived as more competent (M = 4.733, SD = 1.035) than 
the morph impatient one (M = 4.256, SD = 1.082, see Fig. 4 left). 
Overall, the human-like impatient and the morph optimistic robots 
achieved similar scores in terms of competence. Interestingly, 

Table 1 
2 × 2 ANOVA results for manipulation check, RQ1, and RQ3. Bold: significant results (p < .05); Italics: trend results (p < .10); the abbreviation pow. stands for 
observed power.   

Appearance Personality Interaction Effect 

F p ηp2  pow. F p ηp2  pow. F p ηp2  pow. 

Extraversion .002 .967 <.001 .050 .084 .773 .001 .059 .139 .711 .002 .066 
Agreeableness 1.451 .233 .025 .220 34.731 <.001 .379 1.000 .498 .483 .009 .107 
Open. Exper. .022 .822 <.000 .052 .022 .882 <.001 .052 .354 .554 .006 .090 
Conscient. 2.848 .097 .048 .382 4.746 .034 .077 .572 .076 .783 .001 .058 
Neuroticism .083 .774 .001 .059 4.033 .049 .066 .506 1.478 .229 .025 .223 
Coherence .099 .926 < .001 .051 .391 .534 .007 .094 .660 .420 .011 .126 
Indifference .092 .763 .002 .060 6.034 .017 .096 .675 .255 .616 .004 .079 
Abruptness .629 .431 .011 .122 6.054 .017 .096 .677 .179 .674 .003 .070 
Anthropo. 5.024 .029 .081 .596 .038 .846 .001 .054 .235 .629 .004 .076 
Threat 3.155 .081 .052 .415 5.718 .020 .091 .652 .897 .348 .015 .154 
Likability .615 .436 .011 .120 1.464 .231 .025 .221 1.602 .211 .027 .238 
Warmth 1.649 .204 .028 .243 .166 .685 .003 .069 .416 .522 .007 .097 
Competence .037 .847 .001 .054 .243 .624 .004 .077 4.430 .040 .072 .544 
Involv. robot 2.455 .123 .041 .337 .084 .773 .001 .059 5.898 .018 .094 .665 
Involv. game .002 .969 ¡.001 .050 .440 .510 .008 .100 .002 .969 <.001 .050 
Foc. attention .580 .449 .010 .116 .178 .674 .003 .070 .586 .447 .010 .117 
Game Score .023 .879 <.001 .053 1.728 .194 .029 .253 .508 .479 .009 .108  

Table 2 
Descriptive statistics for the 2 × 2 ANOVA results reported in Table 2.   

Appearance Personality 

human-like Morph impatient optimistic 

M SD M SD M SD M SD 

Extraversion 3.258 .784 3.267 .763 3.233 .716 3.290 .824 
Agreeableness 3.580 .932 3.333 .941 2.883 .827 4.016 .664 
Openness to Experience 2.919 .895 2.883 .827 2.883 .751 2.919 .958 
Conscientiousness 4.000 .563 3.767 .521 3.733 .583 4.032 .482 
Neuroticism 1.903 .555 1.950 .687 2.083 .671 1.774 .530 
Coherence 3.653 .486 3.667 .588 3.617 .499 3.702 .572 
Indifference 2.484 1.061 2.567 .935 2.833 .986 2.226 .921 
Abruptness 2.032 .752 2.183 .701 2.333 .711 1.887 .680 
Anthropomorphism 2.658 .914 3.187 .896 2.900 .975 2.936 .913 
Threat 1.794 .619 2.067 .611 2.113 .643 1.748 .561 
Likability 2.568 .802 2.720 .721 2.527 .696 2.755 .814 
Warmth 2.919 1.144 3.300 1.135 3.050 1.245 3.161 1.060 
Competence 4.425 1.285 4.494 1.068 4.539 1.157 4.382 1.204 
Involvement robot 3.624 .802 3.911 .637 3.744 .544 3.785 .888 
Involvement game 4.118 .597 4.111 .490 4.067 .521 4.161 .570 
Focused attention 3.894 .684 3.767 .614 3.795 .625 3.866 .678 
Game Score 26.387 .7442 26.600 6.360 25.300 7.539 27.645 6.064  

Table 3 
Mann-Whitney U results for the manipulation check, RQ1 and RQ3. Bold: sig-
nificant results (p < .05); Italics: trend results (p < .10).   

Appearance Personality 

U Z p U z p 

Discomfort 445.0 -.289 .772 403.0 -.897 .370 
Losing temper 396.5 − 1.06 .289 160.5 ¡4.710 <.001 
Supportiveness 429.5 -.546 .585 180.5 ¡4.379 <.001 
Robot understood me 464.0 -.017 .987 438.0 -.451 .652 
Robot played efficiently 431.0 -.573 .567 396.0 − 1.163 .245 
I understood what the 

robot was saying 
426.0 -.710 .478 336.0 ¡2.348 .019 

I knew what to say to the 
robot 

455.5 -.144 .885 252.0 ¡3.238 .001  
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while differing in terms of perceived threat, the two personalities 
were not perceived as significantly different in terms of 
likability (F(1, 57) = 1.464, p = .231, ηp2 = .025), and discomfort 
(U = 403.0, z = − .897, p = .370). Further results and details 
(especially on the observed power) are presented in Tables 1–4. 

6.2.2. Influence of human-robot matching personality of Robot’s perception 
[RQ2] 

The purpose of this analysis was to assess if a match between the 
robot’s and the participant’s personality affected the perception of the 
robot’s uncanniness. As the two personalities displayed by the robot 
were found to differ in terms of agreeableness, conscientiousness, and 
neuroticism, we focus only on these traits to analyze the interaction 
effects between the robot’s personality and the participant’s level of the 
same traits. Furthermore, we focus on the dependent variables denoting 
participants’ perception of the robot’s uncanniness which meet the 

assumption of normality, namely perceived threat and likability. 
The results of the 2 × 2 ANCOVA did not disclose any significant 

interaction effect of the robot’s personality and the participant’s level of 
agreeableness and neuroticism on the perception of the robot 
(see Table 5). However, they showed a significant interaction effect 
between the robot’s personality and the participant’s level of consci-
entiousness on perceived threat (F(1, 50) = 4.511,p = .039, ηp2 = .084) 
with participant’s low in conscientiousness perceiving the impatient 
robot (the robot matching their personality) as more threatening 
(M = 2.160, SD = .515) than the optimistic robot (the robot not 
matching their personality; M = 1.467, SD = .400), and participants 
high in conscientiousness perceiving the impatient robot 
(the non-matching robot) and the optimistic robot (the matching one) as 
similarly threatening (IMP: M = 1.925, SD = .505; OPT: M = 1.884, 
SD = .627) as visible in Fig. 5. 

Table 4 
Descriptive statistics for the Mann-Whitney U results reported in Table 4.   

Appearance Personality 

human-like morph impatient optimistic 

M Mdn IRQ M Mdn IRQ M Mdn IRQ M Mdn IRQ 

Discomfort 2.20 2.00 1.33 2.14 2.00 .92 2.27 2.08 .92 2.08 2.00 1.33 
Losing temper 1.81 1.00 1.00 2.07 2.00 2.00 2.60 2.50 2.00 1.29 1.00 1.00 
Supportiveness 3.42 4.00 1.00 3.60 4.00 1.00 2.93 3.00 2.00 4.06 4.00 .00 
Robot understood me 4.19 4.00 1.00 4.23 4.00 1.00 4.20 4.00 1.00 4.23 4.00 1.00 
Robot played efficiently 4.23 4.00 1.00 4.17 4.00 1.00 4.13 4.00 .00 4.26 4.00 1.00 
I understood what robot was saying 3.29 4.00 2.00 3.33 3.00 1.25 4.53 5.00 1.00 4.84 5.00 .00 
I knew what to say to the robot 4.74 5.00 1.00 4.63 5.00 1.00 2.90 3.00 2.00 3.71 4.00 1.00  

Fig. 4. Boxplots of the significant interaction effects of robot’s appearance and personality on the perception of competence and the involvement with the robot.  

Table 5 
2 × 2 ANCOVA results for RQ2. Bold: significant results (p < .05); Italics: trend results (p < .10); the abbreviation pow. stands for observed power.   

Robot Personality Human Agreeableness Interaction Effect 

F p ηp2  pow. F p ηp2  pow. F p ηp2  pow. 

Threat 3.013 .089 .058 .398 .039 .844 .001 .054 .375 .543 .008 .092 
Likability .526 .472 .011 .110 .191 .664 .004 .071 1.599 .212 .032 .236  

Robot Personality Human Conscientiousness Interaction Effect 

F p ηp2  pow. F p ηp2  pow. F p ηp2  pow. 

Threat 5.453 .024 .100 .629 .108 .744 .002 .062 4.511 .039 .084 .549 
Likability 1.901 .174 .037 .272 .034 .855 .001 .054 2.075 .156 .041 .292  

Robot Personality Human Neuroticism Interaction Effect 

F p ηp2  pow. F p ηp2  pow. F p ηp2  pow. 

Threat 2.563 .116 .050 .348 .456 .503 .009 .102 .239 .627 .005 .077 
Likability 1.159 .287 .023 .184 1.799 .186 .035 .260 .191 .664 .004 .071  
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6.2.3. Influence of personality on involvement, task performance, and 
satisfaction [RQ3] 

As the robot’s personality, and partially also its humanlikeness, 
affected participants’ perceptions of it, we wanted to understand 
whether they also affected participants’ involvement with the robot, 
involvement with the game, focused attention, score in the game and 
interaction satisfaction. The results of the analyses and the associated 
descriptive statistics are displayed in Tables 1–4. 

Involvement with the Robot. The results did not show any significant 
main effect of appearance (F(1,57) = 2.445, p = .123, ηp2 = .041) and 
personality on the involvement with the robot (F(1,57) = .084, 
p = .773, ηp2 = .001). However, they disclosed a significant 
interaction effect of appearance and personality on it (F(1, 57) = 5.898, 
p = .018, ηp2 = .094) as seen in Fig. 4 to the right. In detail, the morph 
optimistic robot elicited more involvement (M = 4,156, SD = .628) 
than the human-like optimistic robot (M = 3.437, SD = .972), while 
no major difference was found between the morph impatient 
(M = 3.667, SD = .563) and the human-like impatient robot 
(M = 3.822, SD = .533). 

Involvement with the Game. We did not find a significant effect of the 

robot’s appearance (F(1, 57) = .002, p = .969, ηp2 < .000), personality 
(F(1,57) = .440, p = .510, ηp2 = .008) and interaction between 
appearance and personality on the involvement with the game 
(F(1,57) = .002, p = .969, ηp2 < .000). 

Focused Attention and Task Performance. The results for involvement 
with the game were mirrored by the lack of significant differences across 
conditions in terms of focused attention (appearance: F(1, 57) = .580, 
p = .449, ηp2 = .010; personality: F(1,57) = .178, p = .674, 
ηp2 = .003; appearance and personality: F(1, 57) = .586, p = .447, 
ηp2 = .010) and score (appearance (F(1, 57) = .023, p = .879, 
ηp2 < .000; personality: F(1, 57) = 1.728, p = .194, ηp2 = .029; 
appearance and personality: F(1,57) = .508, p = .479, ηp2 = .009). 
Participants had similar levels of attention across conditions and ach-
ieved similar scores at the game regardless of the type of robot they 
interacted with. 

Satisfaction. We did not find significant differences between the 
two robot’s personalities for the items the robot understood me (U = 438, 
z = − .451, p = .652) and the robot played the game efficiently (U = 396, 
z = − 1.163, p = .245). However, a significant difference between the 
two could be seen for the item I understood what the robot was saying 
(U = 336, z = − 2.348, p = .019) - with participants perceiving more 
difficulty to understand the impatient robot (M = 4.533, Mdn = 5.00, 
IRQ = 1.00) than the optimistic one (M = 4.839, Mdn = 5.00, 
IRQ = 0.00) - and the item I knew what to say to the robot (U = 252, 
z = − 3.238, p = .001) - with participants being more knowledgeable 
about what to say to the optimistic robot (M = 3.710, Mdn = 4.00, 
IRQ = 1.00) than to the impatient one (M = 2.900, Mdn = 3.00, 
IRQ = 2.00). 

We did not find similar differences across the different levels of 
appearance (the robot understood me: U = 464, z = − .017, p = .987; the 
robot played the game efficiently: U = 431, z = − .573, p = .567; 
I understood what the robot was saying: U = 426, z = − .710, p = .478; 
I knew what to say to the robot: U = 455.5, z = − .144, p = .885). 

6.2.4. Influence of personality on Robot’s perception over time [RQ4] 
The main results of the analyses and the associated descriptive sta-

tistics are reported in Tables 6 and 7. Due to space limitations, we do not 
report the results of the multiple interaction effects from this analysis in 
the tables. None of them was found to be significant. The results showed 
a significant interaction effect of time and appearance on anthropo-
morphism (F(2, 56) = 4.833, p = .012, ηp2 = .147) with the anthro-
pomorphism of the morph robot growing over time (first impression: 

Table 6 
2 × 2 x 3 ANOVA results for RQ4. Bold: significant results (p < .05); Italics: trend results (p < .10); the abbreviation pow. stands for observed power.   

Appearance Personality Time 

F p ηp2  pow. F p ηp2  pow. F p ηp2  pow. 

Anthropomorphism 1.459 .232 .025 .221 .002 .965 <.001 .050 .912 .407 .032 .200 
Threat 2.599 .113 .044 .354 1.977 .165 .034 .282 3.285 .045 .107 .601 
Likability .071 .791 .001 .058 .896 .348 .015 .154 3.294 .044 .105 .602 
Warmth 3.368 .072 .056 .438 .077 .782 .001 .059 .823 .444 .029 .184 
Competence .740 .393 .013 .135 .279 .599 .005 .081 6.376 .003 .185 .885  

Table 7 
Descriptive statistics for the 2 × 2 x 3 ANOVA results reported in Table 7.   

Appearance Personality Time 

human-like morph impatient optimistic first imp. social chat post game 

M SD M SD M SD M SD M SD M SD M SD 

Anthro. 2.768 .724 2.991 .735 2.876 .723 2.884 .724 2.889 .652 2.826 .878 2.918 .936 
Threat 1.915 .501 2.124 .501 2.111 .501 1.929 .501 2.143 .568 1.980 .634 1.917 .624 
Likab. 2.534 .618 2.576 .613 2.480 .613 2.629 .618 2.436 .578 2.584 .705 2.643 .761 
Warmth 2.810 .947 3.254 .942 2.998 .942 3.065 .947 2.932 .978 3.046 1.107 3.107 1.146 
Comp. 4.084 .913 4.285 .915 4.246 .915 4.122 .913 3.924 1.088 4.150 1.044 4.459 1.174  

Fig. 5. Boxplot of the significant interaction effect of robot’s personality and 
participant’s level of conscientiousness of the perception of threat. 
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M = 2.887, SD = .706, social chat: M = 2.900, SD = .867, game 
interaction: M = 3.187, SD = .896) and the anthropomorphism of the 
human-like robot slightly decreasing over time (first impression: 
M = 2.890, SD = .606, social chat: M = 2.755, SD = .897, game 
interaction: M = 2.658, SD = .914) as shown in Fig. 6. Moreover, a 
significant main effect of time on perceived threat (F(2,55) = 3.285, 
p = .045, ηp2 = .107), likability (F(2,56) = 3.294, p = .044, 
ηp2 = .105), and competence was observed (F(2,56) = 6.376, 
p = .003, ηp2 = .185). While the perceived threat elicited by the robot 
decreased over time (first impression: M = 2.143, SD = .568; social 
chat: M = 1.980, SD = .634; game interaction: M = 1.917, SD = .624), 
the perceived likability (first impression: M = 2.436, SD = .578; social 
chat: M = 2.584, SD = .705; game interaction: M = 2.643, SD = .761) 
and competence increased over time (first impression: M = 3.924, 
SD = 1.088; social chat: M = 4.150, SD = 1.044; game interaction: 
M = 4.459, SD = 1.174, see Fig. 7). Post-hoc analyses revealed a sig-
nificant difference in perceived threat and likability between the first 
impression and the game interaction (threat: p = .042; likability: 
p = .040), and a significant difference in competence between the first 
impression and the game interaction (p = .003) and between the social 
chat and the game interaction (p = .019). 

7. General discussion 

7.1. Manipulation check 

The goal of this work was to expand the extant literature on the 
uncanny valley effect by understanding how different robot personal-
ities influence uncanny feelings. More specifically, our aim was to create 
two distinct but overall engaging personalities and study the effect of 

their behavioral patterns on the development of uncanny feelings during 
the interaction. Our results show that we were indeed able to create two 
distinct personalities. In line with our previous work, we found the 
optimistic and encouraging personality to be perceived as more agree-
able and emotionally stable than the impatient and provocative one. 
However, while in our previous work the difference between the two 
personalities was limited to agreeableness and neuroticism, in this 
study, we found the two personalities to also differ in terms of consci-
entiousness. Although we grounded the description of the impatient 
personality in the robot’s determination to perform well in the game 
(progress quickly and score high), it seems that many crowd-workers 
interpreted the robot’s impatience as willingness to finish the game 
quickly and move on, and hence as indifference towards the goal of the 
game. This led them to author conversational content like “I don’t really 
care if it is wrong or not anyway” when not scoring a point, which 
clearly suggests the robot’s disinterest towards the game performance 
and is an indicator of lack of conscientiousness. Despite being rated as 
less agreeable, less conscientious and more neurotic, people still felt the 
same level of engagement towards the impatient and the optimistic 
robot. This suggests that we were indeed able to create two distinct person-
alities that both led to believable behavioral patterns in the given task. 

When using a crowd-sourcing pipeline to generate conversational 
content for similar personalities in the past, we found the coherence of 
the personality-driven behavior to be a main challenge to our approach. 
For the present study, we developed a semi-autonomous dialogue 
manager that tracked the robot’s affective state and picked the next 
utterance by prioritizing a coherent development of the target affect 
over time. Our results show that the two personalities were both 
perceived as coherent and developing naturally over time and hence 
signal that we were able to overcome the drawbacks of our previous 
pipeline. This finding is important for the human-robot interaction com-
munity, as it suggests that crowd-authoring in combination with an affect- 
driven dialogue management system is a suitable approach to create large 
conversational corpora for social robots with distinct and coherent 
personalities. 

The second independent variable we manipulated in our experiment 
was the appearance of the robot. Based on our previous work on the 
uncanny valley, we used one human-like face texture and a texture that 
was a morph between a human-like and a mechanical one. In prior 
studies, we found these two face textures to differ significantly both in 
their perceived anthropomorphism and discomfort, with the morph 
being perceived as less anthropomorphic but eliciting more discomfort. 
While we still found a trend difference in perceived threat between the 
two robots, with the morph robot being perceived as more threatening 
that the human-like one, in this study, it was the morph robot to be 
perceived as more anthropomorphic. We believe that the difference in 
technological expertise between the participants of the present study 
and those of our previous studies had a core influence in the deviation of 
results. In this work, the majority of people were novices and less than 
20% had a background in Computer Science or a related field, while, in 
our previous work, almost all participants were Computer Science 

Fig. 6. Line chart of the significant interaction effect of robot’s appearance and 
time on the perception of anthropomorphism. 

Fig. 7. Line charts of the significant effect of time on the perceived threat, likability and competence of the robot.  
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students. It is thus possible that the participants of the present study 
were overall more new to robots and had less knowledge about robotic 
platforms to properly judge Furhat’s anthropomorphism. Moreover, it is 
also possible that participants interacting with the morph robot assumed 
the mechanical features in its face to be due to the technical limitations 
of the platform and hence rated the morph facial texture with more 
mechanical platforms in mind. Under the same line of thought, it might 
be that participants that interacted with the human-like robot compared 
it with a real human being and hence rated its anthropomorphism more 
critically. It is important to underline that Furhat has a mechanical body 
and even when projecting a human-like face onto its mask, a dissonance 
in its anthropomorphism can be perceived which might lead to uncanny 
feelings. 

7.2. Findings 

7.2.1. Influence of Robot’s personality on its perception [RQ1] 
While the two personalities designed as part of this paper were 

perceived as distinct in their personality traits, people’s perception of 
the two did not differ on most of the other perceptual scales included in 
our questionnaires. In particular, the two personalities were perceived 
similar in anthropomorphism, warmth, and competence. However, 
when examining the perceptual dimensions related to the uncanny 
valley, we found the robot that behaved impatient and provocative to be 
perceived as more threatening than the optimistic and encouraging one. 
This finding is particularly interesting given that the two personalities 
did not differ in their perceived likability and discomfort, which are also 
related to uncanny feelings. 

We did not design either of the personalities to elicit negative feel-
ings or threat. In fact, to ensure that the personalities were both not 
offensive, we implemented a two-step process involving a pre-screening 
of the dialogue content by crowd-workers and a manual check of the 
lines rated as offensive by one of the authors. It is possible, however, that 
offensive lines made it to the final corpus due to not being properly 
flagged by crowd-workers. When checking the overall ratings of the 
crowd-authored lines, we found that the impatient lines were rated as 
more offensive than the excited lines, which is only natural given the 
difference in their affective definition (pre-game: M = 2.2 for impatient, 
M = 1.6 for excited; in-game: M = 2.3 for impatient, M = 1.7 for 
excited; post-game: M = 2.3 for impatient, M = 1.6 for excited). It could 
thus be that participants felt more intimidated when playing with the 
impatient personality due to its particular reactions to negative events in 
the game. Instead of being forgiving about mistakes and blaming them 
on the team, the impatient robot often called out participants for their 
insufficient descriptions provided. For example, the robot would say: 
“Took you long enough” after they scored a point, or even: “Can’t you do 
better? Come on” when missing a point. The difference in response to the 
question whether participants were satisfied with their final score shows 
that the robot’s behavior did indeed affect their perception: Although 
both robots played equally well and the final score did not differ be-
tween the two personalities, participants reported a significantly higher 
satisfaction with their score after playing with the optimistic personal-
ity. Kaniarasu and Steinfeld (2014) found that people trust a robot that 
frequently blames the human interaction partner for mistakes less in 
comparison to one that blames the team or itself. Since the impatient 
personality made use of more lines that attributed blame to the human 
player than the supportive personality, it might likely be that it came 
across as more offensive, and hence threatening. 

Złotowski et al. (2015) suggested that a robot’s negative attitude can 
intensify uncanny feelings. In their work, the negative attitude was 
designed as an antagonistic behavior of the robot during a common task. 
With respect to Złotowski et al. (2015), we did not design our person-
alities to be perceived as having a positive or negative attitude. This led 
them to be both evaluated as very engaging and to elicit a similar 
involvement in the game. Our results thus extend the related work in 
that they show that robot behavior, even when not explicitly designed as 

negative, can still elicit uncanny feelings. In addition, the specific person-
ality traits assigned by participants to our robot can provide a first 
insight into what in a robot’s personality leads to the feeling of threat. In 
agreement with Hwang et al. (2013) who found all five personality traits 
to be negatively correlated with the feeling of concern towards a robot, 
our impatient robot, which was indeed perceived as less emotionally 
stable, less agreeable and less conscientious, was perceived as more 
threatening. We believe that emotional stability might have been of 
particular importance in this sense. A high emotional stability is likely to 
lead to predictable behavior and makes it easier to predict the future 
actions of the robot. Since the impatient robot was perceived more 
emotionally unstable, it might have been harder for participants to gain an 
understanding of its behavioral patterns, and the associated insecurity 
generated by this unpredictable behavior might have in turn caused a feeling 
of threat. 

Finally, it is surprising to note that our results show little interaction 
between the robot’s personality and its appearance. As previous 
research suggested that people generally ascribe more positive person-
ality traits to more human-like robots (Broadbent et al. (2013); Chee 
et al. (2012); Yamashita et al. (2016)), we would have expected a sig-
nificant interaction effect of personality and appearance on the 
perception of the robot. However, we only found an interaction effect of 
appearance and personality on the perceived competence of the robot. 
The human-like robot was perceived as more competent when behaving 
impatient, while the morph was judged as more competent when being 
optimistic. In our study, it is unclear what contributes to forming a 
perception of competence, especially because all combinations of per-
sonality and appearance scored equally high in the game. There were a 
variety of aspects in the interaction other than the game score that could 
potentially affect the assessment of competence and the exact contri-
bution of each one is difficult to disentangle. For future work, it would 
thus be interesting to examine the concept of competence more closely 
to gain further insights into the interplay between appearance and 
personality. 

7.2.2. Influence of human-robot matching personality of Robot’s perception 
[RQ2] 

Based on the related work, we hypothesized that a match in per-
sonality between the human and robot game partners could lead to a 
more favourable perception of the robot and hence to less uncanny 
feelings (Park et al. (2012); Tapus et al. (2008)). However, we found that 
the feelings towards the robot, particularly those related to the uncanny 
valley, did not change when the participant’s personality matched the 
one of the robot. The only exception to this was found in people low in 
conscientiousness, who perceived the robot with the impatient person-
ality as more threatening than the optimistic one. As the impatient robot 
was rated low in conscientiousness, it was thus a match in personality 
that led to uncanny feelings. This seems counter-intuitive, since people 
low in conscientiousness should generally be less invested in the 
outcome of a task and thus less affected by a robot with a similar level of 
disinterest. It is important to note, however, that we did not manipulate 
the robot’s personality traits separately. Hence, it may be possible that 
this finding is due to an interaction between agreeableness, neuroticism 
and conscientiousness, rather than conscientiousness alone. In the 
future, it will be crucial to design robot personalities that allow for a 
separate analysis of the effect of the three personality traits on uncanny 
feelings to see if a match in the level of conscientiousness still produces 
the same results. 

As a last note, we would like to underline that the body of knowledge 
investigating how a match in personality between a human and a robot 
affects the robot’s perception has exclusively focused on extroversion. 
Our work extends the existing body of knowledge by suggesting that a 
match in personality traits does not lead to a more positive evaluation of the 
robot across all personality traits. Joosse et al. (2013) previously suggested 
that the preference for similar or complimentary personality may 
depend on the context and the task the robot is performing. It would thus 
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be interesting to understand whether our findings generalize to other 
contexts, specifically those involving more competitive and serious 
interactions. 

7.2.3. Influence of personality on involvement, task performance, and 
satisfaction [RQ3] 

Overall, participants rated their involvement with the game and the 
robot very high regardless of the robot’s personality. This suggests that 
two distinct personalities specifically designed to fit a task can lead to similar 
levels of involvement. Interestingly, we found that people meeting the 
optimistic robot were more involved with it when playing with its 
morph version than with the human-like one. Even though the same 
effect was not observable for the impatient robot, this finding suggests 
that people’s involvement was at least partially based on the robot’s 
appearance. 

One possible explanation for a lower involvement with the human- 
like robot with respect to the morph for the optimistic personality 
could be provided by the blemishing effect. According to it, “under 
specifiable conditions, people will be more favorably disposed towards a 
product when a small dose of negative information is added to an 
otherwise positive description” (Ein-Gar et al. (2012)). This is in line 
with previous research in HRI, which found that robots displaying faulty 
behaviors were perceived as more likable (Mirnig et al. (2017); Salem 
et al. (2013)). In this sense, the morph appearance might have acted as a 
flaw in an overall positive attitude of the optimistic personality, thus 
making it more engaging. 

7.2.4. Influence of personality on Robot’s perception over time [RQ4] 
In previous work, we found that people’s uncanny feelings towards 

an agent declined over the course of an interaction with it Paetzel & 
Castellano (2019); Paetzel, Perugia, & Castellano (2020); Perugia, 
Paetzel-Prüsmann, Alanenpää, & Castellano (2021). The aim of this 
work was to further our understanding and investigate whether it is just 
the exposure to any kind of robot behavior that lowers uncanny feelings, 
or whether the behavior the robot displays also matters. The present 
study shows that the perceived threat of the robot declines from the first 
impression to the end of the interaction, which is in line with our pre-
vious work, as well as with Złotowski et al. (2015). Even though the 
interaction effect between time and personality was not significant, 
looking at the data revealed an interesting trend. The perceived threat 
elicited by the two different personalities was similar at first sight. 
However, it started diverging after the 2-min pre-game social chat and it 
differed significantly after the game interaction and the post-game social 
chat. The optimistic personality was perceived as increasingly less 

threatening over time, while the impatient one remained equally 
threatening over the course of the interaction (cf. Fig. 8). At this point, 
people had interacted with the robot for about 15 min, a time exceeding 
that of a first impression (Ambady et al. (2000)). Our findings thus suggest 
that behavioral patterns play an important role in overcoming initial uncanny 
feelings. More specifically, we see that a robot perceived as agreeable, 
emotionally stable and conscientious is able to progressively lower its 
perceived threat. 

In most of the related work on the uncanny valley, researchers 
exposed participants to still images or brief videos of a robot and could 
thus merely capture people’s perception of it at first sight. The findings 
presented in this paper provide further evidence that initial uncanny 
feelings towards a robot may not be predictive of people’s long-term percep-
tion of it. This has important implications for the human-robot interac-
tion community: Our results show that empirical investigations should 
focus more on interactive scenarios when measuring uncanny feelings 
towards a robot. This research could eventually inform the development 
of guidelines for robot designers aimed at minimizing or weakening the 
perception of uncanniness in a robot. 

7.3. Limitations and future work 

In this work, we focused on two personalities that were designed to 
display two distinct behavioral patterns. In particular, the two person-
alities varied in three out of five personality traits. This made it difficult 
to draw conclusions about what particular traits were responsible for 
lowering or eliciting uncanny feelings. While it is challenging to develop 
personalities that differ in only one particular trait while staying com-
parable in the others, doing so would give valuable insights into the 
causes of uncanny feelings and in ways to overcome them throughout an 
interaction. Similarly, our work is limited by the use of only one robot 
platform and by the fact we did not manage to successfully manipulate 
the robot’s human-likeness as envisioned. For future work, it is thus 
essential to replicate this study with multiple robot platforms to un-
derstand whether the findings in this paper generalize across robots. 

The interactive behavior of the robot in our experiment was partially 
controlled by a human operator. While the dialogue management and 
language generation was performed autonomously, a human replaced 
the language understanding unit of the system for the personality-driven 
behavior. Within the game, the controller also handled the country se-
lection for the robot. During the debriefing, all participants were asked 
whether they suspected the robot to be remote-controlled. Participants 
who raised suspicion were excluded from the statistical analysis pre-
sented in this paper. We thus believe that the remote-controlled nature 
of the robot interaction had limited influence on people’s perception. It 
is, however, still possible that the excellent language understanding 
skills of the robot and the very good performance in the game positively 
influenced people’s perception of the robot overall. We are currently 
working on a fully autonomous version of the robot and aim to confirm 
our findings using autonomous behavior in the future. 

Finally, the time people interacted with the robot was comparably 
short in the present research. In previous work, we found repeated in-
teractions with multiple days of zero exposure in between to signifi-
cantly lower uncanny feelings towards a robot beyond the effect a single 
interaction can have Paetzel, Perugia, & Castellano (2020); Perugia, 
Paetzel-Prüsmann, Alanenpää, & Castellano (2021). Due to the choice of 
conducting the experiment in a public space and thus to broaden the 
demographics of our participants, it was not possible to invite partici-
pants to interact with the robot again. For the future, however, it would 
be important to analyze how repeated interactions influence the 
perception of personality over time. In particular, it would be interesting 
to understand whether uncanny feelings towards the impatient per-
sonality remain stable over the course of several repeated interactions, 
or whether they eventually decrease over time. Moreover, a long-term 
study would further our understanding of whether the two personal-
ities eventually converge in their perceived level of threat, or whether 

Fig. 8. Line chart of the interaction effect of robot’s personality and time on the 
perceived threat elicited by the robot. 
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the gap between them persists. 

8. Conclusion 

In this paper, we examined the influence of a robot’s personality and 
appearance on people’s perception of it with a specific focus on feelings 
related to the uncanny valley. We presented an experiment in which 61 
visitors of a science museum were asked to play a cooperative game with 
a Furhat robot. We manipulated two independent variables in the 
experiment: The robot’s appearance and its personality-driven behavior. 
The two personalities we developed were found to differ in their 
perceived agreeableness, emotional stability and conscientiousness. 
While people’s ratings of the robot were comparable for most perceptual 
dimensions across the four combinations of personality and appearance, 
we found the robot that acted impatient and provocative to be overall 
perceived as more threatening. This finding is important since it pro-
vides further evidence for the assumption that the behavior of a robot 
can influence people’s perception of its uncanniness. Our data further 
show that this difference in uncanniness between the two personalities 
develops over time. It thus seems that the longer people interact with a 
robot, the more influential its behavioral patterns become and the less 
significance its embodiment has on the judgment of its uncanniness. 
These findings contribute to the literature on human-robot interaction 
by providing an important perspective on the research related to the 
uncanny valley. While the related work has often studied people’s 
perception of a robot’s uncanniness merely based on first impressions, 
we discovered that the influence of such impressions decreases over time 
and may play only a limited role in the long-term perception of a robot. 
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Kätsyri, J., Förger, K., Mäkäräinen, M., & Takala, T. (2015). A review of empirical 
evidence on different uncanny valley hypotheses: Support for perceptual mismatch 
as one road to the valley of eeriness. Frontiers in Psychology, 6, 390. 

Koschate, M., Potter, R., Bremner, P., & Levine, M. (2016). Overcoming the uncanny 
valley: Displays of emotions erduce the uncanniness of humanlike robots. In 11th 
ACM/IEEE international conference on human-robot interaction (HRI) (pp. 359–366). 
IEEE.  

Kriegel, M. (2015). Towards a crowdsourced solution for the authoring bottleneck in 
interactive narratives. Ph.D. thesis. Heriot-Watt University. 

Lischetzke, T., Izydorczyk, D., Hüller, C., & Appel, M. (2017). The topography of the 
uncanny valley and individuals’ need for structure: A nonlinear mixed effects 
analysis. Journal of Research in Personality, 68, 96–113. 

MacDorman, K. F., & Entezari, S. O. (2015). Individual differences predict sensitivity to 
the uncanny valley. Interaction Studies, 16, 141–172. 

MacDorman, K. F., Green, R. D., Ho, C. C., & Koch, C. T. (2009). Too real for comfort? 
Uncanny responses to computer generated faces. Computers in Human Behavior, 25, 
695–710. 

Mairesse, F., & Walker, M. A. (2011). Controlling user perceptions of linguistic style: 
Trainable generation of personality traits. Computational Linguistics, 37, 455–488. 

Matthews, G., Deary, I. J., & Whiteman, M. C. (2003). Personality traits. Cambridge 
University Press.  

McPherson, M., Smith-Lovin, L., & Cook, J. M. (2001). Birds of a feather: Homophily in 
social networks. Annual Review of Sociology, 27, 415–444. 

M. Paetzel-Prüsmann et al.                                                                                                                                                                                                                   

http://refhub.elsevier.com/S0747-5632(21)00078-9/sref1
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref1
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref1
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref2
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref2
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref2
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref3
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref3
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref3
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref4
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref4
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref4
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref5
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref5
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref6
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref6
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref6
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref7
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref7
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref7
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref8
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref8
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref9
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref9
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref9
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref9
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref10
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref10
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref10
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref10
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref11
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref11
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref12
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref12
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref12
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref13
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref13
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref14
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref14
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref14
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref15
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref15
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref15
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref16
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref16
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref17
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref17
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref17
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref18
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref18
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref18
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref19
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref19
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref20
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref20
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref20
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref21
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref21
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref22
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref22
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref22
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref23
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref23
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref24
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref24
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref24
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref24
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref25
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref25
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref25
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref26
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref26
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref26
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref26
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref27
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref27
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref27
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref28
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref28
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref28
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref29
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref29
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref29
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref30
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref30
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref30
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref30
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref31
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref31
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref32
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref32
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref32
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref33
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref33
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref34
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref34
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref34
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref35
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref35
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref36
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref36
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref37
http://refhub.elsevier.com/S0747-5632(21)00078-9/sref37


Computers in Human Behavior 120 (2021) 106756

17

Meah, L. F., & Moore, R. K. (2014). The uncanny valley: A focus on misaligned cues. In 
International conference on social robotics (pp. 256–265). Springer.  

Meerbeek, B., Hoonhout, J., Bingley, P., & Terken, J. M. (2008). The influence of robot 
personality on perceived and preferred level of user control. Interaction Studies, 9, 
204–229. 

Mende, M. A., Fischer, M. H., & Kühne, K. (2019). The use of social robots and the 
uncanny valley phenomenon. In AI love you (pp. 41–73). Springer.  

Mirnig, N., Stollnberger, G., Miksch, M., Stadler, S., Giuliani, M., & Tscheligi, M. (2017). 
To err is robot: How humans assess and act toward an erroneous social robot. 
Frontiers in Robotics and AI, 4, 21. 

Mitchell, W. J., Szerszen Sr, K. A., Lu, A. S., Schermerhorn, P. W., Scheutz, M., & 
MacDorman, K. F. (2011). A mismatch in the human realism of face and voice 
produces an uncanny valley. I-Perception, 2, 10–12. 

Mori, M., MacDorman, K. F., & Kageki, N. (2012). The uncanny valley [from the field]. 
IEEE Robotics and Automation Magazine, 19, 98–100. 

Mota, P., Paetzel, M., Fox, A., Amini, A., Srinivasan, S., & Kennedy, J. (2018). Expressing 
Coherent Personality with Incremental Acquisition of Multimodal Behaviors. In 27th 
IEEE International Symposium on Robot and Human Interactive Communication (RO- 
MAN) (pp. 396–403). 

Moshkina, L., & Arkin, R. C. (2005). Human perspective on affective robotic behavior: A 
longitudinal study. In IEEE/RSJ international conference on intelligent robots and 
systems (pp. 1444–1451). IEEE.  

Nakane, M., Young, J. E., & Bruce, N. (2014). More human than human? A visual 
processing approach to exploring believability of android faces. In Proceedings of the 
second international conference on human-agent interaction (pp. 377–381). 

Nomura, T., Suzuki, T., Kanda, T., & Kato, K. (2006). Measurement of negative attitudes 
toward robots. Interaction Studies, 7, 437–454. 

Norman, W. T. (1963). Toward an adequate taxonomy of personality attributes: 
Replicated factor structure in peer nomination personality ratings. Journal of 
Abnormal and Social Psychology, 66, 574. 

Oliveira, E., & Sarmento, L. (2002). Emotional valence-based mechanisms and agent 
personality. In Brazilian symposium on artificial intelligence (pp. 152–162). Springer.  

O’Brien, H. L., & Toms, E. G. (2010). The development and evaluation of a survey to 
measure user engagement. Journal of the American Society for Information Science and 
Technology, 61, 50–69. 

Park, E., Jin, D., & del Pobil, A. P. (2012). The law of attraction in human-robot 
interaction. International Journal of Advanced Robotic Systems, 9, 35. 

Paetzel, M., Kennedy, J., Castellano, G., & Lehman, J. F. (2018). Incremental Acquisition 
and Reuse of Multimodal Affective Behaviors in a Conversational Agent. In 6th 
International Conference on Human-Agent Interaction (HAI) (pp. 92–100). 

Paetzel, M., & Castellano, G. (2019). Let Me Get To Know You Better: Can Interactions 
Help to Overcome Uncanny Feelings?. In Proceedings of the 7th International 
Conference on Human-Agent Interaction (pp. 59–67). 

Paetzel, M., & Manuvinakurike, R. (2019). “Can you say more about the location?” The 
Development of a Pedagogical Reference Resolution Agent. In Dialog for Good - 
Workshop on Speech and Language Technology Serving Society (DiGo). 

Paetzel, M., Perugia, G., & Castellano, G. (2020). The Persistence of First Impressions: 
The Effect of Repeated Interactions on the Perception of a Social Robot. In 15th 
ACM/IEEE International Conference on Human-Robot Interaction (HRI) (pp. 73–82). 

Petrick, R. P., & Foster, M. E. (2020). Knowledge engineering and planning for social 
human-robot interaction: A case study. In Knowledge engineering tools and techniques 
for AI planning (pp. 261–277). Springer.  
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