
End The Bully
Final Project Report

By
hugo.camarasabirabent-martinez , louise.bendjeguelal

noe.auguste , wachirawit.fasquel , alex.chiriac

EPITA
SUP anglophone section

28 may 2025

i

Summary

General Introduction 2

1.1 Project Context . 2

1.2 In depth presentation of the game . 3

Work Organization 5

2.1 Individual Presentations . 5

2.2 Initial Task repartition . 10

2.3 Changes in task repartition . 12

2.4 Collaborative Tools . 13

Team’s Advancement / goals 15

3.1 Initial Objectives . 15

3.2 Task advancement throughout the project . 17

Presentation of the final version of the game 18

4.1 Gameplay / getting trough the levels . 18

4.2 Multiplayer . 20

4.3 UI . 22

Personal Advancement 24

5.1 Noé . 24

5.2 Noël . 29

5.3 Hugo . 35

5.4 Alex . 38

5.5 Louise . 42

Chapter 0: Summary 1

Conclusion 47

6.1 Personal Reflections . 47

6.2 Skill Acquired . 49

6.3 Final Conclusion . 50

2

General Introduction

1.1 Project Context

Since September, our team has been dedicated to the development of an original
video game, building each feature around the detailed specifications document
we made at project kickoff. Over these nine months of collaborative work, we
have progressed through every stage of the development lifecycle—requirements
analysis, system design, iterative implementation, and rigorous testing—always
referencing and refining our initial specifications to ensure alignment with the
company’s vision. This document represents the culmination of our efforts: the
final report that accompanies the project’s official deliverable. It summarizes
the journey from conceptualization to completion, highlights key challenges and
achievements, and provides a comprehensive overview of the game’s final func-
tionality and architecture.

Our company, inspired by RogueLite Hack n Slash games such as Cult of the
Lamb, developed an exciting game titled End The Bully. Set in a dark and
captivating universe, the game follows the story of a protagonist who, after being
bullied by the son of the world’s main antagonist, takes a stand to seek revenge
against his tormentor. The game features classic mechanics of the Hack n Slash
and RogueLite genres, challenging players to defeat waves of enemies using unique
skills while acquiring equipment through chests or rewards from vanquished foes.

End The Bully also includes a cooperative multiplayer mode, allowing multiple
players to team up online via a peer-to-peer (P2P) network system. Enemies are
driven by AI, ensuring dynamic and engaging encounters throughout the game.

In this report, we will introduce the advancement of our company and its team
on the video game.

Chapter 1: Summary 3

1.2 In depth presentation of the game

During the brainstorming phase of our project, we decided to prioritize replaya-
bility over creating a long, linear adventure. This approach led us to consider
several genres, including sandbox games, PvP shooters, RPGs, and RogueLikes.
Ultimately, we chose the RogueLite genre because it provides a meaningful chal-
lenge and clear objectives for players, enhancing their engagement with the game.

Our primary inspirations are RogueLite Hack n Slash games like Cult of the Lamb,
Risk of Rain 2, Rotwood, and The Binding of Isaac. These games stand out
due to their sense of progression, where players feel a continuous improvement
throughout their journey, while also offering varied experiences on subsequent
playthroughs. Additionally, these titles were developed by independent creators
and achieved significant success, which is a motivating factor for our team.

Our inspirations also showcase diverse art styles, including pixel art, cartoon
visuals, and realism. For our project, pixel art emerged as the ideal choice due to
its accessibility and alignment with our resources and design goals.

To enhance replayability and player engagement, we will implement a loot system
inspired by Muck and Risk of Rain 2. This will allow players to progressively
evolve their characters throughout a playthrough, ultimately becoming powerful
enough to defeat the final boss.

Players will have to navigate through increasingly challenging floors filled with
stronger enemies. These foes not only test the player’s skills but also offer more
powerful upgrades as rewards. However, players will have the option to bypass
certain obstacles and move directly to the next floor. While this will speeds up
progression, it will come with the risk of facing under-prepared encounters with
mandatory boss fights, which will block access to subsequent levels.

Bosses will serve as gatekeepers, presenting mandatory challenges for players to
advance. These encounters are designed to test the player’s mastery of the game’s
mechanics and the synergies created by their chosen loot and upgrades.

Our goal for End the Bully is to create a game that balances difficulty with re-
warding progression. Each playthrough offers a unique experience, encouraging
players to experiment with different builds, strategies, and approaches. By com-
bining engaging mechanics, strategic depth, and a dynamic loot system, we aim to
deliver a game that feels fresh and exciting with every run. This design philoso-
phy ensures End the Bully will offer both a challenging and satisfying experience,

Chapter 1: Summary 4

resonating with fans of the RogueLite genre while carving out its own unique
identity.

5

Work Organization

2.1 Individual Presentations

Noël

My name is Wachirawit Noel Fasquel, and I am currently a first-year student
at EPITA, . I am currently responsible for leading the UI development of our
team’s game project, where I focus on designing intuitive interfaces that enhance
the overall user experience.

Over the past year, I have completed several game-related projects that have
helped me grow both technically and creatively. These include a digital version of
the card game Skyjo, developed using JavaScript, and a GeoGuesser-style game
built in Python. Through these experiences, I have deepened my understanding of
gameplay logic, interface design, and player interaction, while also strengthening
my programming and problem-solving skills.

I am currently working on a new and ambitious project titled EndTheBully, a
game that delivers a strong social message through immersive gameplay. This
project has allowed me to continue developing my skills in Unity, while also gain-
ing a deeper understanding of game architecture, UI design, and interactive sto-
rytelling.

I am proficient in Python and C, and I also have working knowledge of OCaml,
JavaScript, and SQL. I have studied and applied each of these languages in real–
world projects, continuously pushing myself to improve both my technical abilities
and creative thinking.

As a developer, I am committed to meeting deadlines and consistently delivering
high-quality work. I am also curious and driven, always eager to explore new
technologies and creative possibilities. I have a particular interest in artificial
intelligence in games and level design, as I believe innovation in these areas will
be key to shaping the future of the gaming industry.

Chapter 2: Summary 6

In the short term, I aim to expand my skill set and refine my creative process. In
the long term, my ambition is to become a developer who contributes meaningfully
to the gaming world—someone who creates memorable, impactful experiences
that leave a lasting mark.

Chapter 2: Summary 7

Noé

I am Noé Auguste, a founding member of the All Nighters, originally from An-
necy. After studying mathematics and physics at Berthollet High School, I joined
EPITA, where I met Hugo, Noël, Louise, and Alex. Together, we created our
game development group, All Nighters, and released our first game in 2020.

Outside academics, I’ve always been passionate about sports. I played basketball
for 15 years, first in the E.S.E.M.T club, and now casually with friends or at my
father’s club during holidays. I also practiced rowing in high school, but had to
stop due to injury. In parallel, I have experience as a basketball referee and as
a coach for a youth team. Currently, I regularly train at the gym in Lyon with
Hugo, Louise, and Noël.

Beyond sports, I would describe myself as a creative person. Despite not com-
ing from an artistic family, I’ve always had the urge to create through drawing,
writing, building, or designing games. This led me early on to experiment with
game development, making various projects such as 2D and 3D platformers, click-
ers, and even a multiplayer FPS. While I mostly followed online tutorials, these
experiences were both formative and enjoyable.

My interest in video games also extends to theory. I’ve read theses such as
The Impact of Art Style on Video Games by Eric Sarver and Éléments de game
design pour le développement d’une attitude réflexive chez le joueur by Thomas
Constant. I also spend significant time watching video game content on YouTube,
whether it’s analysis, design breakdowns, or reviews.

Given this background, I naturally leaned toward game design for End The Bully.
Working on this project has been a great opportunity to apply my knowledge and
passion in a meaningful way.

Chapter 2: Summary 8

Hugo

I am Hugo Camarasa Birabent, a founding member of the All Nighters, originally
from Lyon. I studied mathematics and informatics in the Cité Scolaire Interna-
tionale of Lyon and once I finished high school I joined EPITA, where I met Noé,
Noël, Louise, and Alex. Together, we created our game development group, All
Nighters, and released our first game in 2020.

Outside academics, I have always loved doing some sort of physical activity, most
of the time sports. When I was younger, I did ice hockey during three years
due to my older cousin, who was a professional at the time. I really liked it but
in middle school I did not have as much time as before to train and attend to
games so I stopped. However, the next year I started playing tennis, which was
fitted better with my new schedule. I enjoyed it and at the same time I practiced
ping-pong too. However, after some years, I did not like the sport as much as
before and at that moment I did a year of basketball before discovering the sport
which passionates me, the gym and more specifically, the powerlifting. Its a sport
that allows me to surpass myself all the time and has permitted me to meet a lot
of people that have now become great friends.

Beyond sports, I would describe myself as a logical but sometimes impatient
person. I love spending time solving problems and trying to find a solution to
some sort of puzzle or imagining strategies because I find it really stimulating
intellectually. However, at the same time, I love playing FPS or shooter games
which are really nervous and quick, or speedrunning games, which requires to
have a great knowledge of the game but also great mechanical ability to be able
to execute every move precisely and quickly. I love having to find a solution to a
problem with a short amount of time available and using every tools that I know
and have to my disposition.

Even if I have played a lot of different video games, I never really tried to make
one myself. Not so long ago, I imagined one and wrote descriptions and stories
for it but I could never bring myself to create it because I never thought I was
prepared enough.

When we first talked about this project, my implication and motivation made my
group choose me as the Chief of Project, but in reality it was more an honorary
title as we all worked together and I was not the only one assuming the group
leadership.

Chapter 2: Summary 9

Louise

My name is Louise, and I am currently a student at EPITA, where I am pursuing
my passion for technology and software development. Prior to joining EPITA, I
completed my high school education at Sainte-Marie Lyon, where I developed a
strong academic foundation and a growing interest in programming.

Before starting this game development project, I had already acquired skills in
website creation and Python programming. These experiences gave me a solid
grasp of problem-solving and logic-based thinking, which have been invaluable
throughout the project. This initiative gave me the opportunity to apply those
skills in a more complex and collaborative environment, and to grow significantly
in areas I had not explored before—such as game engines, animation systems, and
gameplay design using C and Unity.

Outside of my studies, I have a strong interest in fitness and cars. Going to
the gym helps me maintain discipline and focus, which are qualities I also bring
into my work as a developer. My interest in cars comes from a fascination with
mechanics, design, and performance—principles that also influence the way I ap-
proach challenges in programming.

This project has not only strengthened my technical competencies but also helped
me better understand my own workflow, how I collaborate in a team, and what I
aspire to build in future development projects.

Chapter 2: Summary 10

2.2 Initial Task repartition

Task Employee
Alex Noé Hugo Louise Wachirawit

Art Direction / Graphic Design R S S
Multiplayer / Networking S R

Enemies / AI S S R
UI S S R

Loot / Upgrades S R S
Combat / Player Experience R S S
Marketing / Communication S S R

R : responsable, S : substitute

1. Art Direction / Graphic Design
The task of Art Direction (AD) and Graphic Design mainly involves drawing and de-
signing the sprites of various characters and objects in the game, as well as the maps
and levels. It also includes sprite animation and will work closely with the Marketing/-
Communication team.

2. Multiplayer / Networking
The members of the group handling the Multiplayer/Networking task will be responsible
for making multiplayer functional and operational. They must ensure secure network
connections and optimize the data transmitted through it to make the gameplay as
smooth as possible.

3. Enemies / AI
The Enemies/AI segment of the game involves the AI of all enemies or companions in
general, the AI of various bosses, as well as the addition of new enemies with their
attacks and specific features.

4. UI
The UI (User Interface) task includes creating and refining the HUD, the game menu,
settings (including resolution, key mapping, and game language), the inventory, and
potential post-processing to improve the graphical quality of the game.

5. Loot / Upgrades
Those responsible for the Loot/Upgrades section will handle the loot system (i.e., how
enemies or chests drop items), the upgrades provided by items, and the addition of new
weapons.

6. Combat / Player Experience
The Combat/Player Experience section covers the movement of various characters, the
combat system (specifically how attacks are performed), the enhancement of combat
with ranged attacks, the major addition of Spells, and finally, the procedural generation
of enemies and chests.

Chapter 2: Summary 11

7. Marketing / Communication
The Marketing and Communication team will primarily focus on the game’s website
to present and explain the game in more detail. Secondly, they will handle potential
advertising for the game through social media or other platforms.

Chapter 2: Summary 12

2.3 Changes in task repartition

Throughout the entire project, some issues were notified by the different members
and in consequence some reassignments of the tasks had to be done.

One of the main changes was the passing of the “Multiplayer” role from Hugo to
Noé, due to the incapacity of the first to do the required work and find a good
way to do it.

Hugo first tried to use Photon, an engine used for multiplayer games, but he
struggled to find a good way to implement it and to make it work.

As he spent too much time on the task and was getting demoralized, Noé looked
into another solution that he had heard of, Mirror.

Noé managed to make it work and hence took the responsability of the “Multi-
player” task.

This allowed Hugo to concentrate on his other task, “Loot and Upgrades”.

On another part, as we did the website relatively early on and the only adjust-
ments we could do to it were simply updates on the project advancement, the
“Marketing and Communication” task was finished, therefore Louise and Alex
had the opportunity concentrated on their other tasks.

Every other task did not encounter any significant problem and the team was able
to execute them without issue or need of major changes.

Chapter 2: Summary 13

2.4 Collaborative Tools

Throughout the development of our video game project, effective communication
and collaboration were essential. To ensure smooth coordination among team
members, we relied on several digital tools, each serving a specific purpose and
contributing to the project’s success.

DISCORD

The primary platform we used for real-time communication was **Discord**. We
created a dedicated server exclusively for our team, structured to support both
general discussions and topic-specific exchanges. Multiple text channels were set
up, each corresponding to a particular aspect of the project—for instance, chan-
nels for sprite design, development updates, bug tracking, and general planning.
This organization allowed us to keep our discussions focused and our ideas easy
to revisit.

In addition to text channels, we created multiple voice channels, including one
for each team member—ideal for individual work sessions—and a general meet-
ing voice channel where we held weekly sync-ups and spontaneous brainstorm-
ing sessions. Thanks to this structure, we maintained clear, frequent, and fluid
communication, which greatly reduced misunderstandings and helped us progress
steadily.

NOTION

We also made extensive use of Notion, a powerful platform that enabled us to cen-
tralize and structure our documentation. With Notion, we created a collaborative
workspace where we documented our ideas, specifications, task lists, timelines,
meeting notes, and progress updates. It was especially useful for tracking respon-
sibilities, breaking down larger tasks into smaller actionable items, and sharing
updates with clarity.

As the project evolved, Notion became an essential tool not only for organi-
zation but also for preparing our oral presentations, storing visual assets, and
writing summaries of completed phases. It allowed everyone to stay on the same
page—literally and figuratively.

Chapter 2: Summary 14

GIT

Finally, to manage our codebase and version control, we used Git, hosted on
GitHub. This enabled us to work simultaneously on different features of the game
without interfering with each other’s work. We adopted a branching strategy to
separate development tasks—each team member worked on their own branch
before merging into the main branch after review and testing.

Git also helped us track code history, roll back changes if something broke, and
maintain an overall stable and clean codebase. Regular commits ensured that our
progress was continuously saved and that our work remained synchronized across
the team.

In summary, the combination of Discord, Notion, and Git formed a solid founda-
tion for our collaborative workflow. Each tool served a specific purpose—communication,
documentation, and version control respectively—and together, they allowed us
to stay organized, productive, and aligned from the first day of development to
the final delivery.

15

Team’s Advancement / goals

3.1 Initial Objectives

From the beginning, our goal for End The Bully was to create a game that balanced
challenge and enjoyment. We wanted to design a Roguelite where each run would
feel meaningful, encouraging players to persevere through repeated deaths and
gradually improve through both skill and long-term progression. The idea was
to have the player start from scratch after each death, while keeping persistent
unlocks such as new classes or bonuses through an achievement system.

We intended to make the gameplay dynamic and skill-based, with movement us-
ing ZQSD, melee attacks on left click, ranged attacks on right click, and spell
usage on the A key. Our vision was a fast-paced, responsive combat experience
that demanded attention and rewarded mastery. To support this, we planned
to introduce spells that could be unlocked by completing in-game achievements,
giving players side objectives and a sense of progression beyond simply finishing
the game.

To enhance replayability, we aimed to offer a wide variety of characters and
weapons, each with distinct abilities and playstyles. Our design process included
the creation of multiple items with synergistic effects, some providing buffs, oth-
ers debuffs, allowing players to develop different strategies and builds with each
run. These items were to be found in procedurally generated rooms filled with
enemies and random chests, with keys dropped by defeated enemies acting as a
reward mechanism.

Our ambition was to create a gameplay loop where the player explores dungeon
floors, defeats enemies, opens chests, collects synergistic equipment, and becomes
increasingly powerful in preparation for the final boss. This structure was in-
spired by games such as The Binding of Isaac, Cult of the Lamb, Risk of Rain 2,
and Rotwood, which all combine satisfying combat with strong replay value and
evolving player progression.

Chapter 3: Summary 16

From an artistic standpoint, we agreed early on to adopt a pixel art style. It was a
practical choice that aligned with our skills and allowed for quick asset production,
visual coherence, and easy content expansion.

Narratively, we had imagined a light and humorous fantasy setting: the son of
the Demon King steals the player’s lunchbox, and the player sets off through the
demon’s dungeon to retrieve it, collecting gear and fighting magical enemies along
the way. Our genre was defined as a hack n slash Roguelite, focused on action,
variety, and emergent gameplay.

In short, our initial objective was to build a game that would be engaging, reward-
ing to replay, and filled with meaningful choices. While the final implementation
may differ, this was the direction we had in mind when we began the project.

Chapter 3: Summary 17

3.2 Task advancement throughout the project

Our first concern was to have content to implement and a clear idea of what the
game could be, that’s why we spent a lot of time in meetings and brainstormings
to find a great idea.

Once we had done it, we defined every task and who would do it and started to
work.

The very first thing we tried to do was develop a really simple version of our game
without any multiplayer aspect, to ensure that it was entertaining and could be
fun to play.

In this version we implemented :

• the player, with its appearance and a first weapon

• Puddle, our first enemy

• a small and plain piece of land where our character could evolve

Once we were assured that this part of the game worked, we thought about the
multiplayer and that is the moment where some problems started emerging.

As we had already started, it was quite a challenge to adapt existing code and
features to the multiplayer aspect of the game. At the same time, the team was
adding and improving features, making it even more difficult to follow, but in the
end we managed to make it work.

At this point, everyone started working on their respective tasks and requesting
help from others when they had a problem of some kind or when they had to link
or use their code with the one from someone else.

At diverse points during the project, we did some sort of check-ups to verify that
everyone was doing their work and that no help was needed from anyone, or in
contrary case, what help was needed and how everyone could help in solving the
problem.

Everyone worked well in their respective aspects and tasks and we are glad to say
that a major part of our project has been brought to reality through our work an
the time we put in.

18

Presentation of the final version of the
game

4.1 Gameplay / getting trough the levels

In the final version of the game, the gameplay offers an engaging mix of action,
progression, and strategic exploration. Players take control of a main character
that they navigate using the ZQSD keys, providing fluid movement in four direc-
tions. Right from the beginning of each level, the player is immersed in a hostile
environment filled with enemies (mobs) that must be defeated in order to move
forward. The character is equipped with a basic weapon that deals damage, and
combat is a central component of the experience. Players must time their attacks,
manage positioning, and react quickly to threats in order to survive the encoun-
ters. The mobs present varied behaviors and attack patterns, making each fight
feel dynamic and requiring the player to stay alert and adapt their strategies.

The main objective in each level is to reach and defeat the boss, a stronger en-
emy with higher health, more powerful attacks, and sometimes unique abilities.
Beating the boss is essential, as it unlocks access to the next level, maintaining a
sense of progression and challenge throughout the game. This structure creates
a gameplay loop where players must balance fighting, surviving, and improving
their character as they advance.

Along the way, players can explore the level and find hidden or strategically
placed chests. Opening these chests rewards the player with items that grant
various bonuses—these can include increased attack power, better defense, faster
movement speed, or even temporary abilities that enhance gameplay. These re-
wards encourage players to not only rush through the level, but to take time to
explore and weigh the risks of seeking out loot in areas that may be guarded by
tougher enemies.

This progression system, where each level becomes more difficult and more re-
warding, adds depth and replayability to the game. The combat, exploration, and
reward mechanics come together to create a satisfying and immersive gameplay

Chapter 4: Summary 19

experience. Overall, the final version of the game offers a balanced mix of action,
difficulty scaling, and strategic choices, making each playthrough feel rewarding
and unique.

Chapter 4: Summary 20

4.2 Multiplayer

End The Bully features a complete peer-to-peer multiplayer system that supports
up to four players per session. The game is structured around a host-client model,
where one player acts as the host while others connect as clients.

Connection and Lobby

Upon launching the game, players enter a connection menu where they can join
a session by entering a host address and their username. Once connected, players
are directed to the lobby, where each participant can see the list of connected
players and a readiness indicator. The lobby interface updates dynamically as
players join, leave, or change their readiness status. Once all players are marked
ready, the host can initiate the game.

Character Selection

The game includes a dedicated character selection phase. Each player can browse
a list of unique characters using left/right arrows, view the character’s name, de-
scription, and visual preview, and confirm their selection before the game begins.

Character previews include both melee and ranged weapon visuals, helping players
understand the role and style of their chosen character. The selection interface
ensures that all players are aware of each other’s choices in real time.

Gameplay Synchronization

During gameplay, each player controls a character with full movement, aiming,
and combat functionality. The game ensures that the positions, animations and
actions of the players are synchronized across all clients with a real-time updates
of weapon orientation and usage.

Each player’s unique character appearance and weapon set are retained from the
selection phase and displayed accurately to others during gameplay.

Scene Transitions

The multiplayer system supports seamless transitions between scenes from lobby
to character selection and from character selection to the gameplay.

Chapter 4: Summary 21

Throughout these transitions, player data such as name, character selection, and
order of connection are preserved and restored automatically. This ensures con-
tinuity and avoids identity or role confusion during the session.

Chapter 4: Summary 22

4.3 UI

The user interface (UI) of a game plays a crucial role, as it not only sets the
atmosphere of the game world but also shapes the player’s first impression. In
our project, the first element of the UI is the main menu, which features three
primary buttons: Play, Options, and Exit. These buttons were created by adding
UI components to the game’s canvas and were programmed individually to execute
their respective functions. The menu also includes a background image, which
was implemented by stretching a static image to cover the screen. To enhance
visual consistency and immersion, the buttons were customized using specific color
palettes and imported fonts that align with the game’s overall aesthetic.

The Connection Lobby is the second major component of the UI, structured into
three main sections:

1. Hosting and Joining Menu: This section allows players to either host a ses-
sion or join an existing one. Depending on the selected role, the player receives
different permissions, particularly in the next stage of the lobby.

2. Waiting Lobby: After selecting to host or join, players are placed in a waiting
area until all participants are ready. Only the host has the authority to initiate
the game, reinforcing the host’s role as the session leader.

3. Character Selection Menu: In this final part of the lobby, players choose the
character they will play during the game. The selection is influenced by gameplay
preferences, such as opting for a fast and agile character or a slower but more
powerful one.

The third major component of the user interface is the in-game UI, which includes
several essential features designed to enhance the player’s experience and support
gameplay.

The first feature is a player stats panel, which provides an overview of the charac-
ter’s strengths and weaknesses. This panel allows players to quickly assess their
current capabilities and adapt their strategies accordingly. It was implemented
using a standard UI panel and can be toggled on or off by pressing the “T” key.

The second feature is the inventory system, a critical element of the game given
the central role of items in gameplay. The inventory allows players to view the
items they have collected and to make informed decisions based on their available
resources. It was implemented using a panel and supported by custom scripts

Chapter 4: Summary 23

that manage the addition of new items, the stacking of duplicate items, and the
removal of unwanted ones.

Another important element is the in-game menu button, which provides players
with the ability to exit the game or adjust audio settings. This ensures a more
flexible and user-friendly experience by allowing players to manage sound levels
and leave the game session at any time.

24

Personal Advancement

5.1 Noé

1. First Part of the game development

At the beginning of the project, I developed a basic prototype of the game. This
first version included a simple platformer scene built using a tilemap, a border
to define the playable area, and a camera system that followed the player as they
moved through the environment. I also implemented the player’s basic animations
for idle, running, and jumping states. One of the core features I created at this
stage was the melee weapon mechanic: a sword that rotated dynamically to point
toward the player’s mouse cursor. This allowed the weapon to be aimed with
precision, laying the foundation for directional combat. This work can be found
in the early scripts located in the "development" folder of the project.

While building this first version, we were simultaneously holding regular meetings
to organize our ideas and divide the workload. We also started producing the
initial sprites for enemies, environmental objects, and item pickups. During this
time, I played a major role in coordinating our small team. I helped ensure
that everyone had a clear understanding of what to do and how to begin their
individual tasks.

Chapter 5: Summary 25

2. Second Part of the game development - Items

After getting the core movement and combat working, I moved on to designing
the item pickup system. I implemented a mechanic allowing players to interact
with chests placed on the map. When a player entered the trigger zone of a chest
and pressed the interaction key (E), an opening animation would play. Once
opened, a user interface appeared, offering the player a choice between three
random items. These items were drawn from a list and chosen using a simple
randomization algorithm. The player could select one of the items via the UI,
and the selected item would then appear in the game world or immediately apply
its effect, depending on its type.

The first items I created were designed to enhance specific player stats. For
instance, the Sugar item increased movement speed, the Mushroom increased
maximum health, and the Dumbbell improved melee damage. I also developed a
script to handle generic item pickups placed in the scene, so that when the player
walked over them, their stats were updated accordingly.

Once this system was functional, I exchanged tasks with Hugo. He took over the
design and balancing of new items, while I began working on the multiplayer sys-
tem. This transition marked a significant shift in my responsibilities, as I moved
from isolated gameplay mechanics to broader game architecture and network syn-
chronization.

Chapter 5: Summary 26

3. Third Part of the game development - Multiplayer

To implement multiplayer, I created a new scene dedicated to network play and
integrated the Mirror library. Mirror allowed us to use a peer-to-peer model
while still maintaining a server-client authority structure. I began by setting up
the basic NetworkManager, handling player connections, and managing player
prefab spawning. I then worked on synchronizing player movement, animations,
and stats across clients using SyncVar attributes with hooks to apply visual and
functional updates when values changed.

I also managed the scene transition system so that when the game moved from
the lobby to the character selection screen and finally into the main game scene,
all clients were synchronized correctly. This required learning how to use the
OnServerSceneChanged method and implementing delayed replacements of lobby
players with their in-game equivalents. This process also involved carrying over
certain variables such as character selection and player preferences.

One of the biggest difficulties I faced during this phase was displaying usernames
correctly across all clients. Although I had implemented a SyncVar for the player’s
name, issues with timing and data propagation meant that the names did not
reliably appear as expected. After several attempts to resolve this, I opted for a
fallback solution where each player is simply labeled as "Player 1", "Player 2",
and so on, depending on their connection order. This workaround ensured visual
consistency and allowed us to move forward.

Chapter 5: Summary 27

4. Fourth Part of the game development - UI for Multiplayer

During multiplayer UI development, I was responsible for designing the status
and preview panels that appear during the character selection phase and in-game.
This meant working with Unity’s UI system to create components that updated
in real-time based on player actions. I implemented preview panels showing each
player’s character, current status, and selection readiness. These elements needed
to be synchronized and reactive to input, so I had to develop logic to track local
and remote player state changes without introducing lag or UI flickering.

5. Fifth Part of the game development - Issues with multiplayer

Later in development, we encountered issues with authority handling on net-
worked GameObjects. For example, some objects were not responding to com-
mands or SyncVar changes due to ownership misconfiguration. I had to revise
the player prefab structure and ensure that components responsible for input and
state changes were owned by the correct connection. This included separating
visual components from authority-sensitive scripts and using checks like isOwned
and isServer to gate interactions appropriately.

As the project evolved, we also added more variety to the characters. Each char-
acter had unique traits and needed different visual previews and gameplay values.
I worked on the sprite swapping logic and character loading system during the
selection phase. This system had to correctly instantiate the preview character,
assign the right animations, and update the UI elements dynamically as players
navigated through the selection options.

Chapter 5: Summary 28

6. Conclusion

We also discussed implementing spells and abilities that players could unlock
through achievements. While this feature was not fully completed, I was involved
in early design discussions about how to structure ability slots, cooldown systems,
and player progression logic.

By the final stage of the project, I had a much clearer understanding of Mir-
ror’s systems, including command functions, target RPCs, and the importance of
properly synchronizing GameObjects in different scenes. Compared to my ear-
lier attempts with multiplayer in Unity, where I struggled to understand even
basic features like SyncVars and NetworkManager, I was now able to build func-
tional multiplayer scenes with working UI, item systems, character selection, and
real-time updates.

This project significantly improved my skills in Unity, especially in areas like
UI design, network programming, and team coordination. It also reinforced my
understanding of C# beyond basic scripting, pushing me to write modular and
scalable code. Working in a team also helped me become more flexible, as I often
had to adapt to changes, integrate feedback, and shift tasks based on group needs.

End The Bully taught me both the creative and technical sides of game devel-
opment. From sprite creation to network management, I was involved in nearly
every layer of the project. Despite a few incomplete features, the experience
was both intense and rewarding, giving me a solid foundation for future game
development work.

Chapter 5: Summary 29

5.2 Noël

From the earliest brainstorming sessions, we knew that EndTheBully would re-
quire close collaboration, thorough planning, and constant iteration. We divided
the work into logical components: core gameplay mechanics, UI and menus, au-
dio systems, character design, enemy AI, and more. I chose to focus primarily on
the user interface, audio integration, and in-game systems such as the inventory
and pause menu. These components may seem secondary compared to character
movement or level design, but they are in fact crucial to delivering a polished and
immersive experience for players.

This report will outline my contributions to the project, reflect on the challenges
encountered, and highlight the knowledge and skills I acquired throughout the
development process. It is not only a technical breakdown of what I built but also
an analysis of how these elements contributed to the overall player experience. By
documenting both my successes and the difficulties I faced, I hope to demonstrate
the depth of engagement required in developing a complete game—and the value
of every system, no matter how small, in shaping a cohesive and enjoyable final
product.

1. Main Menu Design and Functionality

My initial objective was to create a menu that not only matched the tone of our
hack ’n’ slash game but also provided a smooth and user-friendly introduction
for players. I focused on crafting a clean layout, selecting appropriate fonts and
colors that convey a sense of adventure while ensuring clear navigation to the
main components: Play, Settings, and Quit.

Technically, this required building responsive scripts for each button. I ensured
that the Play button could preload the necessary assets and initiate the game
without delay, allowing for a seamless transition into the gameplay scene. This
task improved my understanding of Unity’s scene management system and the
importance of optimization to enhance user experience.

Chapter 5: Summary 30

2. Settings Button Development

Although still under construction, the Settings button was implemented with a
forward-looking architecture. I designed its script structure to be scalable, allow-
ing future integration of features such as volume sliders, resolution options, and
control preferences. While currently a placeholder, this component reflects my
growing ability to anticipate future needs and plan for modularity and maintain-
ability in my code.

3. Quit Button Implementation

The Quit button, while simple in concept, required attention to usability and
safety. I programmed it to execute a clean exit sequence while minimizing the
risk of accidental closure. This included defining a precise interaction zone and
testing various user behaviors to ensure reliability. It taught me that even the
simplest features require careful planning and validation.

4. Play Button Logic and Testing

The Play button was especially important due to its role in transitioning players
from the menu to the core gameplay environment. I worked on ensuring that
all necessary resources were preloaded before the scene switch, which reduced
wait times and prevented in-game hitches. I performed stress tests by simulating
rapid and repeated inputs, and refined the transition to maintain immersion and
performance.

Chapter 5: Summary 31

5. Health Bar Implementation

Most recently, I completed the design and integration of the Health Bar, a critical
UI component that provides players with real-time feedback during gameplay. I
aligned its visual style with the rest of the UI, ensuring it fits seamlessly with the
overall aesthetic. This task helped me practice combining design consistency with
functional clarity, a balance I now understand is key in game interfaces.

After completing the main menu and health bar, I shifted focus to the core in-game
interface, expanding the user experience beyond menus.

The Settings menu is now fully functional, allowing players to adjust sound set-
tings. This serves as a foundation for more advanced configuration options in the
future.

The Stat Menu has been redesigned to display player statistics in a clear, concise
layout. I added icons and acronyms to improve readability, and the menu can
now be toggled at will—giving players immediate access to information without
interrupting gameplay.

I also developed the Inventory UI, allowing players to view and manage their
items. This screen is accessible via a button and designed to be expandable for
future content.

Chapter 5: Summary 32

6. Inventory System Implementation

To support the inventory UI, I created a modular and scalable inventory system
composed of three core classes:

1.ItemData – Stores essential information such as item names, sprites, and icons,
enabling visual representation in the inventory. ItemData – Stores essential in-
formation such as item names, sprites, and icons, enabling visual representation
in the inventory.

2. InventoryItem – Manages item quantity, operating like a stack that increases
or decreases based on player actions.

3.Inventory – The main inventory manager that stores items in a list and a dic-
tionary for fast access and efficient tracking.

I implemented the following methods:

- Add(ItemData item) – Increases quantity if the item exists; otherwise, adds it
as a new entry.

- Remove(ItemData item) – Decreases quantity or removes the item entirely if
the count reaches zero.

Chapter 5: Summary 33

7. Advancements in UI and Audio Integration

Building on the foundation of the inventory system, I transitioned into refining
and expanding the overall user interface and game experience.

To begin, I shifted my focus to the Settings Menu, implementing a sound manager
to allow dynamic control over audio levels. This marked a crucial step in improv-
ing player immersion and providing greater customization options. In parallel, I
continued enhancing the Stat Menu, not only improving its functionality but also
redesigning its layout and visual elements to make it more appealing and readable.
Icons, spacing, and visual effects were adjusted to create a cleaner, more modern
look.

Next, I tackled the design of the Inventory UI. I introduced a dedicated panel
and item slots, preparing the system for future item integration. To ensure ease
of access, I configured the inventory interface to be toggled with a single button
press, maintaining a fluid gameplay experience.

In my effort to improve the game’s overall visual coherence, I contributed new
sprite assets to the interface. These additions helped to make the UI feel more
alive and visually engaging, contributing to the unique identity of EndTheBully.

I then focused on transitions within the game by developing a fade-in / fade-out
effect for scene changes. This effect was later replaced with a more practical and
thematic approach: a level name overlay that appears when entering a new area,
providing clear contextual feedback to the player and enhancing immersion.

Chapter 5: Summary 34

8. Audio Design and Sound Integration

Sound design became a major focus of my work during this phase. I implemented
a variety of sound effects to bring the game world to life:

- Player actions now include walking sounds, sword swing effects, and an un-
sheathing sound when drawing the weapon.

- Enemy behavior has also been enhanced with attack sounds to make encounters
feel more dynamic and responsive.

- I added background music that plays during gameplay, setting the tone and
atmosphere of the game.

This integration of sound elements significantly enriched the sensory experience
of EndTheBully, making interactions more satisfying and environments more im-
mersive.

9. Pause Menu and Final Enhancements

Continuing with interface improvements, I developed a Pause Menu that provides
players with essential options during gameplay. From this menu, players can:

- Pause or exit the game

- Toggle between windowed and fullscreen mode

- Adjust the volume of both music and sound effects independently.

To add polish and a sense of smooth interaction, I also implemented opening ani-
mations for both the Stat Menu and Pause Menu. These subtle visual transitions
contribute to the professional feel of the game and help the interface feel cohesive
and responsive.

Chapter 5: Summary 35

5.3 Hugo

1. Pre-game development and brainstorming period

When I first heard about the project I was really excited about it, because it was
the opportunity to do a big project in collaboration with people I liked. That is
why at the beginning of the project I was really active during our meetings and
brainstorming sessions.

I was always doing suggestions, imagining items or concepts and proposing them
to the team to discuss them and see whether they would fit the game or not.

This is how I imagined a lot of items, even if sadly they could not find their way to
our final version because of the lack of time and the complexity of their different
effects.

Due to my implication and my natural leadership, I was chosen as the project
manager, a choice that later revealed itself as not very judicious.

When we assigned the different tasks that we had defined, I willingly chose to do
the multiplayer aspect of the game, as I thought it could be an interesting part
of the development that I wanted to be a part of. At the time, Noé warned me
about the complexity of the task but I did not really think it through and still
wanted to do it.

Chapter 5: Summary 36

2. First part of game development

As mentioned before, in the beginning I was in charge of the multiplayer aspect
of the game.

I first looked for an appropriate engine to use, and I quickly found Photon as an
answer.

Following this, I watched some YouTube tutorials concerning it and then tried to
implement the same thing in our game, but I faced a problem : the development of
the game had already begun and we already had a part of the game implemented
and I had to adapt to it to make Photon work.

At this moment it tried finding tutorials about games that already had a base
before implementing the multiplayer but that was not a simple task as a lot of
those tutorials did not apply to our case or they just did not exist.

At the time I started to lose some of the interest I had in the project due to the
difficulty of finding a way to make it work.

Thankfully, Noé came to rescue me and proposed another engine, Mirror. As I
did not have the motivation to do the multiplayer part anymore, he took over
which allowed me to concentrate on other tasks.

Chapter 5: Summary 37

3. Second part of game development

The other task I had was to take care of the items. As we imagined a lot of
different items with very various effects, I had to think a lot to make a reusable
class that would englobe all the items, whatever their effect was.

This is how I came up with the “Items” abstract class, with enums for the rarities
of the items and what stat they would upgrade, the function that is used every
time a player opens a chest and also a “Display” and an “Effect” function, that
had to be defined in the classes inheriting from the “Items” class.

The first items I implemented and adapted to the class were the “simple items”,
like the ones that were already existing in the game. Those “simple items” are
the ones that only add a certain value or multiply the stats of the player.

At this point of the development, we realised that the interface of the chests had
a bug and in consequence I spent some time fixing it, which I finally achieved.

Once this was done, I implemented a function to alter the drop rates of the
different items, depending on their rarity.

Then, my main focus was to implement more complex items. I ended up creating
three, and one of them implemented the concept of “luck” in the game, changing
even more the drop rates of the items.

Chapter 5: Summary 38

5.4 Alex

In this game development project, my role focused on building and integrating the
player’s gameplay and combat systems, which are central to how users interact
with and experience the game. These systems include attack mechanics, weapon
handling, combat feedback, stat-based differentiation, and animation blending.
My objective was to create a responsive, dynamic, and enjoyable combat system
that also supports strategic variation through character identity and dual weapon
options. The project was developed in Unity, using C# as the primary scripting
language.

1. Combat System and Character Design

The game features three main characters: the Elf, the Knight, and the Dino. Each
has distinct attributes and combat styles, designed to encourage varied playstyles.
A key design feature is that every character uses two weapons: one melee and
one ranged. This dual-weapon approach allows players to adapt in real-time to
different combat scenarios, switching between ranged precision and close-quar-
ters damage. This also increases player agency, making combat more fluid and
strategic.

Chapter 5: Summary 39

2. Detailed Character Profiles

The Elf is a character tailored for players who favor speed and agility in their
gameplay. Her combat strategy revolves around quick movements and accurate
long-range attacks. She uses a dagger for her melee weapon, which delivers fast,
low-damage strikes that are particularly effective in hit-and-run engagements. For
ranged attacks, she uses a bow that launches arrows aimed via the mouse cursor.
These arrows are implemented using Unity’s Rigidbody2D physics system, pro-
viding a realistic and responsive projectile trajectory. Statistically, the Elf boasts
high movement speed, moderate attack power, and low health, which encourages
a playstyle reliant on reflexes and evasion. Her animations are handled through
Unity’s blend trees, allowing for seamless transitions between running, idle, and
attack states, making her gameplay feel smooth and natural.

The Knight represents the strength and endurance archetype. He is built to with-
stand heavy damage and control the battlefield through powerful melee attacks.
Equipped with a massive sword as his melee weapon, the Knight delivers sweep-
ing strikes that cover a broad area and apply knockback to enemies using Unity’s
AddForce method. For ranged combat, he uses a firearm that shoots bullets
toward the player’s cursor. These bullets are instantiated as prefabs and auto-
matically destroyed after three seconds to prevent memory overflow. His stats
emphasize high strength and defense but come at the cost of movement speed,
making him a perfect choice for players who prefer a more deliberate, tank-like
playstyle. His animation system is managed with separate animator controllers for
melee and ranged modes, with weapon switching handled by adjusting animation
layers dynamically.

The Dino is a balanced character designed to offer a mix of offense and defense, ap-
pealing to players who like to shift between aggressive and tactical gameplay. His
melee weapon is a hammer that inflicts area-of-effect damage and heavy knock-
back. For his ranged attack, he throws rocks that follow a parabolic arc, calculated
through custom physics scripting to simulate a lobbed projectile. Stat-wise, the
Dino has balanced health and movement speed, but he delivers high melee dam-
age, positioning him as a reliable all-rounder. His gameplay encourages players
to manage shared cooldowns between the hammer and rock-throwing abilities,
promoting a more thoughtful and strategic combat rhythm.

Chapter 5: Summary 40

3. Weapon Switching and Combat Flow

Weapon switching is performed via a key toggle system. When the switch occurs:

- The active weapon GameObject changes.

- UI icons update.

- Character stats and animations adjust dynamically.

This system ensures seamless transitions and responsive gameplay. Melee weapons
use hitboxes and trigger detection, while ranged attacks rely on raycasting or
directional prefab instantiation.

Chapter 5: Summary 41

4. Knockback and Visual Feedback

Knockback was crucial for enhancing combat feedback. When enemies are struck,
they are pushed based on the weapon used and the direction of impact.

- The Knight’s sword and Dino’s hammer have high knockback values.

- The Elf’s dagger causes minimal knockback.

- Rigidbody2D forces are used to create dynamic reactions.

To reinforce feedback, visual elements like screen shake, particles, and audio cues
were added. These help the player feel the impact and intensity of combat, im-
proving immersion.

Chapter 5: Summary 42

5.5 Louise

Over the course of this project, I was responsible for a wide range of tasks related
to both the gameplay mechanics and level design. My work focused primarily
on enemy behavior, animations, level structure, and boss implementation. These
components are essential to the gameplay experience, and I took great care to
ensure that every element I developed was coherent, polished, and integrated
smoothly into the final version of the game. Below, I describe in detail the main
features I implemented, the challenges I encountered, and the solutions I devel-
oped.

1. Level Design and Boundaries

Another key contribution of mine was the design of the first and second levels
of the game. I was responsible for laying out the level structure, placing terrain
elements, and defining navigable and blocked zones. This involved working closely
with the team to ensure consistency in visual style and difficulty progression
between levels.

It was not easy because I had to create textures, which is something I had never
done before. I did my best but I still remain unsatisfied with how the textures of
the second level look.

To improve the gameplay experience, I also implemented MapBounds and Cam-
eraBounds in both levels. This ensured that players could not leave the intended
playable area and that the camera would follow them smoothly while respecting
the designed limits of the map. This was particularly important for preserving
immersion and preventing bugs related to off-screen enemies or assets.

Chapter 5: Summary 43

2. Implementation of the Enemy “Puddle”

One of my major tasks was the complete design and integration of an enemy
character named Puddle. This enemy appears early in the game and serves as
an introductory challenge to the player. I handled every aspect of Puddle’s cre-
ation—from its visual identity to its behavior in the game environment.

1.1. Sprite and Animation Work

The visual design of Puddle required a series of custom-made sprites to represent
its different states. On December 31st, 2024, I created the front, left, and right
idle sprites to match the aesthetic of the game while making sure the enemy
could be easily identified by the player from any direction. Later, I added attack
sprites for both left and right directions. These sprites were essential for building
a believable and visually responsive enemy.

During a second phase on January 12th, 2025, I focused on the animation work.
I designed separate animations for idle, running, and attacking states, ensuring
that they played smoothly and transitioned naturally depending on the in-game
situation. The animations were then integrated into Puddle’s Animator, and I
created the methods runningAnim, iddleAnim, and attackAnim to switch between
them based on Puddle’s behavior.

1.2. Enemy AI and Behavior Scripts

To bring Puddle to life in the game world, I implemented several AI scripts.
Initially, I wrote a script called AIChasePuddle.cs, which allowed Puddle to detect
and follow the player. A key feature of this script was the ability to change the
sprite dynamically depending on the player’s position, giving a more immersive
and reactive feel to the enemy.

Later on, to improve modularity and make future enemy creation easier, I refac-
tored the AI behavior by creating a base Ennemy class. The Chase() function,
previously written specifically for Puddle, was moved into this class to serve as a
common method that other enemies could inherit and override if needed.

Originally, attack behavior was handled in a separate script (AIAttackPuddle.cs),
but I later removed this script and integrated the attack handling directly within
Puddle’s animation and behavior management methods, providing a cleaner and
more scalable system.

Chapter 5: Summary 44

3. Boss Creation

One of my most significant contributions was the creation of the game’s first boss,
named Biggle. Biggle appears at the end of the first level and serves as a major
milestone for the player. The design process included both visual and mechanical
components.

3.1. Visual Design and Animation

I created the complete sprite set for Biggle, including its running and attacking
animations. As a boss, Biggle required more detailed and expressive animations
than regular enemies. I focused on making the boss’s movements feel weighty and
threatening, helping to set it apart visually and thematically from the rest of the
enemies.

3.2. Ranged Attack Mechanic – Spit Projectile

Biggle features a special ranged attack: it can spit projectiles at the player. This
mechanic introduces a new level of challenge, as it forces the player to not only
engage in close combat but also to dodge incoming attacks from a distance. I im-
plemented the projectile logic and ensured that it inflicted appropriate damage to
the player upon impact. This required integrating damage detection, cooldowns,
and an attack pattern system to keep the fight balanced but difficult.

Chapter 5: Summary 45

4. Technical Challenges and Problem Solving

Throughout my contributions, I encountered several technical challenges. One
major challenge was the coordination between animations and behavior scripts,
particularly when it came to synchronizing Puddle’s attack triggers with the an-
imation frames. After experimenting with various solutions, I implemented a
state-checking system that ensured animations would not interrupt each other
and that behavioral actions would only execute when appropriate.

Another challenge was designing a scalable enemy system. Initially, each en-
emy had unique scripts, but this quickly became unmanageable. Refactoring the
codebase to use an inheritance-based enemy structure with a shared base class
significantly improved both the readability and extensibility of the code.

Chapter 5: Summary 46

5. Git Management and Branch Merging

In addition to my development and design tasks, I was also in charge of managing
the merging of branches on our Git repository. This responsibility was crucial
to the project’s success, as our team worked on separate features in parallel and
frequently pushed updates to different branches. Ensuring a smooth integration of
these changes required vigilance, consistency, and a good understanding of version
control systems.

Throughout the project, I was the one who handled the integration of work across
all team members, especially during key development milestones. Each time we
had to consolidate new features or prepare a new build, I took care of merging
the active branches into the main development branch. This was not a simple
task—conflicts often occurred when different team members edited the same files,
and resolving these issues required a detailed understanding of everyone’s code.

One of the most challenging aspects of this role was dealing with merge con-
flicts, which became more frequent as the project grew in complexity. Sometimes,
changes to the same line of code or overlapping modifications to animations, pre-
fabs, or scene files would result in errors that Git couldn’t resolve automatically.
I had to manually inspect differences, understand the intent behind each change,
and carefully merge them without breaking functionality.

Although this process could be tedious and frustrating at times, especially when
last-minute commits introduced unexpected issues, it taught me a lot about col-
laboration workflows, conflict resolution, and the importance of keeping a clean
and organized commit history. I also learned how to use tools like GitKraken and
command-line Git utilities more effectively to track changes and avoid potential
issues before they happened.

Ultimately, my work on Git management played a crucial behind-the-scenes role
in keeping the project running smoothly. It ensured that everyone’s progress was
reflected in the main project without delays, and it helped avoid larger structural
bugs that could have arisen from unmanaged code conflicts. It also allowed us to
maintain regular backups, track our development history, and revert changes when
necessary. This experience gave me a much deeper appreciation for version control
systems, and I feel far more confident handling collaborative coding environments
in future projects.

47

Conclusion

6.1 Personal Reflections

Hugo - What I Would Do Differently

In my opinion, if I had to do it again I would put my attention on the multiplayer
before anything else and then build the game around it. I would implement some
sort of protection around our main branch in Git too as this has led us to the loss
of some time. But more importantly, I would try to imply myself more and more
constantly as my implication during was very intermittent and not very constant.

Chapter 6: Summary 48

Louise - What I Would Do Differently

If I were to start this project again, there are several things I would do differ-
ently. First, I would invest more time early on in designing a clear and flexible
architecture for our codebase. Our initial approach, where each enemy had its
own unique script, made maintenance harder down the line. Refactoring into a
shared base class helped, but this could have been implemented from the start.

Second, I would push for more frequent integration between branches. Some of
the most frustrating merge conflicts occurred because we let branches drift too
far apart before merging. Regular, smaller merges would have made the process
smoother and would have helped us catch compatibility issues earlier.

Finally, I would encourage even more cross-team communication, especially when
working on interconnected systems like UI, animation, and AI. Sometimes small
changes in one area had unexpected effects elsewhere, and better coordination
could have prevented bugs or confusion.

Chapter 6: Summary 49

6.2 Skill Acquired

Louise Part

Technical Skills

On the technical side, one of the most valuable areas of growth was my profi-
ciency in Unity and C scripting. I became comfortable with structuring reusable
and maintainable scripts, particularly when working with enemy AI and anima-
tion systems. Implementing the behavior of enemies like Puddle, and especially
designing a boss like Biggle with attack patterns and projectile logic, helped me
better understand state machines, animation blending, and interaction between
game objects. I also learned how to use Unity’s Animator Controller effectively
to synchronize animations with behaviors, something I had little experience with
before this project.

Additionally, I became much more proficient in using Git, particularly in a col-
laborative environment. I took charge of branch merging, and while this task
was sometimes frustrating—especially when facing repeated merge conflicts—it
forced me to develop a disciplined approach to version control. I learned how
to identify, understand, and resolve merge conflicts carefully, which will be in-
valuable in any future team project. I also improved my knowledge of debugging
techniques, scene structuring, and level design, particularly through setting up
map and camera bounds.

Non-Technical Skills

Equally important were the non-technical skills I developed. Collaborating within
a team for nearly a year required strong communication, patience, and adaptabil-
ity. Using tools like Discord and Notion taught me the importance of keeping our
work transparent and organized. These platforms allowed us to avoid confusion
and ensure that everyone was aligned with the project’s goals.

I also improved my time management and problem-solving mindset. Balanc-
ing deadlines, meetings, coding, and testing taught me how to break large tasks
into smaller, manageable parts and how to prioritize them based on importance
and urgency. Handling stress—especially during the most chaotic development
phases—helped me grow personally as well, and I learned not to panic in the face
of bugs, crashes, or last-minute changes.

Chapter 6: Summary 50

Hugo’s Part

During this project, I have perfectioned my understanding and use of the language
C. This experience has allowed me to discover an develop other ways of thinking
and it has taught me the importance of constance and implication. Even if I had
already worked on projects or expositions with friends before, this project was
really different as it was during a long period of time and much more complex
and I think it has taught me a lot about working in a team, management and
organisation.

6.3 Final Conclusion

After nine months of continuous work, this video game project represents the
culmination of our collective efforts, creativity, and perseverance. Starting from
a structured specification document and a clear set of objectives, we navigated
through every phase of the development cycle—from early concept discussions to
the delivery of a fully functional multiplayer game. Along the way, we encountered
numerous technical, organizational, and interpersonal challenges that tested both
our individual abilities and our teamwork, but ultimately contributed to a richer
and more realistic learning experience.

This final product reflects not only the application of our technical knowledge, but
also our ability to collaborate, adapt, and problem-solve in a real-world project
setting. While some features had to be simplified or dropped due to time con-
straints or unforeseen complexity, the game still meets its core goals and offers a
satisfying and engaging user experience. The process allowed each of us to deepen
our understanding of game development, project management, and version con-
trol, while gaining hands-on experience with tools like Git and Unity.

Most importantly, this project taught us how to work as a team—how to plan,
communicate, and deliver something ambitious together. It pushed us beyond
academic exercises and into a context that closely mirrors professional environ-
ments. We leave this project not only with a working game, but with confidence
in our capacity to face new technical and collaborative challenges in the future.
This report marks the end of the project, but the skills and lessons we’ve acquired
will carry forward into whatever comes next.

	General Introduction
	Project Context
	In depth presentation of the game

	Work Organization
	Individual Presentations
	Initial Task repartition
	Changes in task repartition
	Collaborative Tools

	Team's Advancement / goals
	Initial Objectives
	Task advancement throughout the project

	Presentation of the final version of the game
	Gameplay / getting trough the levels
	Multiplayer
	UI

	Personal Advancement
	Noé
	Noël
	Hugo
	Alex
	Louise

	Conclusion
	Personal Reflections
	Skill Acquired
	Final Conclusion

